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Problem # 1:
Consider the system of two degrees-of-freedom shown where the first story is rigid plate
having a mass of 3M, and the second story consists of a cantilever column with a lumped

mass of M, at its tip. (a) Evaluate the mass matrix m, the flexibility matrix d, the stiffness
matrix k and the load vector p of the system. (b). Determine circular frequencies and periods
of the free vibration »; and T; in terms of EI, m and h. (c). Obtain corresponding two

mode shapes ¢; and give their graphical representation (i =1,2). (d). Check the orthogonality
of the mode shapes with respect to the mass matrix and the stiffness matrix ¢ me,, and
¢I ké, . (e) Evaluate the generalized masses and stiffness Af; =<1>iT m¢; and K; =¢iT Kk ¢;

and assess the relationship a)|2 =K/ M; (i=12).
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