Problem \# 1

Consider the system of two degrees-of-freedom shown:
a. Write down the equations of motion of the system by including the external loads.
b. Determine the two circular frequencies and the periods of the free vibration ω_{i} and T_{i} and the corresponding mode shapes $\boldsymbol{\phi}_{\mathrm{i}}$. Give their graphical representation $(i=1,2)$,
c. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_{1}{ }^{\mathbf{T}} \mathbf{m} \phi_{2}$, and $\phi_{1}{ }^{\mathbf{T}} \mathbf{k} \phi_{2}$,
d. Evaluate the generalized masses and stiffness $M_{i}=\phi_{\mathbf{i}}{ }^{\mathrm{T}} \mathbf{m} \phi_{\mathbf{i}}$, and $K_{i}=\phi_{\mathbf{i}}^{\mathrm{T}} \mathbf{k} \phi_{\mathbf{i}}$, and assess $\omega_{i}{ }^{2}=K_{i} / M_{i}$ for $i=1,2$,
e. The height of the column $\ell=3$ meter and their cross section of $b / h=0.25 \mathrm{~m} \times 0.50 \mathrm{~m}$, the first period of the system is $T_{l}=0.20 \mathrm{~s}$ and $E=30 G P a$. Find the numerical values the parameter M_{o} and the second period T_{2} of the system.
f. Determine the effective modal masses M_{1}^{*} and M_{2}^{*} and assess that $M_{1}^{*}+M_{2}^{*}=M_{o}$
g. Evaluate the base shear forces $V_{b 1}$ and $V_{b 2}$ and the overturning moments $M_{b 1}$ and $M_{b 2}$ corresponding to the two mode shapes. Obtain the base shear force V_{b} and the overturning moment M_{b} by using the SRSS combination rule.

Problem \# 1

Problem \# 2

Problem \# 2

Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant by assuming $M_{O}=m a$, $k=E I / \ell^{3}$ in terms of β where $\beta^{4}=\frac{m \ell^{4} \omega^{2}}{E I}$
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \quad \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \quad \mathbf{p}(t)^{T}=\left[\begin{array}{lll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \phi_{i}=0 \quad \omega_{i}=2 \pi / T_{i}$

$$
\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \phi_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad \mathbf{u}(x, t)=\sum \phi_{i}(x) Y_{i}(t)
$$

$\ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad Y_{i}(t)=\phi_{i}^{T} \mathbf{m} \mathbf{v} / M_{i}$
$M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i}$

$$
M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}} \quad a^{4}=\frac{m \omega^{2}}{E I}
$$

$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x$

$$
L_{i}=\phi_{i}^{T} \mathbf{m} \mathbf{1} \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i}
$$

$I_{\theta}=\frac{M}{12}\left(a^{2}+b^{2}\right) \quad V_{b j}=M_{j}^{*} A_{j \max } \quad f_{i j}=V_{b j} \frac{m_{i} \phi_{i j}}{\sum_{l=1}^{n} m_{l} \phi_{l j}} \quad M_{j}^{*}=\frac{\left(\sum_{i=1}^{n} m_{i} \phi_{i j}\right)^{2}}{\sum_{i=1}^{n} m_{i} \phi_{i j}^{2}}$

