1. For the rigid--body assemblage shown,
a. Set up the equation of motion for the generalized displacement $Y(t)$ of the point A by using the principle of the virtual work.
b. By assuming $m=M /(2 a)$ determine the period of the system as $T=2 \pi / \omega=\alpha \sqrt{m a / k}$ and evaluate α.
c. By assuming $q_{o}=Q_{o} /(5 a)$ and $p=0.9 \omega=0.9 \times 2 \pi / T$ determine $Y(t)$ the particular (steady-state) solution of the equation of motion.

2. Consider the system of two-degree-of freedom which behaves as a shear frame.
a. Write down equation of motion by including the external forces $P_{1}(t)$ and $P_{2}(t)$. Obtain the mass matrix \mathbf{m} and the stiffness \mathbf{k} of the system.
b. Determine the two circular frequencies $\omega_{1}<\omega_{2}$, the two periods of the free vibration $T_{1}>T_{2}$ and the corresponding mode shapes ϕ_{1}, and ϕ_{2}. Give their graphical representations.
c. Check the orthogonality of the modes with respect to the mass matrix $\phi_{1}{ }^{\mathbf{T}} \mathbf{m} \phi_{2}$ and the stiffness matrix $\phi_{1}{ }^{\mathbf{T}} \mathbf{k} \phi_{2}$.
d. Evaluate the generalized masses and stiffness $M_{1} M_{2}$ and $K_{1} K_{2}$ and assess that $\omega_{i}^{2}=K_{i} / M_{i}$.
e. Determine the effective modal masses M_{1}^{*}, M_{2}^{*} and asses that $M_{1}^{*}+M_{2}^{*}=3 M$

3. Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. The beam has a lumped mass of M at the left end.
a. Write down the boundary conditions for the free vibration of the beam.
b. By assuming $M=m \ell, k_{v}=E I / \ell^{3}$ and $k_{\theta}=E I / \ell$ obtain the frequency determinant.
$\omega^{2}=k / m \quad \omega=2 \pi / T \quad I=\int_{0}^{t_{1}} p(t) d t \quad v(t)=\frac{I}{m \omega} \sin \omega t \quad v(t)=\frac{1}{m \omega} \int_{0}^{t} p(\tau) \sin \omega(t-\tau) d \tau \quad I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right)$
$\mathbf{m} \ddot{\mathbf{v}}(t)+\mathbf{k} \mathbf{v}(t)=\mathbf{p}(t) \quad \mathbf{v}(t)=\left[\begin{array}{ll}v_{1}(t) & v_{2}(t)\end{array}\right]^{T} \quad \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \phi_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \phi_{i}=0$
$\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad \omega_{i}=2 \pi / T_{i} \quad M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i} \quad K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad v(t)=\sum_{i=1}^{2} Y_{i}(t) \phi_{i}$
$M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad Y_{i}(t)=\sum_{i=1}^{2} \phi_{i}^{T} \mathbf{m} \mathbf{v} / M_{i} \quad Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right]$
$L_{i}=\phi_{i}^{T} \mathrm{~m} 1 \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i} \quad 1^{\mathrm{T}}=\left[\begin{array}{ll}1 & 1\end{array}\right] \quad v(x, t)=\sum \phi_{i}(x) Y_{i}(t)$
$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x$

$$
a^{4}=\frac{m \omega^{2}}{E I} \quad V(x, t)=-E I \frac{\partial^{3} v}{\partial x^{3}} \quad M(x, t)=-E I \frac{\partial^{2} v}{\partial x^{2}}
$$

$k=3 E I / h^{3} \quad k=12 E I / h^{3}$

