ADVANCED DYNAMICS OF STRUCTURES QUIZ October 22, 2014	ADVANCED DYNAMICS OF STRUCTURES QUIZ October 22, 2014
Problem \# 1: Write down the equation of motion of the rigid-body assemblage in terms of $Y(t)$ the horizontal displacement by using the principle of the virtual work. Obtain the free undamped vibration period $T=\alpha \sqrt{M / k}$ of the assemblage and determine α. Find the resonance condition ($\omega=\bar{\omega}$) in terms of the parameters of the undamped system. Problem \# 2: A single degree of freedom undamped system of the mass m, the stiffness k is subjected to the external load $p(t)$, where $p(0 \leq t \leq T)=p_{o} \sin (\pi t / T)$ and $p(t \geq T)=0$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., $u(t=0)=0$ and $\dot{u}(t=0)=0$. Find the displacement response $u(0 \leq t \leq T)$ and $u(t \geq T)$, where T is the free vibration period of the system.	Problem \# 1: Write down the equation of motion of the rigid-body assemblage in terms of $Y(t)$ the horizontal displacement by using the principle of the virtual work. Obtain the free undamped vibration period $T=\alpha \sqrt{M / k}$ of the assemblage and determine α. Find the resonance condition ($\omega=\bar{\omega}$) in terms of the parameters of the undamped system. Problem \# 2: A single degree of freedom undamped system of the mass m, the stiffness k is subjected to the external load $p(t)$, where $p(0 \leq t \leq T)=p_{o} \sin (\pi t / T)$ and $p(t \geq T)=0$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., $u(t=0)=0$ and $\dot{u}(t=0)=0$. Find the displacement response $u(0 \leq t \leq T)$ and $u(t \geq T)$, where T is the free vibration period of the system.
$\begin{array}{lll} \hline m \ddot{u}+c \dot{u}+k u=p(t) & \omega^{2}=k / m & \omega=2 \pi / T \end{array}$ $u(t)=\frac{1}{m \omega} \int_{0}^{t} p(\tau) \sin \omega(t-\tau) d \tau \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$	$\begin{array}{lll} \hline m \ddot{u}+c \dot{u}+k u=p(t) & \omega^{2}=k / m & \omega=2 \pi / T \end{array}$ $u(t)=\frac{1}{m \omega} \int_{0}^{t} p(\tau) \sin \omega(t-\tau) d \tau \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$

