ADVANCED DYNAMICS OF S TRUCTURES / Home Work 3 / November 25, 2007	ADVANCED DYNAMICS OF S TRUCTURES / Home Work 3 / November 25, 2007
Consider the system of two degrees-of-freedom shown: a. Write down the equations of motion of the system by including the ground motion $v_{g}(t)$ and evaluate the mass matrix \mathbf{m}, the rigidity matrix \mathbf{k}, and the fle xibility matrix $\mathbf{k}=\mathbf{d}^{1}$, b. Determine the two circular frequencies and the two periods of the free vibration ω_{i} and T_{i} and the corresponding mode shapes ϕ_{1} and ϕ_{2}. Give their graphical representation, c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_{1}{ }^{T} \mathbf{m} \phi_{2}$, and $\phi_{1}{ }^{T} k \phi_{2}$, d. Evaluate the generalized masses and stiffness $M_{i}=\phi_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{m} \phi_{\mathrm{i}}$, and $K_{i}=\phi_{\mathrm{i}}{ }^{\mathrm{T}} \mathbf{k} \phi_{\mathrm{i}}$, and assess $\omega_{i}{ }^{2}=K_{i} / M_{i}$. ProfDr Hasan Boduroğlu ProfDr Zekai Celep / http://www.ins.itu.edu.tr/zcelep/zc.htm	Consider the system of two degrees-of-freedom shown: a. Write down the equations of motion of the systemby including the ground motion $v_{g}(t)$ and evaluate the mass matrix \mathbf{m}, the rigidity matrix \mathbf{k}, and the flexibility matrix \mathbf{k} $=\mathbf{d}^{1}$, b. Determine the two circular frequencies and the two periods of the free vibration ω_{i} and T_{i} and the corresponding mode shapes ϕ_{1} and ϕ_{2}. Give their graphical representation, c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_{1}{ }^{\mathrm{T}} \mathbf{m} \phi_{2}$, and $\phi_{1}{ }^{\mathrm{T}} \mathbf{k} \phi_{2}$, d. Evaluate the generalized masses and stiffness $M_{i}=\phi_{\mathrm{i}}{ }^{\mathrm{T}} \mathbf{m} \phi_{\mathrm{i}}$, and $K_{i}=\phi_{\mathrm{i}}{ }^{\mathrm{T}} \mathbf{k} \phi_{\mathrm{i}}$, and assess $\omega_{i}{ }^{2}=K_{i} / M_{i}$. ProfDr Hasan Boduroğlu ProfDr Zekai Celep / http://www.ins.itu.edu.tr/zcelep/zc.htm

