ADVANCED DYNAMICS OF STRUCTURES / HOMEWORK # 1; October 15, 2014

Problem # 1:

Write down the equation of motion of the rigid-body assemblage in terms of Y(t) the horizontal displacement by using the principle of the virtual work. Obtain the free undamped vibration period $T = \alpha \sqrt{M/k}$ of the assemblage and determine α . Find the resonance condition ($\omega = \overline{\omega}$) in terms of the parameters of the undamped system.

Problem # 2:

A single degree of freedom undamped system of the mass m, the stiffness k is subjected to the external load p(t), where $p(0 \le t \le 2T) = p_o \sin[\pi t / (2T)]$ and $p(t \ge 2T) = 0$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., u(t=0) = 0 and $\dot{u}(t=0) = 0$. Find the displacement function $u(0 \le t \le 2T)$ by using the initial conditions and $u(t \ge 2T)$ by using the continuity of the displacement and the velocity, where T is the free vibration period of the system. Draw the variation of $u(0 \le t \le 4T) / u_{static}$, where $u_{static} = p_o / k$.

The single-degree-of-freedom damped system shown is subjected to an external load of impulse characters by considering that the system starts from the rest, i.e., u(t = 0) = 0 and $\dot{u}(t = 0) = 0$. Find out the displacement u(t), the velocity $\dot{u}(t)$ and the acceleration $\ddot{u}(t)$. Obtain the maximum shear force and bending moment, where T_o is the free undamped vibration period of the system. $M_o g = 100kN$, $K_o = 1500kN/m$, $\xi = 0.10$, $P_o = 100kN$, h = 8.0m.

ADVANCED DYNAMICS OF STRUCTURES / HOMEWORK # 2; November 05, 2014

Problem # 1:

Obtain the free vibration frequency of the beam shown having a uniformly distributed mass m_o and two lumped masses M_o by assuming two different shape functions (a) $\psi_1(x) = \sin \frac{\pi x}{3a}$ and (b) $\psi_2(x) = x(3a - x)$.

Problem # 2:

Obtain the stiffness matrix, the flexibility matrix and the mass matrix of the frame shown. Evaluate the first two free vibration mode shapes ϕ_1 and ϕ_2 and the corresponding circular frequencies ω_1 and ω_2 by using Stodola method. Check the orthogonality conditions $\phi_1^T \mathbf{m} \phi_2$ and $\phi_1^T \mathbf{k} \phi_2$.