ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / December 04, 2013

Problem #1:

Consider the system of two degrees-of-freedom shown. (a) Evaluate the flexibility \mathbf{d} matrix by applying forces along the corresponding displacements u_i , Determine the mass matrix \mathbf{m} by transforming inertia forces along the corresponding displacements u_i and the load vector \mathbf{p} by transforming the external forces along the corresponding displacements u_i . Obtain the rigidity matrix $\mathbf{k} = \mathbf{d}^{-1}$. (b) Determine the circular frequencies and the periods of the free vibration ω_i and T_i in terms of EI, M_o and ℓ . (c) Obtain the corresponding two mode shapes ϕ_i and give their graphical representation (i = 1, 2). (d) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_1^T \mathbf{m} \phi_2$, and $\phi_1^T \mathbf{k} \phi_2$. (e) Evaluate the generalized masses and stiffness $M_i = \phi_i^T \mathbf{m} \phi_i$ and $K_i = \phi_i^T \mathbf{k} \phi_i$ and assess the relationship $\omega_i^2 = K_i / M_i$ (i = 1, 2).

Problem # 2:

Consider the distributed parameter system shown where m is the mass per unit length and EI is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational spring k_t . The beam has a lumped mass of M_o and a lateral spring k_u . Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^4 = m\ell^4\omega^2/(EI)$ by assuming $M_o = 2\,m\ell$, $k_u = EI/\ell^3$ and $k_t = EI/\ell$.

$$\mathbf{m} \ddot{\mathbf{u}}(t) + \mathbf{k} \mathbf{u}(t) = \mathbf{p}(t) \quad \mathbf{u}(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T \qquad \omega_i = 2 \pi / T_i$$

$$(\mathbf{k} - \omega_i^2 \mathbf{m}) \, \phi_i = 0 \quad (\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \, \phi_i = 0 \quad \left| \mathbf{k} - \omega_i^2 \mathbf{m} \right| = 0 \quad \left| \mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m} \right| = 0 \qquad M_i = \phi_i^T \mathbf{m} \, \phi_i$$

$$K_i = \phi_i^T \mathbf{k} \, \phi_i \qquad u(x, t) = \sum \phi_i(x) \, Y_i(t) \qquad \ddot{Y}_i(t) + \omega_i^2 \, Y_i(t) = 0 \qquad M(x, t) = -EI \, \frac{\partial^2 u}{\partial x^2}$$

$$\phi(x) = A_1 \sin ax + A_2 \cos ax + A_3 \sinh ax + A_4 \cosh ax \qquad a^4 = \frac{m \, \omega^2}{EI} \qquad V(x, t) = -EI \, \frac{\partial^3 u}{\partial x^3}$$

ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / December 04, 2013

Problem # 1:

Consider the system of two degrees-of-freedom shown. (a) Evaluate the flexibility \mathbf{d} matrix by applying forces along the corresponding displacements u_i , Determine the mass matrix \mathbf{m} by transforming inertia forces along the corresponding displacements u_i and the load vector \mathbf{p} by transforming the external forces along the corresponding displacements u_i . Obtain the rigidity matrix $\mathbf{k} = \mathbf{d}^{-1}$. (b) Determine the circular frequencies and the periods of the free vibration ω_i and T_i in terms of EI, M_o and ℓ . (c) Obtain the corresponding two mode shapes ϕ_i and give their graphical representation (i=1,2). (d) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_1^T \mathbf{m} \phi_2$, and $\phi_1^T \mathbf{k} \phi_2$. (e) Evaluate the generalized masses and stiffness $M_i = \phi_i^T \mathbf{m} \phi_i$ and $K_i = \phi_i^T \mathbf{k} \phi_i$ and assess the relationship $\omega_i^2 = K_i / M_i$ (i=1,2).

Problem # 2:

Consider the distributed parameter system shown where m is the mass per unit length and EI is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational spring k_t . The beam has a lumped mass of M_o and a lateral spring k_u . Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^4 = m\ell^4 \omega^2/(EI)$ by assuming $M_o = 2m\ell$, $k_u = EI/\ell^3$ and $k_t = EI/\ell$.

$$\mathbf{m} \ddot{\mathbf{u}}(t) + \mathbf{k} \mathbf{u}(t) = \mathbf{p}(t) \mathbf{u}(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T \qquad \omega_i = 2 \pi / T_i$$

$$(\mathbf{k} - \omega_i^2 \mathbf{m}) \, \mathbf{\phi}_i = 0 \quad (\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \, \mathbf{\phi}_i = 0 \quad |\mathbf{k} - \omega_i^2 \mathbf{m}| = 0 \quad |\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}| = 0 \qquad M_i = \mathbf{\phi}_i^T \mathbf{m} \, \mathbf{\phi}_i$$

$$K_i = \mathbf{\phi}_i^T \mathbf{k} \, \mathbf{\phi}_i \qquad u(x, t) = \sum \mathbf{\phi}_i(x) \, Y_i(t) \qquad \ddot{Y}_i(t) + \omega_i^2 \, Y_i(t) = 0 \qquad M(x, t) = -EI \, \frac{\partial^2 u}{\partial x^2}$$

$$\phi(x) = A_1 \sin ax + A_2 \cos ax + A_3 \sinh ax + A_4 \cosh ax \qquad a^4 = \frac{m \, \omega^2}{EI} \qquad V(x, t) = -EI \, \frac{\partial^3 u}{\partial x^3}$$