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Problem # 1:
Consider the system of two degrees-of-freedom shown where the first story is rigid plate
having a mass of 3M, and the second story consists of two cantilever columns connected to

each other by a rigid link. (a). Evaluate the flexibility d matrix, the mass matrix m and the
rigidity matrix k =d! and the load vector p . (b). Determine the circular frequencies and the
periods of the free vibration ®; and T; in terms of ElI, m and /. (c). Obtain the
corresponding two mode shapes ¢; and give their graphical representation (i=21,2). (d).
Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix
¢I m¢,, and ¢I k¢, . e. Evaluate the generalized masses and stiffness M; =<1>iT m¢; and

K; ¢| k ¢; and assess the relationship a), =K;/M; (i=12).
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