ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / November 26, 2014

Problem \# 1:

Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $3 M_{o}$ and the second story consists of a cantilever column with a lumped mass of M_{o} at its tip. (a) Evaluate the mass matrix \mathbf{m}, the flexibility matrix \mathbf{d}, the stiffness matrix \mathbf{k} and the load vector \mathbf{p} of the system. (b). Determine circular frequencies and periods of the free vibration ω_{i} and T_{i} in terms of $E I, m$ and h. (c). Obtain corresponding two mode shapes ϕ_{i} and give their graphical representation ($i=1,2$). (d). Check the orthogonality of the mode shapes with respect to the mass matrix and the stiffness matrix $\boldsymbol{\phi}_{1}^{T} \mathbf{m} \boldsymbol{\phi}_{2}$, and $\boldsymbol{\phi}_{1}^{T} \mathbf{k} \boldsymbol{\phi}_{2}$. (e) Evaluate the generalized masses and stiffness $M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ and $K_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{i}$ and assess the relationship $\omega_{i}^{2}=K_{i} / M_{i}(i=1,2)$.

Problem \# 2:

Consider the elastic beam shown having a mass per unit length $m_{o} / 2$ at its one-third length and m_{o} at its two-third length. The beam has two lumped masses M_{o} additionally. (a) Select one of the displacement functions $\psi_{i}(x)$ by giving why this function is selected. (b) Obtain first circular frequency of the beam by using Rayleigh ratio. $\psi_{1}(x)=x^{2}$, $\psi_{2}(x)=x(a-x), \psi_{3}(x)=x^{2}(a-x)^{2}, \psi_{4}(x)=\sin (\pi x / a)$, $\psi_{5}(x)=\sin ^{2}(\pi x / a), \psi_{6}(x)=\sin (2 \pi x / a), \psi_{7}(x)=\sin ^{2}(2 \pi x / a)$
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad \omega_{i}=2 \pi / T_{i}$
$\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=\mathbf{0} \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=\mathbf{0} \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$
$K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad Y_{i}(t)=\sum_{i=1}^{2} \boldsymbol{\phi}_{i}{ }^{T} \mathbf{m} \mathbf{v} / M_{i} \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}}$ $Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{O}} \mathbf{p}(\tau) d \tau\right] \quad \mathbf{u}(x, t)=\sum \boldsymbol{\phi}_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0$
$\omega^{2}=\int_{o}^{\ell} E I(x)\left[\psi^{\prime \prime}(x)\right]^{2} d x / \int_{o}^{\ell} m(x)[\psi(x)]^{2} d x \quad \sin ^{2} \beta=(1-\cos 2 \beta) / 2$

ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / November 26, 2014

Problem \# 1:

Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $3 M_{o}$ and the second story consists of a cantilever column with a lumped mass of M_{o} at its tip. (a) Evaluate the mass matrix \mathbf{m}, the flexibility matrix \mathbf{d}, the stiffness matrix \mathbf{k} and the load vector \mathbf{p} of the system. (b). Determine circular frequencies and periods of the free vibration ω_{i} and T_{i} in terms of $E I, m$ and h. (c). Obtain corresponding two mode shapes ϕ_{i} and give their graphical representation ($i=1,2$). (d). Check the orthogonality of the mode shapes with respect to the mass matrix and the stiffness matrix $\boldsymbol{\phi}_{1}^{T} \mathbf{m} \boldsymbol{\phi}_{2}$, and $\boldsymbol{\phi}_{1}^{T} \mathbf{k} \boldsymbol{\phi}_{2}$. (e) Evaluate the generalized masses and stiffness $M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ and $K_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{i}$ and assess the relationship $\omega_{i}^{2}=K_{i} / M_{i}(i=1,2)$.

Problem \# 2:

Consider the elastic beam shown having a mass per unit length $m_{o} / 2$ at its one-third length and m_{o} at its two-third length. The beam has two lumped masses M_{o} additionally. (a) Select one of the displacement functions $\psi_{i}(x)$ by giving why this function is selected. (b) Obtain first circular frequency of the beam by using Rayleigh ratio.

$\psi_{1}(x)=x^{2}$,

$$
\psi_{2}(x)=x(a-x), \psi_{3}(x)=x^{2}(a-x)^{2}, \psi_{4}(x)=\sin (\pi x / a)
$$

$$
\psi_{5}(x)=\sin ^{2}(\pi x / a), \psi_{6}(x)=\sin (2 \pi x / a), \psi_{7}(x)=\sin ^{2}(2 \pi x / a)
$$

$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad \omega_{i}=2 \pi / T_{i}$ $\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=\mathbf{0} \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=\mathbf{0} \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ $K_{i}=\phi_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad Y_{i}(t)=\sum_{i=1}^{2} \boldsymbol{\phi}_{i}{ }^{T} \mathbf{m} \mathbf{v} / M_{i} \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}}$ $Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{O}} \mathbf{p}(\tau) d \tau\right] \quad \mathbf{u}(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0$
$\omega^{2}=\int_{o}^{\ell} E I(x)\left[\psi^{\prime \prime}(x)\right]^{2} d x / \int_{o}^{\ell} m(x)[\psi(x)]^{2} d x \quad \sin ^{2} \beta=(1-\cos 2 \beta) / 2$

