ADVANCED DYNAMICS OF STRUCTURES / Homework 1 / October 21, 2008 Problem # 1

a. A single-degree-of-freedom system having a mass m, a lateral stiffness k and a damping c is subjected to a ground motion defined as

$$\ddot{v}_g(t) = 0.4g$$
 for $0 \le t \le t_1$, $\ddot{v}_g(t) = 0$ for $t_1 \le t$

obtain the lateral displacement v(t) for $0 \le t \le t_1$ and for $t_1 \le t$ separately. Determine the integration coefficients by assuming v(t=0) = 0 and $\dot{v}(t=0) = 0$.

b. Consider the single-degree-of-freedom system shown, evaluate the mass M, the lateral stiffness K, the period T, the frequency f and the circular frequency ω . Obtain its lateral displacement v(t) for $0 \le t \le 1s$ and v(t) for $t_1 \le 2s$ separately by assuming that it is subjected to a ground motion as shown and by assuming the motion starts from the rest position of the system and draw its variations for $\xi = 0.0$, 0.10 and 0.20.

Problem # 2

For the rigid-body assemblage shown,

- a. Set up the equation of motion for the rotation angle $\theta(t)$ of the point A by using the principle of the virtual work.
- b. By assuming $k_1 = 2 k a^2$ determine the period of the system as $T = \alpha \sqrt{M_o/k}$ and evaluate α .
- c. By assuming $c_1 = 2 c a^2$ determine the effective damping coefficient of the system as $c_{effective} = \beta c$ and evaluate β and $\xi = c_{effective} / (2 m \omega)$.

d. For $\xi = 0.10$, $(p_o T^2) / M_o = 2.0$ and $p = 0.9\omega = 0.9 \times 2\pi / T$ draw the time variation of $\theta(t/T)$ for $0 \le t/T \le 4$ under the assumption of the homogeneous initial conditions $\theta(t/T=0) = 0$ $\dot{\theta}(t/T=0) = 0$.

Problem#3

- a. Obtain the undamped free vibration period T of the single-degree-of-freedom system shown in the figure. By assuming $W_o = M_o g = 150 kN$, and $K_o = 1000 kN/m$
- b. Evaluate the displacement history of the system subjected to an external load P(t) by using step by step numerical integration of the Duhamel integral for $0 \le t \le t_1$ by using Simpson rule under the assumption of the homogeneous initial conditions v(t = 0) = 0.

$$t_{o} = 0.06s \quad t_{I} = 1.0s \quad \Delta \tau = 0.01s$$

$$v(t) = \frac{1}{M_{o}} \bigcup_{o}^{t} P(\tau) \sin \omega(t - \tau) d\tau \qquad 0 \le t \le t_{o}$$

$$v(t) = \frac{1}{M_{o}} \bigcup_{o}^{t_{o}} P(\tau) \sin \omega(t - \tau) d\tau \qquad t_{o} \le t \le t_{1}$$

