ADVANCED DYNAMICS OF STRUCTURES / QUIZ / October 31, 2007

1. For the rigid--body assemblage shown,

a. Set up the equation of motion for the generalized displacement Y(t) of the point A by using the principle of the virtual work.

b. If the period of the system is $T = 7.163\sqrt{ma/k_1}$ determine the ratio of M/(ma).

- 2. The single-degree-of-freedom system shown is subjected to an external force P(t) having a time variation given.
 - a. Obtain the variation of up the displacement v(t) in terms of parameters P_o , K_o and T_o (the period of the system) by assuming that the external load con be considered as a short-duration impulse and that the initial conditions to be v(t = 0) = 0 and $\dot{v}(t = 0) = 0$. Evaluate the maximum displacement, velocity of the mass and the maximum of the base shear.
 - b. Assuming $M_o g = 100kN$, $K_o = 10MN/m$ and $P_o = 30kN$, determine the period of the system, the maximum displacement, velocity and the base shear. Draw the variation of the displacement v(t) for $0 \le t \le 2T_o$.

ADVANCED DYNAMICS OF STRUCTURES / QUIZ / October 31, 2007

- 1. For the rigid--body assemblage shown,
 - a. Set up the equation of motion for the generalized displacement Y(t) of the point A by using the principle of the virtual work.
 - b. If the period of the system is $T = 7.163\sqrt{ma/k_1}$ determine the ratio of M/(ma).

- 2. The single-degree-of-freedom system shown is subjected to an external force P(t) having a time variation given.
 - a. Obtain the variation of up the displacement v(t) in terms of parameters P_o , K_o and T_o (the period of the system) by assuming that the external load con be considered as a short-duration impulse and that the initial conditions to be v(t = 0) = 0 and $\dot{v}(t = 0) = 0$. Evaluate the maximum displacement, velocity of the mass and the maximum of the base shear.
 - b. Assuming $M_o g = 100kN$, $K_o = 10MN/m$ and $P_o = 30kN$, determine the period of the system, the maximum displacement, velocity and the base shear. Draw the variation of the displacement v(t) for $0 \le t \le 2T_o$.

