ADVANCED DYNAMICS OF STRUCTURES / Final Exam / December 22, 2014

Question \# 1:

Consider the system of two degrees-of-freedom shown shown:
a. Write down the equations of motion of the system by considering the freebody diagram of the two story masses. Evaluate the mass matrix \mathbf{m}, the stiffness matrix \mathbf{k}.
b. Determine the two circular frequencies and periods of the free vibration ω_{i} and T_{i} in terms of $M_{o}, E I$ and ℓ. Obtain the corresponding mode shapes ϕ_{i} and give their graphical representations ($i=1,2$).
a. Determine the effective modal masses M_{1}^{*} and M_{2}^{*}, and assess the identity $M_{1}^{*}+M_{2}^{*}=3 M_{o}$
b. Assuming the heights of the stories are $\ell=3 \mathrm{~meter}$, the columns with a cross section of $b / h=0.40 \mathrm{~m} / 0.60 \mathrm{~m}$ and the first period of the system $T_{1}=0.15 s$ and the modulus elasticity $E=30 G P a$, find the numerical values of the mass M_{o} and the second period T_{2} of the system.
c. Evaluate the base shear forces $V_{b 1}, V_{b 2}$ corresponding to the two mode shapes by using the acceleration spectrum $S_{a}(T)$ given. Obtain the base shear force and their combined value V_{b} by using the SRSS combination rule.

Question \# 2:

Consider a beam having a length ℓ, a mass per unit length m and a bending rigidity $E I$. The beam is clamed at its right end and has a lumped mass M_{o} at the left end which supported by a linear spring having a spring constant k. By considering free vibration of the beam, write down the boundary conditions and evaluate the frequency determinant.

Question \# 3:

Express how the displacement spectrum of a seismic record can be obtained. Give mathematical definitions and symbolic variations for displacement, velocity and acceleration spectra for two damping ratios ξ. Write down the relationships between these three spectra. Discuss properties of these three spectra for the cases $T \rightarrow 0$ and $T \rightarrow$ large .

$m \ddot{u}+c \dot{u}+k u=-m \ddot{u}_{g}(t) \quad \ddot{u}+2 \xi \omega \dot{u}+\omega^{2} u=-\ddot{u}_{g}(t) \quad \omega_{D}=\omega \sqrt{\left(1-\xi^{2}\right)}$
$u(t, \xi, \omega)=-\frac{1}{\omega_{D}} \int_{o}^{t} \ddot{u}_{g}(\tau) \exp [-\xi \omega(t-\tau)] \sin \left[\omega_{D}(t-\tau)\right] d \tau$
$\dot{u}(t, \xi, \omega)=-\int_{o}^{t} \ddot{u}_{g}(\tau) \exp [-\xi \omega(t-\tau)] \cos \left[\omega_{D}(t-\tau)\right] d \tau-\xi \omega u(t, \xi, \omega)$
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \quad \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad \omega_{i}=2 \pi / T_{i}$

$\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \phi_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \phi_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$
$K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad Y_{i}(t)=\sum_{i=1}^{2} \phi_{i}{ }^{T} \mathbf{m} \mathbf{v} / M_{i} \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}}$
$Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad L_{i}=\phi_{i}^{T} \mathbf{m} 1 \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i} \quad 1=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T} \quad V_{b j}=M_{j}^{*} S_{a}\left(T_{j}\right)$
$u(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}} \quad f_{n j}=V_{b j} \frac{m_{n} \phi_{n j}}{\sum_{k} m_{k} \phi_{k j}}$
$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad a^{4}=\frac{m \omega^{2}}{E I}$

