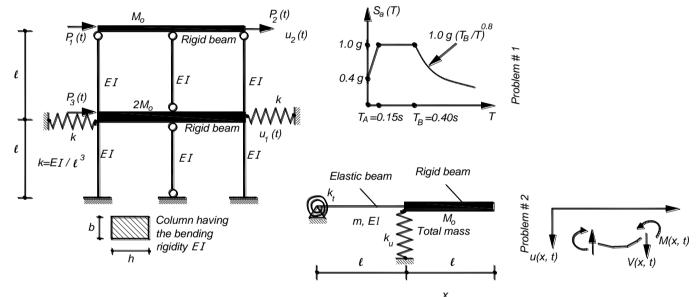
ADVANCED DYNAMICS OF STRUCTURES / May, 2013

Problem # 1:

a. Consider the system of two degree-of-freedom shown where the first and the second stories are rigid plates having a mass of 2M_o and M_o, respectively. The first story is connected by two springs to the fixed supports. (a) Write down equations of motion by considering the free body diagram of the two story masses separately. (b) Evaluate the mass matrix **m**, and the rigidity matrix **k** and the load vector **p**. (c) Determine the circular frequencies ω_i and the periods T_i of the free vibration in terms of EI, M_o and l. (d) Obtain the corresponding two mode shapes φ_i and give their graphical representation (i = 1, 2).
(e) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix **φ**₁^T **mφ**₂, and **φ**₁^T **kφ**₂. (f). Evaluate the generalized masses and stiffness M_i = **φ**_i^T **mφ**_i and K_i = **φ**_i^T **kφ**_i and assess the relationship ω_i² = K_i / M_i (i = 1, 2). Determine the effective modal masses M₁^{*} and M₂^{*}, and assess M₁^{*} + M₂^{*} = 3M_o

- b. The heights of the stories are $\ell = 3meter$, the columns with a bending rigidity *EI* have cross section of b/h = 0.30m/0.60m, the first period of the system is $T_1 = 0.20s$ and E = 30GPa. Find the numerical values the parameter M_o and the second period T_2 of the system.
- c. Evaluate the base shear forces V_{b1} and V_{b2} corresponding to the two mode shapes, the equivalent forces applied to the system at the story levels for both cases and the story shear forces by using the acceleration spectrum given. Obtain the shear forces and the bending moments at the columns by using the SRSS combination rule.



Problem # 2:

Consider the continuous elastic beam having a cross sectional bending rigidity having *EI* and a mass per unit length *m* and a length ℓ . The left end of the elastic beam is simply supported having a rotational spring with a spring constant k_i and its right end is connected to a rigid beam having a total mass M_o . The right end of the rigid beam is supported by a spring having a spring constant k_u . Write down the boundary conditions for the free vibration of the system. Obtain the frequency determinant in terms of $\beta^4 = m\ell^4\omega^2/(EI)$ by assuming $M_o = 3m\ell$, $k_u = 2EI/\ell^3$. and $k_t = EI/\ell$. $\mathbf{m}\ddot{\mathbf{u}}(t) + \mathbf{k}\,\mathbf{u}(t) = \mathbf{p}(t)\,\mathbf{u}(t) = [u_1(t)\,u_2(t)]^T\,\mathbf{p}(t)^T = [P_1(t)\,P_2(t)]$ $\omega_i = 2\pi/T_i$ $(\mathbf{k} - \omega_i^2\,\mathbf{m})\,\phi_i = 0$ $(\mathbf{I} - \omega_i^2\,\mathbf{d}\,\mathbf{m})\,\phi_i = 0$ $|\mathbf{k} - \omega_i^2\,\mathbf{m}| = 0$ $|\mathbf{I} - \omega_i^2\,\mathbf{d}\,\mathbf{m}| = 0$ $M_i = \phi_i^T\,\mathbf{m}\,\phi_i$ $K_i = \phi_i^T\,\mathbf{k}\,\phi_i$ $M_i\,\ddot{Y}_i(t) + K_i\,Y_i(t) = \phi_i^T\,\mathbf{p}(t)$ $Y_i(t) = \sum_{i=1}^2 \phi_i^T\,\mathbf{m}\,\mathbf{v}/M_i$ $k = \frac{3EI}{h^3}$ $k = \frac{12EI}{h^3}$ $Y_i(t) = \frac{\sin\omega_i t}{M_i\,\omega_i} \left[\phi_i^T\,\int_0^{t_o}\,\mathbf{p}(t)\,d\tau\right]$ $I_i = \phi_i^T\,\mathbf{m}\,\mathbf{1}$ $\Gamma_i = L_i/M_i$ $M_i^* = \Gamma_i\,L_i$ $\mathbf{1} = [\mathbf{1}\ 1]^T$ $V_{bj} = M_j^*S_a(T_j)$ $u(x,t) = \sum \phi_i(x)\,Y_i(t)$ $\ddot{Y}_i(t) + \omega_i^2\,Y_i(t) = 0$ $M(x,t) = -EI\frac{\partial^2 u}{\partial x^2}$ $V(x,t) = -EI\frac{\partial^3 u}{\partial x^3}$ $f_{nj} = V_{bj}\frac{m_n\phi_{nj}}{\sum_k m_k\phi_{kj}}$ $\phi(x) = A_1\sin ax + A_2\cos ax + A_3\sinh ax + A_4\cosh ax$ $a^4 = \frac{m\omega^2}{EI}$ *Prof.Dr. Hasan Boduroğlu (http:www.akademi.itu.edu.tr/bodurogl/) Prof.Dr. Zekai Celep (http://web.itu.edu.tr/celep/)*