ADVANCED DYNAMICS OF S TRUCTURES / QUIZ October 4, 2010

1. Write down the equation of motion of the rigid-body assemblage in terms of $Y(t)$ the vertical displacement of the point A by using the principle of the virtual work. Obtain the free vibration period $T_{o}=\alpha \sqrt{M_{o} / K_{o}}$ of the assemblage without considering the damping and determine α. Find the resonance condition in terms of the parameters of the system, when the damping is neglected.

2. A single degree of system of the mass m, the stiffness k is subjected to the external load $p(t)$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., $v(t=0)=0$ and $\dot{v}(t=0)=0$.Find the displacement function $v\left(0 \leq t \leq T_{o}\right)$ and $v\left(t \geq T_{o}\right)$ separately., where T_{o} is the free vibration period of the system.
$p(t)$

$\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\cos a \cos b=\frac{1}{2}[\cos (a-b)+\cos (a+b)]$
$\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$

ADVANCED DYNAMICS OF S TRUCTURES / QUIZ October 4, 2010

1. Write down the equation of motion of the rigid-body assemblage in terms of $Y(t)$ the vertical displacement of the point A by using the principle of the virtual work. Obtain the free vibration period $T_{o}=\alpha \sqrt{M_{o} / K_{o}}$ of the assemblage without considering the damping and determine α. Find the resonance condition in terms of the parameters of the system, when the damping is neglected.

2. A single degree of system of the mass m, the stiffness k is subjected to the external load $p(t)$. The variation of the external load is given as shown. Assuming the system starts from the rest position, i.e., $v(t=0)=0$ and $\dot{v}(t=0)=0$.Find the displacement function $v\left(0 \leq t \leq T_{o}\right)$ and $v\left(t \geq T_{o}\right)$ separately., where T_{o} is the free vibration period of the system.
$p(t)$

$\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\cos a \cos b=\frac{1}{2}[\cos (a-b)+\cos (a+b)]$
$\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$
