ADVANCED DYNAMICS OF STRUCTURES

QUIZ October 22, 2014

ADVANCED DYNAMICS OF STRUCTURES QUIZ

October 22, 2014

Problem # 1:

Write down the equation of motion of the rigid-body assemblage in terms of Y(t) the horizontal displacement by using the principle of the virtual work. Obtain the free undamped vibration period $T = \alpha \sqrt{M/k}$ of the assemblage and determine α . Find the resonance condition ($\omega = \overline{\omega}$) in terms of the parameters of the undamped system.

Problem # 2:

A single degree of freedom undamped system of the mass m, the stiffness k is subjected to the external load p(t), where $p(0 \le t \le T) = p_0 \sin(\pi t/T)$ and $p(t \ge T) = 0$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., u(t=0) = 0 and $\dot{u}(t=0) = 0$. Find the displacement response $u(0 \le t \le T)$ and $u(t \ge T)$, where T is the free vibration period of the system.

$m \ddot{u} + c \dot{u} + k u = p(t) \qquad \omega^2 = k / m \qquad \omega = 2 \pi / T$ $u(t) = \frac{1}{m \omega} \int_0^t p(\tau) \sin \omega (t - \tau) d\tau \qquad I_\theta = \frac{M}{12} (a^2 + b^2)$

Problem # 1:

Write down the equation of motion of the rigid-body assemblage in terms of Y(t) the horizontal displacement by using the principle of the virtual work. Obtain the free undamped vibration period $T = \alpha \sqrt{M/k}$ of the assemblage and determine α . Find the resonance condition $(\omega = \overline{\omega})$ in terms of the parameters of the undamped system.

Problem # 2:

A single degree of freedom undamped system of the mass *m*, the stiffness *k* is subjected to the external load p(t), where $p(0 \le t \le T) = p_0 \sin(\pi t/T)$ and $p(t \ge T) = 0$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., u(t=0) = 0 and $\dot{u}(t=0) = 0$. Find the displacement response $u(0 \le t \le T)$ and $u(t \ge T)$, where *T* is the free vibration period of the system.

$$m \ddot{u} + c \dot{u} + k u = p(t) \qquad \omega^2 = k/m \qquad \omega = 2 \pi/T$$

$$u(t) = \frac{1}{m \omega} \int_0^t p(\tau) \sin \omega (t - \tau) d\tau \qquad I_\theta = \frac{M}{12} (a^2 + b^2)$$