ADVANCED DYNAMICS OF STRUCTURES Final Exam January 16, 2007

@ Consider the system of two-degrees-of-freedom shown:

a Write down equations of motion of the system by including the ground motion v,(?) and the external loads
P;(1) and P,(t). Obtain the mass matrix m and the rigidity matrix k.

b Determine the two circular frequencies and the two periods of the free vibration w; < @», and 7; > 7> and
the corresponding mode shapes ¢; and ¢,. Give their graphical representations.

¢ Check the orthogonality of the modes with respect to the mass matrix ¢; "'m ¢ and the stiffness matrix
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@ Consider the system of single-degrees-of-freedom shown:

a. Write down equation of motion of the system by including the ground motion v,(?) and obtain the period of
the system.

b. Assuming 4 = 3m and the cross section of the columns b= 0.30m, h = 0.40m and E = 30 GPa, T = 0.2s
obtain the weight of the system. By using the spectral curve given, obtain the base shear force ¥, and the
corresponding lateral deformation of the system. Determine the shear forces at each column.
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@ Consider the cantilever beam having a lumped mass and a lateral spring at the tip where m; and m; are the
masses per unit length and (EI), and (EI), the bending rigidities of the cross sections, & the constant of the
spring and M the lumped mass at the tip. Write down the boundary conditions of the beam that experiences
free vibration for obtaining the free vibration frequencies.
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