ADVANCED DYNAMICS OF STRUCTURES / HOMEWORK /	ADVANCED DYNAMICS OF STRUCTURES / HOMEWORK /
October 22, 2003	October 22, 2003
a. Obtain the free vibration period of the single-degree-of-freedom system shown in the figure. $W = mg = 100kN$ $k = 600kN/m$ $\xi = 0.05$	a. Obtain the free vibration period of the single-degree-of-freedom system shown in the figure. $W = mg = 100kN$ $k = 600kN/m$ $\xi = 0.05$
b. Evaluate the displacement history of the system to the loading history given by using step by step numerical integration of the Duhamel integral for $0 \le t \le t_1$ by using Simpson rule under the assumption of the homogeneous initial conditions $v(t=0)=0$ $\dot{v}(t=0)=0$.	b. Evaluate the displacement history of the system to the loading history given by using step by step numerical integration of the Duhamel integral for $0 \le t$ $\le t_1$ by using Simpson rule under the assumption of the homogeneous initial conditions $v(t=0)=0$ $\dot{v}(t=0)=0$.
$t_o = 0.08s$ $t_I = 0.80s$ $\Delta \tau = 0.01s$	$t_o = 0.08s$ $t_1 = 0.80s$ $\Delta \tau = 0.01s$
$v(t) = \frac{1}{m \omega_D} \int_{0}^{t} exp\left[-\xi\omega(t-\tau)\right] p(\tau) \sin\omega_D(t-\tau) d\tau \qquad 0 \le t \le t_o$	$v(t) = \frac{1}{m \omega_D} \int_{0}^{t} exp\left[-\xi\omega(t-\tau)\right] p(\tau) \sin\omega_D(t-\tau) d\tau \qquad 0 \le t \le t_0$
$v(t) = \frac{1}{m \omega_D} \int_{0}^{t_0} exp\left[-\xi \omega(t-\tau)\right] p(\tau) \sin \omega_D(t-\tau) d\tau \qquad t_0 \le t \le t_1$	$v(t) = \frac{1}{m \omega_D} \int_{0}^{t_o} \exp\left[-\xi \omega(t-\tau)\right] p(\tau) \sin \omega_D(t-\tau) d\tau \qquad t_o \le t \le t_1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
c. Obtain the response of the system under the assumption that the external force can be represented as a impulse loading. Draw the variation of $v(t)$ for the two last cases.	c. Obtain the response of the system under the assumption that the external force can be represented as a impulse loading. Draw the variation of $v(t)$ for the two last cases.
$v(t) = \frac{I}{m \omega_D} \exp\left[-\xi \omega t\right] \sin \omega_D t$	$v(t) = \frac{I}{m \omega_D} \exp\left[-\xi \omega t\right] \sin \omega_D t$

$$\psi(t) = \frac{I}{m \,\omega_D} \exp\left[-\xi \,\omega \,t\right] \sin \omega_D t$$