Consider the system of two-degree-of freedom shown, where the upper part behaves as a cantilever column and the lower part as a shear frame.

- 1. Write down equation of motion by including the external forces p_1 and p_2 . Obtain the mass matrix **m** and the stiffness k of the system.
- 2. Determine the two circular frequencies $\omega_1 < \omega_2$, the two periods of the free vibration and $T_1 > T_2$ and the corresponding mode shapes ϕ_1 , and ϕ_2 . Give their graphical representations.
- 3. Check the orthogonality of the modes with respect to the mass matrix $\phi_1^T m \phi_2$ and the stiffness matrix $\phi_1^T k$ ϕ_2 .
- 4. Evaluate the generalized masses, stiffness and forces M_l , M_2 , K_l , K_2 and P_l , P_2 and assess that $\omega_i^2 = K_i / 2$ M_i .
- 5. Write down the uncoupled version of the equations of motion as $M_i \ddot{Y}_i + K_i Y_i = P_i = \phi_i^T$
- 6. Assuming that the system is under the impulsive load of p_I and $I = \int_0^{t_O} p_1(\tau) d\tau = P_O t_O$ and $p_2(t) = 0$ and assuming that the system starts from the rest, i.e., $\mathbf{v}(t=0) = \dot{\mathbf{v}}(t=0) = 0$ and $t_o << T_2 < T_1$, obtain $Y_i(t)$ and $v_i(t)$.
- 7. For a numerical evaluation, assume that $t_0 = T_2 / 10$, $P_0 = 2mg$, $T_1 = 2$ seconds, calculate T_2 and maximum amplitudes of v_1 and v_2 by considering the contribution of the first mode only.

$$\mathbf{m} \ \ddot{\mathbf{y}}(t) + \mathbf{k} \ \mathbf{v}(t) = \mathbf{p}(t) \quad \mathbf{v}(t) = \begin{bmatrix} v_1(t) & v_2(t) \end{bmatrix}^T \qquad \mathbf{p}(t)^T = \begin{bmatrix} p_1(t) & p_2(t) \end{bmatrix} \qquad (\mathbf{k} - \omega_i^2 \ \mathbf{m}) \ \phi_i = 0$$

$$\mathbf{p}(t)^T = \begin{bmatrix} p_1(t) & p_2(t) \end{bmatrix}$$

$$(\mathbf{k} - \omega_i^2 \mathbf{m}) \phi_i = 0$$

$$(\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}) \phi_i = 0$$

$$\left(\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}\right) \phi_i = 0 \qquad \left|\mathbf{k} - \omega_i^2 \mathbf{m}\right| = 0 \qquad \left|\mathbf{I} - \omega_i^2 \mathbf{d} \mathbf{m}\right| = 0 \qquad \omega_i = 2\pi/T_i \qquad M_i = \phi_i^T \mathbf{m} \phi_i \qquad K_i = \phi_i^T \mathbf{k} \phi_i$$

$$\omega_i = 2 \pi / T_i \qquad M_i =$$

$$K_i = \phi_i^T \mathbf{k} \; \phi_i$$

$$M_i \ddot{Y}_i(t) + K_i Y_i(t) = \phi_i^T \mathbf{p}(t)$$
 $\mathbf{v}(t) = \sum_{i=1}^2 Y_i(t) \phi_i$

$$\mathbf{v}(t) = \sum_{i=1}^{2} Y_i(t) \,\phi_i$$

$$Y_i(t) = \sum_{i=1}^{2} \phi_i^T \mathbf{m} \mathbf{v} / M_i$$

$$Y_i(t) = \frac{\sin \omega_i t}{M_i \ \omega_i} \left[\phi_i^T \int_o^{t_O} \mathbf{p}(\tau) \ d\tau \right]$$

$$k = \frac{3EI}{h^3}$$

$$k = \frac{3EI}{h^3} \qquad \qquad k = \frac{12EI}{h^3}$$