ADVANCED DYNAMICS OF STRUCTURES / Final Exam / January 7, 2013 ## Problem #1: - Consider the system of two degree-of-freedom shown where the first story is rigid plate having a mass of $2M_o$ and the second story consists of a cantilever column having a tip mass M_a . The two stories are connected by two springs to the fixed supports. (a) Write down equations of motion by considering the free body diagram of the two masses separately. (b) Evaluate the mass matrix \mathbf{m} , and the rigidity matrix \mathbf{k} and the load vector \mathbf{p} . (c) Determine the circular frequencies ω_i and the periods T_i of the free vibration in terms of EI, M_o and ℓ . (d) Obtain the corresponding two mode shapes ϕ_i and give their graphical representation (i = 1, 2). (e) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\mathbf{\phi}_1^T \mathbf{m} \mathbf{\phi}_2$, and $\mathbf{\phi}_1^T \mathbf{k} \mathbf{\phi}_2$. (e). Evaluate the generalized masses and stiffness $M_i = \mathbf{\phi}_i^T \mathbf{m} \mathbf{\phi}_i$ and $K_i = \mathbf{\phi}_i^T \mathbf{k} \mathbf{\phi}_i$ and assess the relationship $\omega_i^2 = K_i / M_i$ (i = 1, 2). Determine the effective modal masses M_1^* and M_2^* , and assess $M_1^* + M_2^* = 3M_0$ - The heights of the stories are $\ell = 3meter$, the columns have cross section of b/h = 0.30m/0.50m, the first period of the system is $T_1 = 0.20s$ and E = 30GPa. Find the numerical values the parameter M_0 and the second period T_2 of the system. - Evaluate the base shear forces V_{b1} and V_{b2} corresponding to the two mode shapes, the equivalent forces applied to the system at the story levels for both cases and the story shear forces by using the acceleration spectrum given. Obtain the shear forces and the bending moments at the columns by using the SRSS combination rule. ## Problem # 2: Consider the continuous elastic beam having two spans shown where m_1 and m_2 are the masses per unit length, and EI_1 and EI_2 are the bending rigidities of the cross sections, respectively. The left end of the beam is simply supported, the middle support has a rotational spring k_t and the right end of the beam is free and has a concentrated mass M_o and a translational spring k_u . Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^4 = m\ell^4\omega^2/(EI)$ by assuming $M_o = 2m\ell$, $k_u = 2EI/\ell^3$ and $k_t = 3EI/\ell$. $$\mathbf{m} \ddot{\mathbf{u}}(t) + \mathbf{k} \mathbf{u}(t) = \mathbf{p}(t) \mathbf{u}(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T \mathbf{p}(t)^T = \begin{bmatrix} P_1(t) & P_2(t) \end{bmatrix} \quad \omega_i = 2\pi/T_i$$ $$(\mathbf{k} - \omega_i^2 \mathbf{m}) \, \phi_i = 0 \quad (\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \, \phi_i = 0 \quad \left| \mathbf{k} - \omega_i^2 \mathbf{m} \right| = 0 \quad \left| \mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m} \right| = 0 \quad M_i = \phi_i^T \mathbf{m} \, \phi_i$$ $$K_i = \phi_i^T \mathbf{k} \, \phi_i \quad M_i \, \ddot{Y}_i(t) + K_i \, Y_i(t) = \phi_i^T \mathbf{p}(t) \quad Y_i(t) = \sum_{i=1}^2 \phi_i^T \mathbf{m} \, \mathbf{v}/M_i \quad k = \frac{3EI}{h^3} \quad k = \frac{12EI}{h^3}$$ $$Y_i(t) = \frac{\sin \omega_i t}{M_i \, \omega_i} \left[\phi_i^T \int_0^{t_O} \mathbf{p}(\tau) \, d\tau \right] \quad L_i = \phi_i^T \mathbf{m} \, \mathbf{1} \quad \Gamma_i = L_i / M_i \quad M_i^* = \Gamma_i \, L_i \quad \mathbf{1} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \quad V_{bj} = M_j^* \, S_a(T_j)$$ $$u(x,t) = \sum \phi_i(x) \, Y_i(t) \quad \ddot{Y}_i(t) + \omega_i^2 \, Y_i(t) = 0 \quad M(x,t) = -EI \frac{\partial^2 u}{\partial x^2} \quad V(x,t) = -EI \frac{\partial^3 u}{\partial x^3} \quad f_{nj} = V_{bj} \frac{m_n \, \phi_{nj}}{\sum_k m_k \, \phi_{kj}}$$ $$\phi(x) = A_1 \sin \alpha x + A_2 \cos \alpha x + A_3 \sin \alpha x + A_4 \cosh \alpha x \quad a^4 = \frac{m \, \omega^2}{EI}$$ $$Prof.Dr. \, Hasan \, Boduroğlu \, (http: www.akademi.itu.edu.tr/bodurogl/)$$ *Prof.Dr. Zekai Celep (http://web.itu.edu.tr/celep/)*