ADVANCED DYNAMICS OF STRUCTURES / QUIZ October 4, 2010

Write down the equation of motion of the rigid-body assemblage in terms of Y(t) the vertical displacement of the point A by using the principle of the virtual work. Obtain the free vibration period $T_o = \alpha \sqrt{M_o / K_o}$ of the assemblage without considering the damping and determine α . Find the resonance condition in terms of the parameters of the system, when the damping is neglected.

2. A single degree of system of the mass m, the stiffness k is subjected to the external load p(t). The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., v(t=0) = 0 and $\dot{v}(t=0) = 0$. Find the displacement function $v(0 \le t \le T_{\alpha})$ and $v(t \ge T_{\alpha})$ separately., where T_{α} is the free vibration period of the system.

 $t > T_0$

t

ADVANCED DYNAMICS OF STRUCTURES / QUIZ October 4, 2010

1. Write down the equation of motion of the rigid-body assemblage in terms of Y(t) the vertical displacement of the point A by using the principle of the virtual work. Obtain the free vibration period $T_o = \alpha \sqrt{M_o / K_o}$ of the assemblage without considering the damping and determine α . Find the resonance condition in terms of the parameters of the system, when the damping is neglected.

2. A single degree of system of the mass m, the stiffness k is subjected to the external load p(t). The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., v(t=0) = 0 and $\dot{v}(t=0) = 0$. Find the displacement function $v(0 \le t \le T_{\alpha})$ and $v(t \ge T_{\alpha})$ separately, where T_{α} is the free vibration period of the system.

