ADVANCED DYNAMICS OF STRUCTURES / HOMEWORK /
 October 3, 2004

a. Obtain the undamped and damped free vibration period of the single-degree-of-freedom system shown in the figure. $W=m g=200 \mathrm{kN} \quad k=$ $1000 \mathrm{kN} / \mathrm{m} \quad \xi=0.05$
b. Evaluate the displacement history of the system subjected to the ground motion history $\ddot{v}_{g}(t)$ by using step by step numerical integration of the
Duhamel integral for $0 \leq t \leq t_{1}$ by using Simpson rule under the assumption of the homogeneous initial conditions $v(t=0)=0 \quad \dot{v}(t=0)=0$.
$t_{o}=0.08 s \quad t_{l}=2.0 \mathrm{~s} \quad \Delta \tau=0.01 \mathrm{~s}$
$v(t)=-\frac{1}{\omega_{D}} \int_{o}^{t} \exp [-\xi \omega(t-\tau)] \ddot{v}_{g}(\tau) \sin \omega_{D}(t-\tau) d \tau \quad 0 \leq t \leq t_{o}$
$v(t)=-\frac{1}{\omega_{D}} \int_{o}^{t_{o}} \exp [-\xi \omega(t-\tau)] \ddot{v}_{g}(\tau) \sin \omega_{D}(t-\tau) d \tau \quad t_{o} \leq t \leq t_{1}$

$t(s)$	$\ddot{v}_{g}(t) / g$
0	0
0.01	0.356
0.02	0.711
0.03	0.800
0.04	0.711
0.05	0.356
0.08	0
0.10	0
0.20	0
0.40	0
2.00	0

c. Obtain the response of the system under the assumption that the ground motion $\ddot{v}_{g}(t)$ can be represented as a impulse loading. Draw the variation of $v(t)$ for the two last cases.
$v(t)=\frac{I}{m \omega_{D}} \exp [-\xi \omega t] \sin \omega_{D} t \quad I=-\int_{o}^{t} m \ddot{v}_{g}(\tau) d \tau$

ADVANCED DYNAMICS OF STRUCTURES

a. Obtain the undamped and damped free vibration period of the single-degree-of-freedom system shown in the figure. $W=m g=200 \mathrm{kN} \quad k=1000 \mathrm{kN} / \mathrm{m}$ $\xi=0.05$
b. Evaluate the displacement history of the system subjected to the ground motion history $\ddot{v}_{g}(t)$ by using step by step numerical integration of the Duhamel integral for $0 \leq t \leq t_{1}$ by using Simpson rule under the assumption of the homogeneous initial conditions $v(t=0)=0 \quad \dot{v}(t=0)=0$.

$$
t_{o}=0.08 \mathrm{~s} \quad t_{l}=2.0 \mathrm{~s} \quad \Delta \tau=0.01 \mathrm{~s}
$$

$$
v(t)=-\frac{1}{\omega_{D}} \int_{o}^{t} \exp [-\xi \omega(t-\tau)] \ddot{v}_{g}(\tau) \sin \omega_{D}(t-\tau) d \tau \quad 0 \leq t \leq t_{o}
$$

$$
v(t)=-\frac{1}{\omega_{D}} \int_{o}^{t_{o}} \exp [-\xi \omega(t-\tau)] \ddot{v}_{g}(\tau) \sin \omega_{D}(t-\tau) d \tau \quad t_{o} \leq t \leq t_{1}
$$

$\omega_{D}{ }_{0}(s)$	$\ddot{v}_{g}(t) / g$
0	0
0.01	0.356
0.02	0.711
0.03	0.800
0.04	0.711
0.05	0.356
0.08	0
0.10	0
0.20	0
0.40	0
2.00	0

d. Obtain the response of the system under the assumption that the ground motion $\ddot{v}_{g}(t)$ can be represented as a impulse loading. Draw the variation of $v(t)$ for the two last cases.
$v(t)=\frac{I}{m \omega_{D}} \exp [-\xi \omega t] \sin \omega_{D} t \quad I=-\int_{o}^{t} m \ddot{v}_{g}(\tau) d \tau$

