ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / November 26, 2014	ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / November 26, 2014
Problem # 1: Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $3M_o$ and the second story consists of a cantilever column with a lumped mass of M_o at its tip. (a) Evaluate the mass matrix m , the flexibility matrix d , the stiffness	Problem # 1: Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $3M_o$ and the second story consists of a cantilever column with a lumped mass of M_o at its tip. (a) Evaluate the mass matrix m , the flexibility matrix d , the stiffness
matrix \mathbf{k} and the load vector \mathbf{p} of the system. (b). Determine circular frequencies and periods	matrix \mathbf{k} and the load vector \mathbf{p} of the system. (b). Determine circular frequencies and periods
of the free vibration ω_i and T_i in terms of EI, m and h. (c). Obtain corresponding two	of the free vibration ω_i and T_i in terms of EI, m and h. (c). Obtain corresponding two
mode shapes ϕ_i and give their graphical representation ($i = 1, 2$). (d). Check the orthogonality	mode shapes ϕ_i and give their graphical representation ($i = 1, 2$). (d). Check the orthogonality
of the mode shapes with respect to the mass matrix and the stiffness matrix $\mathbf{\phi}_1^T \mathbf{m} \mathbf{\phi}_2$, and	of the mode shapes with respect to the mass matrix and the stiffness matrix $\mathbf{\phi}_1^T \mathbf{m} \mathbf{\phi}_2$, and
$\phi_1^T \mathbf{k} \phi_2$. (e) Evaluate the generalized masses and stiffness $M_i = \phi_i^T \mathbf{m} \phi_i$ and $K_i = \phi_i^T \mathbf{k} \phi_i$	$\mathbf{\phi}_1^T \mathbf{k} \mathbf{\phi}_2$. (e) Evaluate the generalized masses and stiffness $M_i = \mathbf{\phi}_i^T \mathbf{m} \mathbf{\phi}_i$ and $K_i = \mathbf{\phi}_i^T \mathbf{k} \mathbf{\phi}_i$
and assess the relationship $\omega_i^2 = K_i / M_i$ (<i>i</i> = 1, 2).	and assess the relationship $\omega_i^2 = K_i / M_i$ (<i>i</i> = 1, 2).
Problem # 2: Consider the elastic beam shown having a mass per unit length and m_o at its two-third length. The beam has two lumped masses M_o additionally. (a) Select one of the displacement functions $\psi_i(x)$ by giving why this function is selected. (b) Obtain first circular frequency of the beam by using Rayleigh ratio. $\psi_1(x) = x^2$, $\psi_2(x) = x(a-x), \psi_3(x) = x^2(a-x)^2$, $\psi_4(x) = \sin(\pi x/a)$, $\psi_5(x) = \sin^2(\pi x/a)$, $\psi_6(x) = \sin(2\pi x/a)$, $\psi_7(x) = \sin^2(2\pi x/a)$	Problem #2: Consider the elastic beam shown having a mass per unit length $m_o/2$ at its one-third length and m_o at its two-third length. The beam has two lumped masses M_o additionally. (a) Select one of the displacement functions $\psi_i(x)$ by giving why this function is selected. (b) Obtain first circular frequency of the beam by using Rayleigh ratio. $\psi_1(x) = x^2$, $\psi_2(x) = x(a-x), \psi_3(x) = x^2(a-x)^2$, $\psi_4(x) = \sin(\pi x/a)$, $\psi_5(x) = \sin^2(\pi x/a), \psi_6(x) = \sin(2\pi x/a), \psi_7(x) = \sin^2(2\pi x/a)$
<i><i>π</i></i>	T
$\mathbf{m} \ddot{\mathbf{u}}(t) + \mathbf{k} \mathbf{u}(t) = \mathbf{p}(t) \mathbf{u}(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T \mathbf{p}(t)^T = \begin{bmatrix} P_1(t) & P_2(t) \end{bmatrix} \omega_i = 2\pi/T_i$	$\mathbf{m} \ddot{\mathbf{u}}(t) + \mathbf{k} \mathbf{u}(t) = \mathbf{p}(t) \mathbf{u}(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T \mathbf{p}(t)^T = \begin{bmatrix} P_1(t) & P_2(t) \end{bmatrix} \omega_i = 2 \pi / T_i$
$ (\mathbf{k} - \omega_i^2 \mathbf{m}) \mathbf{\phi}_i = 0 (\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \mathbf{\phi}_i = 0 \left \mathbf{k} - \omega_i^2 \mathbf{m} \right = 0 \left \mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m} \right = 0 M_i = \mathbf{\phi}_i^T \mathbf{m} \mathbf{\phi}_i $	$(\mathbf{k} - \omega_i^2 \mathbf{m}) \mathbf{\phi}_i = 0 (\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \mathbf{\phi}_i = 0 \left \mathbf{k} - \omega_i^2 \mathbf{m} \right = 0 \left \mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m} \right = 0 \qquad M_i = \mathbf{\phi}_i^T \mathbf{m} \mathbf{\phi}_i$
$K_i = \mathbf{\phi}_i^T \mathbf{k} \mathbf{\phi}_i \qquad M_i \ddot{Y}_i(t) + K_i Y_i(t) = \mathbf{\phi}_i^T \mathbf{p}(t) \qquad Y_i(t) = \sum_{i=1}^2 \mathbf{\phi}_i^T \mathbf{m} \mathbf{v} / M_i \qquad k = \frac{3EI}{h^3} \qquad k = \frac{12EI}{h^3}$	$K_i = \mathbf{\phi}_i^T \mathbf{k} \mathbf{\phi}_i \qquad M_i \ddot{Y}_i(t) + K_i Y_i(t) = \mathbf{\phi}_i^T \mathbf{p}(t) \qquad Y_i(t) = \sum_{i=1}^2 \mathbf{\phi}_i^T \mathbf{m} \mathbf{v} / M_i \qquad k = \frac{3EI}{h^3} \qquad k = \frac{12EI}{h^3}$
$Y_i(t) = \frac{\sin \omega_i t}{M_i \omega_i} \left[\boldsymbol{\phi}_i^T \int_o^{t_o} \mathbf{p}(\tau) d\tau \right] \mathbf{u}(x,t) = \sum \boldsymbol{\phi}_i(x) Y_i(t) \qquad \ddot{Y}_i(t) + \omega_i^2 Y_i(t) = 0$	$Y_i(t) = \frac{\sin \omega_i t}{M_i \omega_i} \left[\boldsymbol{\phi}_i^T \int_0^{t_0} \mathbf{p}(\tau) d\tau \right] \mathbf{u}(x,t) = \sum \boldsymbol{\phi}_i(x) Y_i(t) \qquad \ddot{Y}_i(t) + \omega_i^2 Y_i(t) = 0$
$\omega^{2} = \int_{0}^{\ell} EI(x) [\psi''(x)]^{2} dx / \int_{0}^{\ell} m(x) [\psi(x)]^{2} dx \qquad \sin^{2} \beta = (1 - \cos 2\beta) / 2$	$\omega^{2} = \int_{0}^{\ell} EI(x) [\psi''(x)]^{2} dx / \int_{0}^{\ell} m(x) [\psi(x)]^{2} dx \qquad \sin^{2} \beta = (1 - \cos 2\beta) / 2$