

Problem \# 1

For the rigid-body assemblage shown set up the equation of motion in terms of the vertical displacement $Y(t)$ of the hinge by using the principle of the virtual work. By assuming $k_{t}=2 k_{v} a^{2}$, determine the period of the system as $T=\alpha \sqrt{m a / k_{v}}$ and evaluate α.

Problem \# 2

a. Write down equation of motion of the column having two-degree-of-freedom including the external forces $P_{1}(t)$ and $P_{2}(t)$.
b. Obtain the mass matrix \mathbf{m}, the stiffness matrix \mathbf{k} and the flexibility matrix $\mathbf{d}=\mathbf{k}^{\mathbf{- 1}}$.
c. Determine the two circular frequencies $\omega_{1}<\omega_{2}$, the two periods of the free vibration $T_{i}=\alpha_{i} \sqrt{M h^{3} /(E I)}$ $T_{1}>T_{2}$ including α_{1} and the corresponding mode shapes ϕ_{1}, and ϕ_{2}. Give their graphical representations.
d. Check the orthogonality of the modes with respect to the mass matrix $\phi_{1}{ }^{T} \mathbf{m} \phi_{2}$ and the stiffness matrix $\phi_{1}{ }^{T} \mathbf{k}$ ϕ_{2}.
e. Evaluate the generalized masses and stiffness M_{1}, M_{2} and K_{1}, K_{2} and assess that $\omega_{i}^{2}=K_{i} / M_{i}$.
f. Write down the discretized version of the equations of motion as $M_{i} \ddot{Y}_{i}+K_{i} Y_{i}=\boldsymbol{\phi}_{1}{ }^{\mathbf{T}} \mathbf{p}$
g. Assuming that the system is under the impulsive load of P_{2} ad $I=\int_{0}^{t_{o}} P_{2}(\tau) d \tau=P_{o} t_{o}$ and $P_{1}(t)=0$ and assuming that the system starts from the rest, i.e., $v(t=0)=\dot{v}(t=0)=0$ and $t_{o} \ll T_{2}<T_{1}$, obtain $Y_{i}(t)$ and $v_{i}(t)$.

Problem \# 3

Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. Write down the boundary conditions for the free vibration of the beam.

$$
\mathbf{m} \ddot{\mathbf{v}}(t)+\mathbf{k} \mathbf{v}(t)=\mathbf{p}(t) \quad \mathbf{v}(t)=\left[\begin{array}{ll}
v_{1}(t) & v_{2}(t)
\end{array}\right]^{T} \quad \mathbf{p}(t)^{T}=\left[\begin{array}{ll}
P_{1}(t) & P_{2}(t)
\end{array}\right]
$$

$$
\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \phi_{i}=0 \quad \omega_{i}=2 \pi / T_{i} \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \phi_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0
$$

$$
K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad v(t)=\sum_{i=1}^{2} Y_{i}(t) \phi_{i}
$$

$$
Y_{i}(t)=\phi_{i}^{T} \mathbf{m} \mathbf{v} / M_{i} \quad Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i}
$$

$$
I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right) \quad v_{1}=\frac{Q b^{3}}{3 E I}+\frac{Q c b^{2}}{2 E I} \quad v_{2}=\frac{Q(c+b)^{3}}{3 E I} \quad v_{1}=\frac{R b^{3}}{3 E I}
$$

$$
v_{2}=\frac{R b^{3}}{3 E I}+\frac{R c b^{2}}{2 E I} \quad M(x, t)=-E I \frac{\partial^{2} v}{\partial x^{2}} \quad V(x, t)=-E I \frac{\partial^{3} v}{\partial x^{3}} \quad a^{4}=\frac{m \omega^{2}}{E I}
$$

$$
v(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0
$$

