ADVANCED DYNAMICS OFS TRUCTURES / QUIZ / November 11, 2009

1. Write down the equation of motion of the rigid-body assemblage in terms of $\theta(t)$ the rotation angle of the support by using the principle of the virtual work. Obtain the free vibration period $T=\alpha \sqrt{M / k}$ of the assemblage and determine α. Find p for the resonance condition in terms of the parameters of the system M, k and a.

2. Obtain the displacement function $v(t)$ of the undamped SDOF system subjected to the external load $p(t)=p_{o} e^{-t / t_{o}}$ assuming that the system starts from the rest, i.e., $v(t=0)=\dot{v}(t=0)=0 . m$ and k denote the mass and the stiffness of the system, respectively.

ADVANCED DYNAMICS OFS TRUCTURES / QUIZ / November 11, 2009

3. The frame shown can be assumed as a single-degree-of-freedom system and it is subjected to a ground motion of impulse character $\ddot{v}_{g}(t)$, where t and T denote the time and the period of the system, respectively. Find out the displacement $v(t)$, the velocity $\dot{v}(t)$ and the acceleration $\ddot{v}(t)$ and their maximum values by assuming that the system starts from the rest, i.e., $v(t=0)=\dot{v}(t=0)=0 . m$ and k denote the mass and the lateral stiffness of the system. Obtain the period of the system T, the maximum shearing force $V_{\max }$ and the maximum bending moment $M_{\max }$ in the columns by assuming. $m g=80 \mathrm{kN}$, $k=400 \mathrm{kN} / \mathrm{m}$ and $h=10 \mathrm{~m}$

General equations
$m \ddot{v}+c \dot{v}+k v=-m \ddot{v}_{g}(t)$

$$
\ddot{v}+2 \xi \omega \dot{v}+\omega^{2} v=-\ddot{v}_{g}(t)
$$

$$
\xi=c /(2 m \omega)
$$

$m \ddot{v}+c \dot{v}+k v=p(t)$
$v(t)=-\frac{1}{\omega_{D}} \int_{0}^{t} \ddot{v}_{g}(\tau) \exp [-\xi \omega t] \sin \omega_{D}(t-\tau) d \tau$
$I=\int_{0}^{t_{1}} p(t) d t \quad v(t)=\frac{1}{m \omega} \int_{0}^{t} p(\tau) \sin \omega(t-\tau) d \tau \quad v(t)=\frac{I}{m \omega} \sin \omega t$
$I=-\int_{0}^{t_{O}} m \ddot{v}_{g}(t) d t$
$\omega=2 \pi / T \quad \omega_{D}^{2}=\omega^{2}\left(1-\xi^{2}\right)$
$\omega_{D}=2 \pi / T_{D}$
$v(t)=\frac{I}{m \omega_{D}} \exp [-\xi \omega t] \sin \omega_{D} t$
$I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$
$v(t)=\frac{1}{m \omega_{D}} \int_{0}^{t} p(\tau) \exp [-\xi \omega t] \sin \omega_{D}(t-\tau) d \tau$

