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Problem # 1:
Consider the system of two degrees-of-freedom shown where the first story is rigid plate
having a mass of 2M,, and the second story consists of two cantilever columns connected to

each other by an inextensible rod with negligible mass. a. Evaluate the flexibility d matrix, the
mass matrix m and the rigidity matrix k=d™! and the load vector p. b. Determine the
circular frequencies and the periods of the free vibration w; and T; in terms of EI , M, and
h. c. Obtain the corresponding two mode shapes ¢; and give their graphical representation
(i=1,2). d. Check the orthogonality of the modes with respect to the mass matrix and the

stiffness matrix ¢I m¢,, and ¢I k¢, . e. Evaluate the generalized masses and stiffness

Mi=¢] m¢; and K;=¢] ko; Q) o Hinges Q0
and assess the relationship M, M, U, (t)
o =Ki I M; (i=12). h El El

u®
Problem # 2: T E’;’ =§Zt)
Consider the distributed parameter 1 E
system shown where m is the " | -
mass per unit length and EI is the Problem # 1 u(x,t)l D)
bending rigidity of the cross <+ 7= 7 C%\-s/’& M9
section. The left end of the beam is V(x,1)

fixed and has a rotational spring
ki . The right end of the beam has a lumped mass of M and a lateral spring k;, . Write down

the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in
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