## ADVANCED DYNAMICS OF S TRUCTURES / QUIZ / October 31, 2007

## ADVANCED DYNAMICS OF S TRUCTURES / QUIZ / October 31, 2007

1. For the rigid--body assemblage shown,
a. Set up the equation of motion for the generalized displacement $Y(t)$ of the point $A$ by using the principle of the virtual work.
b. If the period of the system is $T=7.163 \sqrt{m a / k_{1}}$ determine the ratio of $M /(m a)$.

2. The single-degree-of-freedom system shown is subjected to an external force $P(t)$ having a time variation given.
a. Obtain the variation of up the displacement $v(t)$ in terms of parameters $P_{o}, K_{o}$ and $T_{o}$ (the period of the system) by assuming that the external load con be considered as a short-duration impulse and that the initial conditions to be $v(t=0)=0$ and $\dot{v}(t=0)=0$. Evaluate the maximum displacement, velocity of the mass and the maximu mof the base shear.
b. Assuming $M_{o} g=100 \mathrm{kN}, K_{o}=10 \mathrm{MN} / \mathrm{m}$ and $P_{o}=30 \mathrm{kN}$, determine the period of the system, the maximum displace ment, velocity and the base shear. Draw the variation of the displacement $v(t)$ for $0 \leq t \leq 2 T_{o}$.

$m \ddot{v}+c \dot{v}+k v=-p(t) \quad \omega^{2}=k / m \quad \omega=2 \pi / T \quad I=\int_{0}^{t_{1}} p(t) d t \quad v(t)=\frac{I}{m \omega} \sin \omega t$ $v(t)=\frac{1}{m \omega} \int_{0}^{t} p(\tau) \sin \omega(t-\tau) d \tau \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right) \quad$ HBoduroğlu / ZCelep
