ADVANCED DYNAMICS OF S TRUCTURES / Home work 1 / October 21, 2008

Problem\# 1
a. A single-degree-of-freedom system having a mass m, a lateral stiffness k and a damping c is subjected to a ground motion defined as

$$
\ddot{v}_{g}(t)=0.4 g \quad \text { for } 0 \leq t \leq t_{1}, \quad \ddot{v}_{g}(t)=0 \quad \text { for } t_{1} \leq t
$$

obtain the lateral displacement $v(t)$ for $0 \leq t \leq t_{1}$ and for $t_{1} \leq t$ separately.
Determine the integration coefficients by assuming $v(t=0)=0$ and $\dot{v}(t=0)=0$.
b. Consider the single-degree-of-freedom system shown, evaluate the mass M, the lateral stiffness K, the period T, the frequency f and the circular frequency ω. Obtain its lateral displacement $v(t)$ for $0 \leq t \leq 1 s$ and $v(t)$ for $t_{1} \leq 2 s$ separately by assuming that it is subjected to a ground motion as shown and by assuming the motion starts from the rest position of the system and draw its variations for $\xi=0.0,0.10$ and 0.20 .

Problem \# 2

For the rigid-body assemblage shown,
a. Set up the equation of motion for the rotation angle $\theta(t)$ of the point A by using the principle of the virtual work.
b. By assuming $k_{1}=2 k a^{2}$ determine the period of the system as $T=\alpha \sqrt{M_{o} / k}$ and evaluate α.
c. By assuming $c_{1}=2 c a^{2}$ determine the effective damping coefficient of the system as $c_{\text {effective }}=\beta c$ and evaluate β and $\xi=c_{\text {effective }} /(2 m \omega)$.
d. For $\xi=0.10,\left(p_{o} T^{2}\right) / M_{o}=2.0$ and $p=0.9 \omega=0.9 \times 2 \pi / T$ draw the time variation of $\theta(t / T)$ for $0 \leq t / T \leq 4$ under the assumption of the homogeneous initial conditions $\theta(t / T=0)=0 \quad \dot{\theta}(t / T=0)=0$.

Problem \# 3

a. Obtain the undamped free vibration period T of the single-degree-of-freedomsystem shown in the figure. By assuming $W_{o}=M_{o} g=150 \mathrm{kN}$, and $K_{o}=1000 \mathrm{kN} / \mathrm{m}$
b. Evaluate the displacement history of the system subjected to an external load $P(t)$ by using step by step numerical integration of the Duhamel integral for $0 \leq t \leq t_{l}$ by using Simpson rule under the assumption of the homogeneous initial conditions
$v(t=0)=0 \quad \dot{v}(t=0)=0$.
$t_{o}=0.06 \mathrm{~s} \quad t_{l}=1.0 \mathrm{~s} \quad \Delta \tau=0.01 \mathrm{~s}$
$v(t)=\frac{1}{M_{o} \omega} \int_{o}^{t} P(\tau) \sin \omega(t-\tau) d \tau \quad 0 \leq t \leq t_{o}$
$v(t)=\frac{1}{M_{o} \omega} \int_{o}^{t_{o}} P(\tau) \sin \omega(t-\tau) d \tau \quad t_{o} \leq t \leq t_{1}$

$\mathrm{t}(\mathrm{s})$	$\mathrm{P}(\mathrm{kN})$
0	0
0.01	35.6
0.02	71.1
0.03	80.0
0.04	71.1
0.05	35.6
0.06	0
0.08	0
0.10	0
1.00	0

