ADVANCED DYNAMICS OF STRUCTURES / Home Work 3 / November 19, 2014	ADVANCED DYNAMICS OF STRUCTURES / Home Work 4 / December 10, 2014
 Problem # 1: Consider the column which can be represented as a system of three degrees-of-freedom shown: a. Write down the equations of motion of the system by including the external loads. Evaluate the mass matrix m, the rigidity matrix k, and the flexibility matrix k = d⁻¹, b. Determine the three circular frequencies and the periods of the free vibration ω_i and T_i and the corresponding mode shapes φ_i. Give their graphical representation (i = 1, 2, 3), a. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix φ₁^Tmφ₂, φ₁^Tmφ₃, φ₂^Tmφ₃ and φ₁^Tkφ₂, φ₁^Tkφ₃, φ₁^Tkφ₃, b. Evaluate the generalized masses and stiffness M_i = φ_i^Tmφ_i, and K_i = φ_i^Tkφ_i, and assess 	 Consider the system of three degrees-of-freedom shown: a. Write down the equations of motion of the system by including the ground motion u_g(t) and evaluate the mass matrix m, the rigidity matrix k, and the flexibility matrix k = d⁻¹, b. Determine the three circular frequencies and the periods of the free vibration ω_i and T_i in terms of EI, M and l. Obtain the corresponding mode shapes φ_i and give their graphical representations (i = 1, 2, 3), c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix φ₁^Tmφ₂, φ₁^Tmφ₃, φ₂^Tmφ₃ and φ₁^Tkφ₂, φ₁^Tkφ₃, φ₁^Tkφ₃,
 <i>ω_i</i> = K_i / M_i (<i>i</i> = 1, 2, 5), c. The heights of the stories are <i>l</i> = 3.0<i>meter</i>, the columns have a cross section of 0.40<i>m</i>×0.80<i>m</i>, the first period of the system is T₁ = 0.30<i>s</i> and <i>E</i> = 30<i>GPa</i>. Find the numerical values of the mass M_o, the second period T₂ and the third period T₃ of the system. <i>P_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) u_i(t) u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) u_i(t) <i>u_i(t) u_i(t) <i>u_i(t)</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	a. Evaluate the generalized masses and stirrness $M_i = \phi_i \mathbf{m} \phi_i$, and $K_i = \phi_i \mathbf{k} \phi_i$, and assess $\omega_i^2 = K_i / M_i$ ($i = 1, 2, 3$), e. The heights of the stories are $\ell = 3meter$, the columns have cross section of $b / h = 0.40m / 0.70m$, the first period of the system is $T_1 = 0.30s$ and $E = 30GPa$. Find the numerical values the parameter M , the second period T_2 and the third period T_3 of the system. f. Determine the effective modal masses M_1^* , M_2^* and M_3^* and assess that $M_1^* + M_2^* + M_3^* = 5M$ g. Evaluate the base shear forces V_{b1} , V_{b2} and V_{b3} corresponding to the three mode shapes, the equivalent forces applied to the system at the story levels for both cases, the story shear forces and the story displacements by using the acceleration spectrum given. Obtain the shear forces and the bending moments at the columns by using the SRSS combination rule. $\ell = \begin{pmatrix} P_3(t) & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_2(t) & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_1 & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_1 & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_1 & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F_1 & F_1 & F_2(t) & F$