Errata for J. G. Webster (ed.), Medical instrumentation: Application and design, 4th ed., Hoboken NJ:
John Wiley \& Sons, 2009, November 21, 2009. Send all errata to Webster@engr.wisc.edu
On December 11, 2009 added changes on pages 76, 86, 178, 446.
On December 22, 2009 added change on page 194.
On February 8, 2010 added changes on page 306, 307, 360, 621

Chapter 1

A) Page 21
$50 \mu \mathrm{~V} \cdot \mathrm{~V}^{-1} \mathrm{~mm} \mathrm{Hg}^{-1}$.
Add second raised dot before mm
$50 \mu \mathrm{~V} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mm} \mathrm{Hg}^{-1}$.
B) $\mathrm{Eq}(1.25) \mathrm{pg} 31$

$$
\begin{equation*}
a_{2} \frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)-b_{0} x(t) \tag{1.25}
\end{equation*}
$$

Replace - with $=$:
$a_{2} \frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{0} x(t)$
C) $\operatorname{Pg} 31$

$$
\zeta=\frac{a_{1}}{2 \sqrt{a_{0} a_{1}}}
$$

In the denominator, replace a_{1} with a_{2} :

$$
\varsigma=\frac{a_{1}}{2 \sqrt{a_{0} a_{2}}}
$$

D) $\mathrm{Eq}(1.32) \mathrm{pg} .33$

$$
\begin{equation*}
\zeta=\frac{B}{2 \sqrt{K_{\mathrm{m}} M}} \tag{1.32}
\end{equation*}
$$

In the denominator, replace K_{m} with K_{s} :
$\varsigma=\frac{B}{2 \sqrt{K_{s} M}}$
E) $\mathrm{Eq}(1.39) \mathrm{pg} .35$

$$
\begin{equation*}
y(t)=K_{x}\left(t-\tau_{\mathrm{d}}\right), \quad t>\tau_{\mathrm{d}} \tag{1.39}
\end{equation*}
$$

In the right hand side term, x is NOT a subscript :
$y(t)=K x\left(t-\tau_{d}\right), \quad t>\tau_{d}$

Chapter 2

A) Page 49 Figure 2.2 legend
$R_{3}=\mathrm{D}$, and $R_{4}=\mathrm{C}$
Change to
$R_{3}=\mathrm{C}$, and $R_{4}=\mathrm{D}$
B) Page 53

A nonlinearity in $\Delta R / R_{0}$ is present even when $R_{0} / R_{1}=0$
Delete entire sentence
C) Page 61 line 2
$R_{\mathrm{i}}=11.1 \mathrm{k} \Omega$
Change to
$R_{\mathrm{i}}=1.11 \mathrm{k} \Omega$
D) Page 76 Fig 2.21 replace figure with figure below, which contains the missing (e)
(a)

(b)

(c)

(d)

(e)

E) Page 86, line 13 replace "factor of 104 " with factor of $10^{4 "}$

Chapter 3

A) $\operatorname{Pg} 115$, line 8 replace " $\mathrm{T}=$ temperature, K " with " $T=$ temperature, K " where T is italic
B) $\operatorname{Pg} 123$, Problem 3.1 replace "gain of 10 " with "gain of -10 "
C) $\operatorname{Pg} 123$, Problem 3.2 replace " 100 mV to 50 mV " with " -100 mV to +50 mV "
D) Pg 123, Problem 3.7 replace " 0 to 2 V " with " 0 to +2 V "
E) $\operatorname{Pg} 124$ Problem 3.10 replace " 0 to 10 V " with " 0 to -10 V "
F) Pg 124 Problem 3.15 replace " $10(\operatorname{not}-10)$ " with " $+10($ not -10 "
G) Pg. 124 , Problem 3.17 replace " is 110 to 10 kHz " with " is 1 to 10 kHz ".
H) Pg 124, Problem 3.22: replace "For Problem 3.21" with "For Problem 3.20".

Chapter 4

A) Page 178 , line 11 from bottom change "Chapter of his book" to "Chapter 5 of his book"

Chapter 5

A) $\operatorname{Pg} 194 \mathrm{Eq}$ (5.8)

$$
\begin{equation*}
E=E^{0}=\frac{R T}{n F} \ln \frac{a_{C}^{\gamma} a_{D}^{\delta}}{a_{A}^{\alpha} a_{B}^{\beta}} \tag{5.8}
\end{equation*}
$$

should be replaced by

$$
\begin{equation*}
E=E^{0}+\frac{R T}{n F} \ln \frac{a_{C}^{\gamma} a_{D}^{\delta}}{a_{A}^{\alpha} a_{B}^{\beta}} \tag{5.8}
\end{equation*}
$$

B) Pg 199, Eq. (E5.3) replace " 6.25×10^{8} atoms" with " 6.25×10^{18} atoms"

Chapter 6

A) $\mathrm{Eq}(\mathrm{E} 6.1) \mathrm{pg} 248$

$$
\begin{align*}
& i_{1}=\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{2 R} \\
& v_{\mathrm{w}}^{\prime}=i_{1} R+v_{\mathrm{c}}=\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{2 R} R+v_{\mathrm{c}}=\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{2} \tag{E6.1}
\end{align*}
$$

In the second equation, right hand side term, replace - with + :
$v_{w}^{\prime}=i_{1} R+v_{c}=\frac{v_{b}-v_{c}}{2 R} R+v_{c}=\frac{v_{b}+v_{c}}{2}$
B) $\mathrm{Eq}(6.10) \mathrm{pg} 261$

$$
v_{\mathrm{A}}-v_{\mathrm{B}}=(10 \mathrm{mV})(20 \mathrm{k} \Omega / 5 \mathrm{M} \Omega)=40 \mu \mathrm{~V}
$$

It is Eq 6.10 and not Eq E6.10.
C) Fig 6.17 pg 272

(b)

In (a), left hand side capacitor is C_{s} and not C_{f}, see below:

Chapter 7

A) Pg 306: Consequently, $\mathrm{C}_{\mathrm{t}}=3.38 \times 10^{-14} \mathrm{~m}^{5} / \mathrm{N}$ should be Consequently, $\mathrm{C}_{\mathrm{t}}=3.58 \times 10^{-14} \mathrm{~m}^{5} / \mathrm{N}$
B) Pg 307: Top equation $\mathrm{f}_{\mathrm{n}, \text { bubble }}=92()$ should be $\mathrm{f}_{\mathrm{n}, \text { bubble }}=91()$

Chapter 8

A) Pg 343: in formula (8.7) variable C_{b} should be in lower case:

$$
F=\frac{Q}{\rho_{\mathrm{b}} c_{\mathrm{b}} \int_{0}^{t_{1}} \Delta T_{\mathrm{b}}(t) d t}\left(\mathrm{~m}^{3} / \mathrm{s}\right)
$$

B) $\operatorname{Pg} 360$: in formula (8.19) variable $R_{\text {max }}$ should be R_{m} :

$$
u_{\mathrm{m}}(\cos \theta) R_{\mathrm{m}}<\frac{c^{2}}{8 f_{0}}
$$

C) $\operatorname{Pg} 374$ Figure 8.21 legend

Replace "A" with "A noninverting amplifier can drive low impedance loads, and it provides a gain of 100 ."

Chapter 9

A) Pg 408: formula (9.29a) should be modified as:

$$
-\frac{V_{\mathrm{L}}}{P_{\mathrm{A} \text { DRY }}} d P_{\mathrm{A} \text { DRY }}+\frac{d N_{\mathrm{L} \text { DRY }}}{\rho_{\mathrm{L} \text { DRY }}}=\frac{V_{\mathrm{B}}}{\alpha_{\mathrm{B}} P_{\mathrm{B}}} d P_{\mathrm{B}}-\frac{d N_{\mathrm{B}}}{\rho_{\mathrm{B}}}
$$

B) Pg 424: in the last line the equation referenced should be (9.20) and not (9.21).
C) Pg 425: in line 11 the equation referenced should be (9.22) and not (9.23).
D) Pg 427: in line 12 from bottom the text
"In particular, O_{2} and CO_{2} cannot be measured in the presence of $\mathrm{N}_{2} 0$ "
should be modified as
"In particular, CO_{2} cannot be measured in the presence of $\mathrm{N}_{2} 0$ "
E) Pg 446 problem 9.28 change "Derive (9.47 and" to "Derive (9.47) and"

Chapter 12

A) Pg 544: in the expression
"... $3 \times 10^{8} \phi_{x}>\mathrm{mm}^{2}$, where $\phi_{x}>\mathrm{mm}^{2}$ is \ldots "
change $>$ to $/$ in two places
$\ldots 3 \times 10^{8} \phi_{x} / \mathrm{mm}^{2}$, where $\phi_{x} / \mathrm{mm}^{2}$ is \ldots
B) Pg 553: in the expression
$\ln I / I_{0}=-\Delta x e-\Delta x\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\ldots\right)$
the first term in the right hand side should be deleted:
$\ln I / I_{0}=-\Delta x\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\ldots\right)$
C) Pg 562: in the expression
$N_{\mathrm{n}} / N_{\mathrm{e}}=e^{h f k T}$
the term $k T$ in the exponential should go to denominator:
$N_{\mathrm{n}} / N_{\mathrm{e}}=e^{h f k T}$
Chapter 13
A) Pg 621, Figure 13.16 change Exhausted to Exhaust

END

