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Problem # 1:
Consider the system of two degrees-of-freedom shown. (a) Evaluate the flexibility d matrix by
applying forces along the corresponding displacements u;, Determine the mass matrix m by

transforming inertia forces along the corresponding displacements u; and the load vector p by
transforming the external forces along the corresponding displacements u; . Obtain the rigidity
matrix k =dL. (b) Determine the circular frequencies and the periods of the free vibration w;
and T; intermsof El , M, and 7. (c) Obtain the corresponding two mode shapes ¢; and give
their graphical representation (i =1,2). (d) Check the orthogonality of the modes with respect
to the mass matrix and the stiffness matrix ¢I m¢, , and ¢I k¢, . (e) Evaluate the generalized

masses and stiffness M; =<1>iT m¢; and K; =¢1>iT k ¢; and assess the relationship a),2 =K | M;
(i=12).
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Problem # 2:
Consider the distributed parameter system shown where m is the mass per unit length and El
is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational
spring k;. The beam has a lumped mass of Mg,and a lateral spring k,. Write down the
boundary conditions for the free vibration of the beam. Obtain the frequency determinant in

terms of 8% =m¢4w? /(El) by assuming Mg =2m¢, k, =El /63 and ke =El/?.
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