ADVANCED DYNAMICS OFS TRUCTURES / QUIZ / November 5, 2008

Problem \# 1

For the rigid-body
assemblage shown,
a. Set up the equation of motion in terms of the rotation angle $\theta(t)$ of the point A by using the principle of the virtual
 work.
b. By assuming $k_{1}=2 k a^{2}$ determine the period of the system as $T=\alpha \sqrt{M / k}$ and evaluate α.

Problem \# 2

The single-degree-of-freedom system shown is subjected to a ground motion $\ddot{v}_{g}(t)$ having a time variation given.
a. Obtain the variation of the displacement $v(t)$ in terms of parameters $\ddot{v}_{g o}, M_{o}$ (mass), K_{o} (lateral stiffness) and T_{o} (period of the system) by assuming that the ground acceleration can be considered as a short-duration impulse and that the initial conditions to be $v(t=0)=0$ and $\dot{v}(t=0)=0$.

Evaluate the maximum displacement

Problem \# 2

The single-degree-of-freedom system shown is subjected to a ground motion $\ddot{v}_{g}(t)$ having a time variation given.
a. Obtain the variation of the displacement $v(t)$ in terms of parameters $\ddot{v}_{g o}, M_{o}$ (mass), K_{o} (lateral stiffness) and T_{o} (period of the system) by assuming that the ground acceleration can be considered as a short-duration impulse and that the initial conditions to be $v(t=0)=0$ and $\dot{v}(t=0)=0$.
Evaluate the maximum displace ment and the maximum of the base shear.
b. Consider the single-degree-of-freedom system shown, evaluate the mass M_{O}, the lateral stiffness K_{o} and the period T_{o}, By considering the ground motion above and assuming $\ddot{v}_{g o}=0.8 g$ evaluate the maximum displacement and the maximum of the base shear numerically.
$m \ddot{v}+k v=-m \ddot{v}_{g} \quad \omega^{2}=k / m \quad \omega=2 \pi / T \quad I=-m \int_{0}^{t_{o}} \ddot{v}_{g}(t) d t$
$v(t)=\frac{I}{m \omega} \sin \omega t \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$
and the maximum of the base shear.
b. Consider the single-degree-of-freedom system shown, evaluate the mass M_{O}, the lateral stiffness K_{o} and the period T_{o}, By considering the ground motion above and assuming $\ddot{v}_{g o}=0.8 g$ evaluate the maximum displacement and the maximum of the base shear numerically.
$m \ddot{v}+k v=-m \ddot{v}_{g} \quad \omega^{2}=k / m \quad \omega=2 \pi / T \quad I=-m \int_{0}^{t_{O}} \ddot{v}_{g}(t) d t$
$v(t)=\frac{I}{m \omega} \sin \omega t \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$

