ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / December 04, 2013

Problem \# 1:

Consider the system of two degrees-of-freedom shown. (a) Evaluate the flexibility \mathbf{d} matrix by applying forces along the corresponding displacements u_{i}, Determine the mass matrix \mathbf{m} by transforming inertia forces along the corresponding displacements u_{i} and the load vector \mathbf{p} by transforming the external forces along the corresponding displacements u_{i}. Obtain the rigidity matrix $\mathbf{k}=\mathbf{d}^{-1}$. (b) Determine the circular frequencies and the periods of the free vibration ω_{i} and T_{i} in terms of $E I, M_{o}$ and ℓ. (c) Obtain the corresponding two mode shapes ϕ_{i} and give their graphical representation $(i=1,2)$. (d) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\boldsymbol{\phi}_{1}^{T} \mathbf{m} \boldsymbol{\phi}_{2}$, and $\boldsymbol{\phi}_{1}^{T} \mathbf{k} \boldsymbol{\phi}_{2}$. (e) Evaluate the generalized masses and stiffness $M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ and $K_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{i}$ and assess the relationship $\omega_{i}^{2}=K_{i} / M_{i}$ ($i=1,2$).

Problem \# 2.

Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational spring k_{t}. The beam has a lumped mass of M_{o} and a lateral spring k_{u}. Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^{4}=m \ell^{4} \omega^{2} /(E I)$ by assuming $M_{o}=2 m \ell, k_{u}=E I / \ell^{3}$ and $k_{t}=E I / \ell$.
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \quad \omega_{i}=2 \pi / T_{i}$
$\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$
$K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad u(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}}$
$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad a^{4}=\frac{m \omega^{2}}{E I} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}}$

ADVANCED DYNAMICS OF STRUCTURES / Midterm Exam / December 04, 2013

Problem \# 1:

Consider the system of two degrees-of-freedom shown. (a) Evaluate the flexibility \mathbf{d} matrix by applying forces along the corresponding displacements u_{i}, Determine the mass matrix \mathbf{m} by transforming inertia forces along the corresponding displacements u_{i} and the load vector \mathbf{p} by transforming the external forces along the corresponding displacements u_{i}. Obtain the rigidity matrix $\mathbf{k}=\mathbf{d}^{-1}$. (b) Determine the circular frequencies and the periods of the free vibration ω_{i} and T_{i} in terms of $E I, M_{o}$ and ℓ. (c) Obtain the corresponding two mode shapes ϕ_{i} and give their graphical representation ($i=1,2$). (d) Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\boldsymbol{\phi}_{1}^{T} \mathbf{m} \boldsymbol{\phi}_{2}$, and $\boldsymbol{\phi}_{1}^{T} \mathbf{k} \boldsymbol{\phi}_{2}$. (e) Evaluate the generalized masses and stiffness $M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ and $K_{i}=\phi_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{i}$ and assess the relationship $\omega_{i}^{2}=K_{i} / M_{i}$ ($i=1,2$).

Problem \# 2:

Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational spring k_{t}. The beam has a lumped mass of M_{o} and a lateral spring k_{u}. Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^{4}=m \ell^{4} \omega^{2} /(E I)$ by assuming $M_{o}=2 m \ell, k_{u}=E I / \ell^{3}$ and $k_{t}=E I / \ell$
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \quad \omega_{i}=2 \pi / T_{i}$
$\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$
$K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad u(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}}$
$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad a^{4}=\frac{m \omega^{2}}{E I} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}}$

