ADVANCED DYNAMICS OF STRUCTURES / Home Work 2 / November 25, 2009 H.Boduroğlu / Z. Celep	ADVANCED DYNAMICS OF STRUCTURES / Home Work 2/ November 25, 2009 H.Boduroğlu / Z. Celep
 Consider the column which can be represented as a system of three degrees-of-freedom shown: a. Write down the equations of motion of the system shown by including the ground motion v_g(t) and the external load p_i(t) and evaluate the mass matrix m, the rigidity matrix k, and the flexibility matrix k = d¹, b. Determine the three circular frequencies and the periods of the free vibration ω_i and T_i and the corresponding mode shapes φ_i. Give their graphical representation (i = 1, 2, 3), c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix φ₁^Tm φ₂, φ₁^Tm φ₃ and φ₁^Tk φ₂, φ₁^Tk φ₃, d. Evaluate the generalized masses and stiffness M_i = φ_i^Tm φ_i, and K_i = φ_i^Tk φ_i, and assess ω_i² = K_i/M_i. e. Obtain the first free vibration mode shapes φ₁ and the corresponding the first circular frequencies ω_i of the system by using Stodola method or the inverse iteration method with shift. f. The heights of the stories are h = 3 meter, the column has a cross section of 0.50m×0.90m, the first period of the system is T₁ = 0.25s and E = 30GPa. Find the numerical values of the mass m, the second period T₂ and the third period T₃ of the system. 	 Consider the column which can be represented as a system of three degrees-of-freedom shown: a. Write down the equations of motion of the system shown by including the ground motion v_g(t) and the external load p_i(t) and evaluate the mass matrix m, the rigidity matrix k, and the flexibility matrix k = d⁻¹, b. Determine the three circular frequencies and the periods of the free vibration ω_i and T_i and the corresponding mode shapes φ. Give their graphical representation (i = 1, 2, 3), c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix φ₁^Tm φ₂, φ₁^Tm φ₃ and φ₁^Tk φ₂, φ₁^Tk φ₃, d. Evaluate the generalized masses and stiffness M_i = φ₁^Tm φ, and K_i = φ₁^Tk φ₄, and assess ω_i² = K_i/M_i e. Obtain the first free vibration mode shapes φ₁ and the corresponding the first circular frequencies α_i of the system by using Stodola method, f. The heights of the stories are h = 3 meter, the column has a cross section of 0.50m×0.90m, the first period of the system is T₁ = 0.25s and E = 30GPa. Find the numerical values of the mass m, the second period T₂ and the third period T₃ of the system.
Mass m/2 h h h h h h h h	$h \qquad \qquad$