Problem \# 1

Consider the system of two degrees-of-freedom shown:
a. Evaluate the fle xibility \mathbf{d} matrix, the mass matrix \mathbf{m} and the rig idity matrix $\mathbf{k}=\mathbf{d}^{-1}$ and the load vector \mathbf{p}.
b. Determine the circular frequencies and the periods of the free vibration ω_{i} and T_{i} in terms of $E I, m$ and h. Obtain the corresponding two mode shapes ϕ_{i} and give their graphical representation ($i=1,2$),
c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_{1}{ }^{\mathbf{T}} \mathbf{m} \phi_{2}$, and $\phi_{1}{ }^{\mathbf{T}} \mathbf{k} \phi_{2}$.
d. Evaluate the generalized masses and stiffness $M_{i}=\phi_{\mathrm{i}}^{\mathrm{T}} \mathbf{m} \phi_{\mathrm{i}}$, and $K_{i}=\phi_{\mathrm{i}}{ }^{\mathbf{T}} \mathbf{k} \phi_{\mathrm{i}}$, and assess the relationship $\omega_{i}{ }^{2}=K_{i} / M_{i} .(i=1,2)$,

Problem \# 1

Problem \# 2

Problem \# 2:

Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. The beam has two lumped masses of M at the two ends. Write down the boundary conditions for the free vibration of the beam. Obtain all parameters in terms of $\beta^{4}=\frac{m \ell^{4} \omega^{2}}{E I}$ by assuming $M=m \ell, k_{v}=E I / \ell^{3}$ and $k_{t}=E I / \ell$.

$$
\begin{aligned}
& \mathbf{m} \ddot{\mathbf{v}}(t)+\mathbf{k} \mathbf{v}(t)=\mathbf{p}(t) \\
& \mathbf{v}(t)=\left[\begin{array}{ll}
v_{1}(t) & v_{2}(t)
\end{array}\right]^{T} \\
& \mathbf{p}(t)^{T}=\left[\begin{array}{ll}
P_{1}(t) & P_{2}(t)
\end{array}\right] \\
& \left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \phi_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \phi_{i}=0 \\
& \left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad \omega_{i}=2 \pi / T_{i} \quad M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i} \quad K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \\
& \nu(t)=\sum_{i=1}^{2} Y_{i}(t) \phi_{i} \quad Y_{i}(t)=\sum_{i=1}^{2} \phi_{i}^{T} \mathbf{m} \mathbf{v} / M_{i} \quad Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}} \\
& L_{i}=\phi_{i}^{T} \mathrm{~m} 1 \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i} \quad 1^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad v(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \\
& \phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \\
& a^{4}=\frac{m \omega^{2}}{E I} \\
& V(x, t)=-E I \frac{\partial^{3} v}{\partial x^{3}} \quad M(x, t)=-E I \frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
$$

