
1Object Oriented Programming
Version Version 00..11..22

Object Oriented Programming

Binnur Kurt
kurt@ce.itu.edu.tr

Istanbul Technical UniversityIstanbul Technical University
Computer Engineering DepartmentComputer Engineering Department

2

About the LecturerAbout the Lecturer
BSc

İTÜ, Computer Engineering Department, 1995

MSc

İTÜ, Computer Engineering Department, 1997

Areas of Interest

Digital Image and Video Analysis and Processing

Real-Time Computer Vision Systems

Multimedia: Indexing and Retrieval

Software Engineering

OO Analysis and Design

3

Welcome to the CourseWelcome to the Course

Important Course Information

Course Hours

• 10:00-13:00 Thursday

Course Web Page

• http://www.cs.itu.edu.tr/~kurt/courses/blg252e

Join to the group

• http://groups.yahoo.com/group/blg252e

• blg252e@yahoogroups.com

E-mail

4

Grading SchemeGrading Scheme
3 Homeworks (5% each)

2 Midterm Exams (20%,25%)

A final exam (40%)

You must follow the official Homework Guidelines

(http://www.ce.itu.edu.tr/lisans/kilavuz.html).

Academic dishonesty including but not limited to cheating,
plagiarism, collaboration is unacceptable and subject to disciplinary
actions. Any student found guilty will have grade F. Assignments
are due in class on the due date. Late assignments will generally not
be accepted. Any exception must be approved. Approved late
assignments are subject to a grade penalty.

5

ReferencesReferences

The presentation is based on

Asst.Prof.Dr. Feza Buzlaca’s Lecture Notes

6Object Oriented Programming

Tell me and I forget.
Show me and I remember.
Let me do and I understand.

—Chinese Proverb

There is no time for lab sessions
On the course web page you will find lab files for each
week. You should do the lab sessions on your own.
Just follow the instructions on these documents.

7Object Oriented Programming

Purpose of the CoursePurpose of the Course
► To introduce several programming paradigms including Object-

Oriented Programming, Generic Programming, Design
Patterns

► To show how to use these programming schemes with the C++
programming language to build “good” programs.

8Object Oriented Programming

1. Introduction to Object Oriented Programming.

2. C++: A Better C.

3. Classes and Objects

4. Constructors and Destructors

5. Operator Overloading

6. Inheritance

7. Pointers to Objects

8. Polymorphism

9. Exceptions

Course OutlineCourse Outline

9Object Oriented Programming

10. Templates

11.The Standard Template Library - STL

Course OutlineCourse Outline

10Object Oriented Programming

How to Use the IconsHow to Use the Icons

Demonstration

Reference

Discussion

Exercise

11

INTRODUCTIONINTRODUCTION1

12

In
tro

du
ct

io
n

1

Object Oriented Programming

ContentContent

►Introduction to Software Engineering
►Object-Oriented Programming Paradigm

13

In
tro

du
ct

io
n

1

Object Oriented Programming

SoftwareSoftware

► Computer Software is the product that software engineers
design and build.

► It encompasses
– programs that execute within a computer of any size and

architecture,
– documents that encompass hard-copy and virtual forms,
– data that combine numbers and text but also includes

representations of pictorial, video and audio information.

14

In
tro

du
ct

io
n

1

Object Oriented Programming

HistoryHistory

► Common problems:
– Why does it take so long?
– Why are development costs so high?
– Why can’t find all faults before delivery?
– Why can’t we measure the development?

15

In
tro

du
ct

io
n

1

Object Oriented Programming

HistoryHistory

► Software Engineering: 1967, NATO Study Group,
Garmisch/GERMANY

► 1968, NATO Software Engineering Conference:
Software Crisis
– Low quality
– Not met deadlines and cost limits

16

In
tro

du
ct

io
n

1

Object Oriented Programming

After 35 yearsAfter 35 years

► Still softwares are
– Late
– Over budget
– With residual faults

► Means
– SW has own unique properties and problems
– Crisis >>>>> Depression

17

In
tro

du
ct

io
n

1

Object Oriented Programming

Is SW An Engineering?Is SW An Engineering?

► May be?
► Bridge – Operating System

– After collapse, redesign & rebuild
– Inspect similar bridges
– Perfectly engineered
– Experience
– Maintaining

18

In
tro

du
ct

io
n

1

Object Oriented Programming

MaintainabilityMaintainability
FlexibilityFlexibility
TestabilityTestability

PortabilityPortability
ReusabilityReusability
InteroperabilityInteroperability

CorrectnessCorrectness
ReliabilityReliability

EfficiencyEfficiency
IntegrityIntegrity

UsabilityUsability

PRODUCT TRANSITIONPRODUCT TRANSITIONPPRROODDUUCCTT RREEVVIISSIIOONNPPRROODDUUCCTT RREEVVIISSIIOONN

PRODUCT OPERATIONPRODUCT OPERATION

McCall Quality Triangle McCall Quality Triangle

19

In
tro

du
ct

io
n

1

Object Oriented Programming

O
pe

ra
tio

n
O

pe
ra

tio
n

R
ev

is
io

n
R

ev
is

io
n

T
ra

ns
iti

on
T

ra
ns

iti
on

20

In
tro

du
ct

io
n

1

Object Oriented Programming

►Correctness: The extent to which a program satisfies its
specification and fulfills the customer’s mission objectives

►Reliability: The extent to which a program can be expected to
perform its intended function with required precision

►Efficiency: The amount of computing resources and code
required by a program to perform its function

►Integrity: Extent to which access to software or data by
unauthorized persons can be controlled

►Usability: Effort required to learn, operate, prepare input and
interpret output of a program

►Maintainability: Effort required to locate and fix an error in a
program

McCall Quality TriangleMcCall Quality Triangle

21

In
tro

du
ct

io
n

1

Object Oriented Programming

►Flexibility: Effort required to modify an operational program
►Testability: Effort required to test a program to ensure that it

performs its intended function
►Portability: Effort required to transfer the program from one

hardware and/or software system environment to another
►Reusability: Extent to which a program can be reused in other

applications
►Interoperability: Effort required to couple one system to another

McCall Quality TriangleMcCall Quality Triangle

22

In
tro

du
ct

io
n

1

Object Oriented Programming

Customer-User-DeveloperCustomer-User-Developer

23

In
tro

du
ct

io
n

1

Object Oriented Programming

Development TeamDevelopment Team

24

In
tro

du
ct

io
n

1

Object Oriented Programming

►Requirements Phase
►Specification Phase
►Design Phase
►Implementation Phase
►Integration Phase
►Maintenance Phase
►Retirement Phase

Software Life CycleSoftware Life Cycle

25

In
tro

du
ct

io
n

1

Object Oriented Programming

►Defining constraints
– Functions

– Due dates

– Costs

– Reliability

– Size

►Types
– Functional

– Non-Functional

Requirements PhaseRequirements Phase

26

In
tro

du
ct

io
n

1

Object Oriented Programming

►Documentation of requirements
– Inputs & Outputs

– Formal

– Understandable for user & developer

– Usually functional requirements. (what to do)

– Base for testing & maintenance

►The contract between customer & developer ?

Specification PhaseSpecification Phase

27

In
tro

du
ct

io
n

1

Object Oriented Programming

►Defining Internal structure (how to do)
►Has some levels (or types of docs)

– Architectural design

– Detailed design

– ...

►Important
– To backtrack the aims of decisions

– To easily maintain

Design PhaseDesign Phase

28

In
tro

du
ct

io
n

1

Object Oriented Programming

►Simply coding
►Unit tests

– For verification

Implementation PhaseImplementation Phase

29

In
tro

du
ct

io
n

1

Object Oriented Programming

►Combining modules
►System tests

– For validation

►Quality tests

Integration PhaseIntegration Phase

30

In
tro

du
ct

io
n

1

Object Oriented Programming

►Corrective
►Enhancement

– Perfective

– Adaptive

►Usually maintainers are not the same people with
developers.

►The only input is (in general) the source code of the
software?!?

Maintenance PhaseMaintenance Phase

31

In
tro

du
ct

io
n

1

Object Oriented Programming

►When the cost of maintenance is not effective.
– Changes are so drastic, that the software should be

redesigned.

– So many changes may have been made.

– The update frequency of docs is not enough.

– The hardware (or OS) will be changed.

Retirement PhaseRetirement Phase

32

In
tro

du
ct

io
n

1

Object Oriented Programming

►Expectations are,
►Reducing the effort, complexity, and cost of development

and maintenance of software systems.
►Reducing the time to adapt an existing system (quicker

reaction to changes in the business environment).
Flexibility, reusability.

►Increasing the reliability of the system.

Why Object Technology?Why Object Technology?

33

In
tro

du
ct

io
n

1

Object Oriented Programming

Why C++Why C++
►C++ supports writing high quality programs (supports OO)
►C++ is used by hundreds of thousands of programmers in every

application domain.
– This use is supported by hundreds of libraries, hundreds of

textbooks, several technical journals, many conferences.
► Application domain:

– Systems programming: Operating systems, device drivers. Here,
direct manipulation of hardware under real-time constraints are
important.

– Banking, trading, insurance: Maintainability, ease of extension,
ease of testing and reliability is important.

– Graphics and user interface programs
– Computer Communication Programs

34

In
tro

du
ct

io
n

1

Object Oriented Programming

►Like any human language, a programming language
provides a way to express concepts.

►Program development involves creating models of real
world situations and building computer programs based on
these models.

►Computer programs describe the method of implementing
the model.

►Computer programs may contain computer world
representations of the things that constitute the solutions
of real world problems.

What is Programming?What is Programming?

35

In
tro

du
ct

io
n

1

Object Oriented Programming

What is Programming? (Con’t)What is Programming? (Con’t)

► If successful, this medium of expression (the object-oriented way)
will be significantly easier, more flexible, and efficient than the
alternatives as problems grow larger and more complex.

PROGRAMMER

Programming Language

Object Object

Object

REAL WORLD
COMPUTER

class {
}

Abstraction/
Modeling Implementation

36

In
tro

du
ct

io
n

1

Object Oriented Programming

►Like human languages, programming languages also have many syntax
and grammar rules.

►Knowledge about grammar rules of a programming language is not
enough to write “good” programs.

►The most important thing to do when learning C++ is to focus on
concepts and not get lost in language-technical details.

►Design techniques is far more important than an understanding of
details; that understanding comes with time and practice.

►Before the rules of the programming language, the programming
scheme must be understood.

►Your purpose in learning C++ must not be simply to learn a new
syntax for doing things the way you used to, but to learn new and
better ways of building systems

Learning C++Learning C++

37

Software developer

user

• A program must do its job correctly. It must be useful and usable.
• A program must perform as fast as necessary (Real-time constraints).
• A program must not waste system resources (processor time, memory, disk capacity,

network capacity) too much.
• It must be reliable.
• It must be easy to update the program.
• A good software must have sufficient documentation (users manual).

• Source code must be readable and understandable.
• It must be easy to maintain and update (change) the program.
• A program must consist of independent modules, with limited interaction.
• An error may not affect other parts of a program (Locality of errors).
• Modules of the program must be reusable in further projects.
• A software project must be finished before its deadline.
• A good software must have sufficient documentation (about development).

Object-oriented programming technique enables programmers to build high-
quality programs. While designing and coding a program, these quality metrics
must be kept always in mind.

Software Quality MetricsSoftware Quality Metrics

38

In
tro

du
ct

io
n

1

Object Oriented Programming

OO

C++

Task/Problem

Analysis/Planning

Design/Modeling

Implementation

Test Product

Documentation

Software Development ProcessSoftware Development Process

39

In
tro

du
ct

io
n

1

Object Oriented Programming

►Analysis: Gaining a clear understanding of the problem. Understanding
requirements. They may change during (or after) development of the
system!

►Building the programming team.
►Design: Identifying the key concepts involved in a solution. Models of

the key concepts are created. This stage has a strong effect on the quality
of the software. Therefore, before the coding, verification of the created
model must be done.

►Design process is connected with the programming scheme. Here, our
design style is object-oriented.

►Coding: The solution (model) is expressed in a program.
►Coding is connected with the programming language. In this course we

will use C++.
►Documentation: Each phase of a software project must be clearly

explained. A users manual should be also written.
►Test: the behavior of the program for possible inputs must be examined.

40

In
tro

du
ct

io
n

1

Object Oriented Programming

UMLUML

►They are important design principles and design
patterns, which help us developing high-quality software.
The Unified Modeling Language (UML) is useful to
express the model.

41

In
tro

du
ct

io
n

1

Object Oriented Programming

►The UP promotes several best practices.
► Iterative
► Incremental
► Risk-driven

Unified Process (UP)Unified Process (UP)

42

In
tro

du
ct

io
n

1

Object Oriented Programming

Unified Process (UP)Unified Process (UP)

Requirements

Design

Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Requirements

Design

4 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time
Implementation &
Test & Integration

& More Design

Final Integration
& System Test

43

In
tro

du
ct

io
n

1

Object Oriented Programming

►Pascal, C, BASIC, Fortran, and similar traditional
programming languages are procedural languages. That is,
each statement in the language tells the computer to do
something.

► In a procedural language, the emphasis is on doing things
(functions).

►A program is divided into functions and—ideally, at least—
each function has a clearly defined purpose and a clearly
defined interface to the other functions in the program.

Procedural ProgrammingProcedural Programming

44

In
tro

du
ct

io
n

1

Object Oriented Programming

Procedural ProgrammingProcedural Programming

Main Program functions

Global Data

45

In
tro

du
ct

io
n

1

Object Oriented Programming

► Data Is Undervalued
► Data is, after all, the reason for a program’s existence. The important

parts of a program about a school for example, are not functions that
display the data or functions that checks for correct input; they are
student, teacher data.

► Procedural programs (functions and data structures) don’t model the
real world very well. The real world does not consist of functions.

► Global data can be corrupted by functions that have no business
changing it.

► To add new data items, all the functions that access the data must be
modified so that they can also access these new items.

► Creating new data types is difficult.

Problems with Procedural ProgrammingProblems with Procedural Programming

46

In
tro

du
ct

io
n

1

Object Oriented Programming

Besides...Besides...

►It is also possible to write good programs by using
procedural programming (C programs).

►But object-oriented programming offers programmers
many advantages, to enable them to write high-quality
programs.

47

In
tro

du
ct

io
n

1

Object Oriented Programming

The fundamental idea behind object-oriented programming is:
• The real world consists of objects. Computer programs may
contain computer world representations of the things (objects) that
constitute the solutions of real world problems.
• Real world objects have two parts:

•Properties (or state :characteristics that can change),
•Behavior (or abilities :things they can do).

•To solve a programming problem in an object-oriented language,
the programmer no longer asks how the problem will be divided
into functions, but how it will be divided into objects.
•The emphasis is on data

Object Oriented ProgrammingObject Oriented Programming

48

In
tro

du
ct

io
n

1

Object Oriented Programming

Object Oriented ProgrammingObject Oriented Programming

►What kinds of things become objects in object-oriented
programs?
– Human entities: Employees, customers, salespeople,

worker, manager
– Graphics program: Point, line, square, circle, ...
– Mathematics: Complex numbers, matrix
– Computer user environment: Windows, menus, buttons
– Data-storage constructs: Customized arrays, stacks,

linked lists

49

In
tro

du
ct

io
n

1

Object Oriented Programming

Thinking in terms of objects rather than functions has a helpful
effect on design process of programs. This results from the close
match between objects in the programming sense and objects in the
real world.

To create software models of real world objects both data and the
functions that operate on that data are combined into a single
program entity. Data represent the properties (state), and functions
represent the behavior of an object. Data and its functions are said
to be encapsulated into a single entity.

An object’s functions, called member functions in C++ typically
provide the only way to access its data. The data is hidden, so it is
safe from accidental alteration.

OOP : Encapsulation and Data HidingOOP : Encapsulation and Data Hiding

50

In
tro

du
ct

io
n

1

Object Oriented Programming

OOP : Encapsulation and Data HidingOOP : Encapsulation and Data Hiding

►Encapsulation and data hiding are key terms in the
description of object-oriented languages.

►If you want to modify the data in an object, you know
exactly what functions interact with it: the member
functions in the object. No other functions can access the
data. This simplifies writing, debugging, and maintaining
the program.

Con’t

51

In
tro

du
ct

io
n

1

Object Oriented Programming

A Point on a plane has two properties; x-y coordinates.

Abilities (behavior) of a Point are, moving on the plane,
appearing on the screen and disappearing.

A model for 2 dimensional points with the following parts:

Two integer variables (x , y) to represent x and y
coordinates

A function to move the point: move ,

A function to print the point on the screen: print ,

A function to hide the point: hide .

Example: A Point on the planeExample: A Point on the plane

52

In
tro

du
ct

io
n

1

Object Oriented Programming

Example: A Point on the planeExample: A Point on the plane
Once the model has been built and tested, it is possible to
create many objects of this model , in main program.

Point point1, point2, point3;
:

point1.move(50,30);
point1.print();

Con’t

53

In
tro

du
ct

io
n

1

Object Oriented Programming

A C++ program typically consists of a number of objects that
communicate with each other by calling one another’s member functions.

The Object ModelThe Object Model

54

In
tro

du
ct

io
n

1

Object Oriented Programming

The Object ModelThe Object Model Con’t

55

In
tro

du
ct

io
n

1

Object Oriented Programming

Procedural Programming:

•Procedural languages still requires you to think in terms of the
structure of the computer rather than the structure of the problem
you are trying to solve.

•The programmer must establish the association between the
machine model and the model of the problem that is actually being
solved.

•The effort required to perform this mapping produces programs
that are difficult to write and expensive to maintain. Because the
real world thing and their models on the computer are quite
different.

OOP vs. Procedural ProgrammingOOP vs. Procedural Programming

56

In
tro

du
ct

io
n

1

Object Oriented Programming

Example: Procedural ProgrammingExample: Procedural Programming

►Real world thing: student
►Computer model: char *, int, float ...
►It is said that the C language is closer to the computer than

the problem.

Con’t

57

In
tro

du
ct

io
n

1

Object Oriented Programming

Object Oriented Programming
►The object-oriented approach provides tools for the
programmer to represent elements in the problem space.
►We refer to the elements in the problem space and their
representations in the solution space as “objects.”
►The idea is that the program is allowed to adapt itself to the
problem by adding new types of objects, so when you read the
code describing the solution, you’re reading words that also
express the problem.
► OOP allows you to describe the problem in terms of the
problem, rather than in terms of the computer where the solution
will run.

OOP vs. Procedural ProgrammingOOP vs. Procedural Programming Con’t

58

In
tro

du
ct

io
n

1

Object Oriented Programming

OOP vs. Procedural ProgrammingOOP vs. Procedural Programming

►Benefits of the object-oriented programming:
– Readability
– Understandability
– Low probability of errors
– Maintenance
– Reusability
– Teamwork

Con’t

59

C++ As a Better CC++ As a Better C2

60

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►C++ was developed from the C programming
language, by adding some features to it. These
features can be collected in three groups:
1. Non-object-oriented features, which can be

used in coding phase. These are not
involved with the programming technique.

2. Features which support object-oriented
programming.

3. Features which support generic
programming.

►With minor exceptions, C++ is a superset of C.

C++ As a Better CC++ As a Better C

C

C++

Non object-oriented
extensions

Object-oriented extensions
Generic programming
extensions

Minor exceptions:
C code that is not C++

61

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

C++'s Enhancements to C (Non Object-Oriented)C++'s Enhancements to C (Non Object-Oriented)

►Caution: The better one knows C, the harder it seems to be
to avoid writing C++ in C style, thereby losing some of the
potential benefits of C++.

►1. Always keep object-oriented and generic programming
techniques in mind.

►2. Always use C++ style coding technique which has
many advantages over C style.

►Non object-oriented features of a C++ compiler can be
also used in writing procedural programs.

62

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

►Comment Lines

►/* This is a comment */

►// This is a comment

►C++ allows you to begin a comment with // and use the
remainder of the line for comment text.

►This increases readability.

63

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►Remember; there is a difference between a declaration
and a definition

►A declaration introduces a name – an identifier – to the
compiler. It tells the compiler “This function or this variable
exists somewhere, and here is what it should look like.”

►A definition, on the other hand, says: “Make this variable
here” or “Make this function here.” It allocates storage for
the name.

Declarations and Definitions in C++Declarations and Definitions in C++

64

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

extern int i; // Declaration
int i; // Definition

struct ComplexT{ // Declaration
float re,im;

};
ComplexT c1,c2; // Definition
void func(int, int); // Declaration (its body is a definition)

► In C, declarations and definitions must occur at the beginning of a
block.
► In C++ declarations and definitions can be placed anywhere an
executable statement can appear, except that they must appear prior to
the point at which they are first used. This improve the readability of
the program.
► A variable lives only in the block, in which it was defined. This
block is the scope of this variable.

ExampleExample

65

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int a=0;

for (int i=0; i < 100; i++){{ // i is declared in for loop

a++;

int p=12; // Declaration of p

... // Scope of p

}} // End of scope for i and p

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

► Variable i is created at the beginning of the for loop once.
►Variable p is created 100 times.

66

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

► Scope Operator ::::

A definition in a block can hide a definition in an enclosing
block or a global name. It is possible to use a hidden global
name by using the scope resolution operator ::

int y=0; // Global y
int x=1; // Global x
void f(){ // Function is a new block

int x=5; // Local x=5, it hides global x
::x++; // Global x=2
x++; // Local x=6
y++; // Global y=1

}

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

67

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int xx=1;

void f(){

int x=2; // Local x

::::xx++; // Global x is 2

}

11

22

68

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int i=1;
main(){

int i=2;
{

int n=i ;
int i = 3 ;
cout << i << " " << ::i << endl ;
cout << n << "\n" ;

}
cout << i << " " << ::i << endl;
return 0 ;

}

3 13 1
22
2 12 1

► Like in C, in C++ the same operator may have more than one
meaning. The scope operator has also many different tasks.

69

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

inline functionsinline functions
► In C, macros are defined by using the #define directive of the

preprocessor.

► In C++ macros are defined as normal functions. Here the
keyword inline is inserted before the declaration of the
function.

► Remember the difference between normal functions and
macros:

► A normal function is placed in a separate section of code and a
call to the function generates a jump to this section of code.

► Before the jump the return address and arguments are saved in
memory (usually in stack).

70

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

inline functionsinline functions
► When the function has finished executing, return address and return

value are taken from memory and control jumps back from the end
of the function to the statement following the function call.

► The advantage of this approach is that the same code can be called
(executed) from many different places in the program. This makes it
unnecessary to duplicate the function’s code every time it is
executed.

► There is a disadvantage as well, however.

► The function call itself, and the transfer of the arguments take some
time. In a program with many function calls (especially inside
loops), these times can add up and decrease the performance.

Con’t

71

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

inline inline intint SQ(intSQ(int x){return (x*x); }x){return (x*x); }
#define#define sqsq((x) (x*x)x) (x*x)

inline functionsinline functions

► An inline function is defined using almost the same syntax as an
ordinary function. However, instead of placing the function’s
machine-language code in a separate location, the compiler simply
inserts it into the location of the function call. :

int j, k, l ; // Three integers are defined

………. // Some operations over k and l

j = max(k, l) ; // inline function max is inserted

inline inline intint maxmax((intint xx,,intint yy){return (){return (y<x ? x : y)y<x ? x : y); }; }
#define#define maxmax((xx,y,y) () (y<x ? x : yy<x ? x : y))

j=j= ((k<l ? k : l)k<l ? k : l)

Con’t

72

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

► The decision to inline a function must be made with some
care.

►If a function is more than a few lines long and is called
many times, then inlining it may require much more
memory than an ordinary function.

►It’s appropriate to inline a function when it is short, but
not otherwise. If a long or complex function is inlined,
too much memory will be used and not much time will
be saved.

inline functionsinline functions Con’t

73

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

► Advantages

►Debugging

►Type checking

►Readable

inline functionsinline functions Con’t

74

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int exp(int n,int k=2k=2){
if(k == 2)

return (n*n) ;
else

return (exp(n,k-1)*n) ;
}

exp(i+5)
// (i+5)* (i+5)

exp(i+5,3)
// (i+5)^3

Default Function ArgumentsDefault Function Arguments

► A programmer can give default values to parameters of
a function. In calling of the function, if the arguments
are not given, default values are used.

75

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

void f(int i, int j=7) ; // right

void g(int i=3, int j) ; // wrong

void h(int i, int j=3,int k=7) ; // right

void m(int i=1, int j=2,int k=3) ; // right

void n(int i=2, int j,int k=3) ; // right ?? wrong

ExampleExample
► In calling a function argument must be given from left

to right without skipping any parameter

76

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

ExampleExample

void n(int i=1, int j=2,int k=3) ;
►n() n(1,2,3)
►n(2) n(2,2,3)
►n(3,4) n(3,4,3)
►n(5,6,7) n(5,6,7)

77

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►C++ uses a stricter type checking.
►In function declarations (prototypes) the data types of the
parameters must be included in the parentheses.
char grade (int, int, int); // declaration

int main()
{

:
}
char grade (int exam_1, int exam_2, int final_exam) // definition
{
: // body of function

}

Function Declarations and DefinitionsFunction Declarations and Definitions

78

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►In C++ a return type must be specified; a missing return
type does not default to int as is the case in C.

►In C++, a function that has no parameters can have an
empty parameter list.

int print (void); /* C style */

int print(); // C++ style

Function Declarations and DefinitionsFunction Declarations and Definitions

79

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►This operator provides an alternative name for storage

►There are two usages of the operator

intint n ;n ;

intint& & nnnn = n ;= n ;

double a[10] ;double a[10] ;

double& last = a[9] ;double& last = a[9] ;

const char& new_line = 'const char& new_line = '\\n' ;n' ;

Reference Operator ⎯ &Reference Operator ⎯ &

80

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

void swap(int *a, int *b){

int temp = *a ;

*a = *b ;

*b = temp ; }

int main(){

int i=3,j=5 ;

swap(&i,&j) ;

cout << i << " " << j << endl ;

} 5 35 3

adr_j

GDA

adr_i

5
…

adr_i
adr_j

3i
j

a
b

heapheap

stackstack

► Parameters Passing: Consider swap() function

81

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

void swap(int& a,int& b){

int temp = a ;

a = b ;

b = temp ; }

int main(){

int i=3,j=5 ;

swap(i,j) ;

cout << i << " " << j << endl ;

} 5 35 3

82

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

void shift(int& a1,int& a2,int& a3,int& a4){

int tmp = a1 ;

a1 = a2 ;

a2 = a3 ;

a3 = a4 ;

a4 = tmp ;

}

int main(){

int x=1,y=2,z=3,w=4;

cout << x << y << z << w << endl;

shift(x,y,z,w) ;

cout << x << y << z << w << endl;

return 0 ;

}

83

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int main(){

int x=2,y=3,z=4 ;

squareByPointer(&x) ;

cout << x << endl ;

squareByReference(y) ;

cout << y << endl ;

z = squareByValue(z) ;

cout << z << endl ;

}

int squareByValue(int a){

return (a*a) ;

}

void squareByPointer(int *aPtr){

*aPtr = *aPtr**aPtr ;

}

void squareByReference(int& a){

a *= a ;

}

4 4
99

1616

84

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►To prevent the function from changing the parameter
accidentally, we pass the argument as constant reference to
the function.

const Referenceconst Reference

struct Person{ // A structure to define persons
char name [40]; // Name filed 40 bytes
int reg_num; // Register number 4 bytes

}; // Total: 44 bytes
void print (const Person &k) // k is constant reference parameter
{

cout << "Name: " << k.name << endl; // name to the screen
cout << "Num: " << k.reg_num << endl; // reg_num to the screen

}

int main(){
Person ahmet; // ahmet is a variable of type Person
strcpy(ahmet.name,"Ahmet Bilir"); // name = "Ahmet Bilir"
ahmet.reg_num=324; // reg_num= 324
print(ahmet); // Function call
return 0;

} Instead of 44 bytes only 4 bytes (address) are sent to the function.

85

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Return by referenceReturn by reference
►By default in C++, when a function returns a value: return expression;
expression is evaluated and its value is copied into stack. The calling function
reads this value from stack and copies it into its variables.
►An alternative to “return by value” is “return by reference”, in which the
value returned is not copied into stack.
►One result of using “return by reference” is that the function which returns a
parameter by reference can be used on the left side of an assignment
statement.

int& max(const int a[], int length) { // Returns an integer reference
int i=0; // indices of the largest element
for (int j=0 ; j<length ; j++)

if (a[j] > a[i]) i = j;
return a[i]; // returns reference to a[i]

}
int main() {

int array[] = {12, -54 , 0 , 123, 63}; // An array with 5 elements
max(array,5) = 0; // write 0 over the largest element
:

86

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

const int& max(int a[], int length) // Can not be used on the left side of an
{ // assignment statement

int i=0; // indices of the largest element
for (int j=0 ; j<length ; j++)

if (a[j] > a[i]) i = j;
return a[i];

}

This function can only be on right side of an assignment
int main()
{

int array[] = {12, -54 , 0 , 123, 63}; // An array with 5 elements
int largest; // A variable to hold the largest elem.
largest = max(array,5); // find the largest element
cout << "Largest element is " << largest << endl;
return 0;

}

To prevent the calling function from changing the return parameter
accidentally, const qualifier can be used.

const return parameterconst return parameter

87

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Since a function that uses “return by reference” returns an actual
memory address, it is important that the variable in this memory
location remain in existence after the function returns.
When a function returns, local variables go out of existence and their

values are lost.
int& f() { // Return by reference

int i; // Local variable. Created in stack
:
return i; // ERROR! i does not exist anymore.

}

Local variables can be returned by their values
int f() { // Return by value

int i; // Local variable. Created in stack
:
return i; // OK.

}

Never return a local variable by reference!Never return a local variable by reference!

88

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►In ANSI C, dynamic memory allocation is normally performed with
standard library functions mallocmalloc and freefree.
►The C++ newnew and deletedelete operators enable programs to perform
dynamic memory allocation more easily.
►The most basic example of the use of these operators is given below.
An int pointer variable is used to point to memory which is allocated by
the operator new. This memory is later released by the operator delete.

in C: int *p ;
p = (int *) malloc(N*sizeof(int)) ;
free(p) ;

in C++: int *p ;
p = new int[N] ;
delete [][]p ;

intint *p,*q ;*p,*q ;
p = p = newnew intint[9] ;[9] ;
q = q = newnew intint(9) ;(9) ;

new/deletenew/delete

89

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►Two Dimensional Array
double ** q ;

q = new double*[row] ; // matrix size is rowxcolumn

for(int i=0;i<row;i++)

q[i] = new double[column] ;

…..

for(int i=0;i<row;i++)

delete []q[i] ;

delete []q ;

iithth row jjthth column: q[ii][jj]

90

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

.

.

.

.

.

.

.

.

.

.

.

.

q[i]

q[0]

q[row-1]

q[i][j]

q[0][j]

q[row-1][j]

q[i] = new double[column] ;

.

.

.

.

91

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►Two Dimensional Array
double **q;

p = new double*[row] ; // matrix size is rowxcolumn

q[0] = new double[row*column] ;

for(int i=1;i<row;i++)

q[i] = q[i-1] + column ;

…..

delete []q[0] ;

delete []q ;

iithth row jjthth column: q[ii][jj]

92

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

.

.

.

.

.

.

.

.

q[i]

q[0]

q[row-1]

............

q[0] = new double[row*column] ;

for (int i=1;i<row;i++)
q[i] = q[i-1] + column ;

93

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

double ** q ;
memoryAlign = column % 4;
memoryWidth = (memoryAlign == 0) ?

column : (column+4 -memoryAlign) ;
q[0] = new double[row*memoryWidth] ;
for(int i=0;i<row;i++)

q[i] = q[i-1] + memoryWidth ;
…..
delete []q[0] ;
delete []q ;

94

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

► Function Overloading
double averageaverage(const double a[],int size) ;

double averageaverage(const int a[],int size) ;

double averageaverage(const int a[], const double b[],int size) ;

double average(const int a[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] ;

return ((double)sum/size) ;

}

Function OverloadingFunction Overloading

95

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

double average(const double a[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] ;

return (sum/size) ;

}

double average(const int a[],const double b[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] + b[i] ;

return (sum/size) ;

}

96

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int main() {

int w[5]={1,2,3,4,5} ;

double x[5]={1.1,2.2,3.3,4.4,5.5} ;

cout << average(w,5) ;

cout << average(x,5) ;

cout << average(w,x,5) ;

return 0 ;

}

97

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

► Function Templates

template <typename T>

void printArray(const T *array,const int size){

for(int i=0;i < size;i++)

cout << array[i] << " " ;

cout << endl ;

}

Function TemplatesFunction Templates

98

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

int main() {

int a[3]={1,2,3} ;

double b[5]={1.1,2.2,3.3,4.4,5.5} ;

char c[7]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’ , ‘f’, ‘g’} ;

printArray(a,3) ;

printArray(b,5) ;

printArray(c,7) ;

return 0 ;

}

99

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

void printArray(int *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] << “," ;

cout << endl ;

}

void printArray(char *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] ;

cout << endl ;

}

100

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Operator OverloadingOperator Overloading
►In C++ it is also possible to overload the built-in C++
operators such as +, -, = and ++ so that they too invoke
different functions, depending on their operands.

►That is, the + in aa+bb will add the variables if aa and bb
are integers, but will call a different function if aa and bb
are variables of a user defined type.

101

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Operator Overloading: RulesOperator Overloading: Rules

►You can’t overload operators that don’t already exist in C++.
► You can not change numbers of operands. A binary operator

(for example +) must always take two operands.
► You can not change the precedence of the operators.

** comes always before ++
►Everything you can do with an overloaded operator you can

also do with a function. However, by making your listing
more intuitive, overloaded operators make your programs
easier to write, read, and maintain.

►Operator overloading is mostly used with objects. We will
discuss this topic later more in detail.

102

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►Functions of operators have the name operator and the
symbol of the operator. For example the function for the
operator + will have the name operator+:

struct SComplex{
float real,img;
};
SComplex operator+(SComplex v1, SComplex v2){
SComplex result;
result.real=v1.real+v2.real;
result.img=v1.img+v2.img;
return result;

}

Operator OverloadingOperator Overloading

int main(){
SComplex c1={1,2},c2 ={5,1};
SComplex c3;
c3=c1+c2; // c1+(c2)

}

103

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

namespacenamespace
►When a program reaches a certain size it’s typically broken up into pieces,
each of which is built and maintained by a different person or group.

►Since C effectively has a single arena where all the identifier and function
names live, this means that all the developers must be careful not to
accidentally use the same names in situations where they can conflict.

►The same problem come out if a programmer try to use the same names as
the names of library functions.

►Standard C++ has a mechanism to prevent this collision: the namespace
keyword. Each set of C++ definitions in a library or program is “wrapped” in a
namespace, and if some other definition has an identical name, but is in a
different namespace, then there is no collision.

104

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

namespacenamespace
namespace programmer1{ // programmer1's namespace

int iflag; // programmer1's iflag
void g(int); // programmer1's g function
: // other variables

} // end of namespace

namespace programmer2{ // programmer2's namespace
int iflag; // programmer2's iflag
:

} // end of namespace

105

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

programmer1::iflag = 3; // programmer1's iflag
programmer2::iflag = -345; // programmer2's iflag
programmer1::g(6); // programmer1's g function
If a variable or function does not belong to any namespace, then it is
defined in the global namespace. It can be accessed without a namespace
name and scope operator.

This declaration makes it easier to access variables and functions, which
are defined in a namespace.
using programmer1::iflag; // applies to a single item in the namespace
iflag = 3; // programmer1::iflag=3;
programmer2::iflag = -345;
programmer1::g(6);

Accessing VariablesAccessing Variables

using namespace programmer1; // applies to all elements in the namespace
iflag = 3; // programmer1::iflag=3;
g(6); // programmer1's function g
programmer2::iflag = -345;

106

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
using namespace F;
float y = 2.0;

namespace INNER_G {
float z = 10.01;

}
}

int main() {
float x = 19.1;
using namespace G;
using namespace G::INNER_G;
std::cout << "x = " << x << std::endl;
std::cout << "y = " << y << std::endl;
std::cout << "z = " << z << std::endl;
return 0;

}

namespacenamespace

107

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
using namespace F;
float y = 2.0;

namespace INNER_G {
long x = 5L;
float z = 10.01;

}
}

int main() {
using namespace G;
using namespace G::INNER_G;
std::cout << "x = " << xx << std::endl;
std::cout << "y = " << y << std::endl;
std::cout << "z = " << z << std::endl;
return 0;

}

namespacenamespace

108

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
using namespace F;
float y = 2.0;

namespace INNER_G {
long x = 5L;
float z = 10.01;

}
}

int main() {
using namespace G;
std::cout << "x = " << xx << std::endl;
std::cout << "y = " << y << std::endl;
return 0;

}

namespacenamespace

109

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
float y = 2.0;

namespace INNER_G {
long x = 5L;
float z = 10.01;

}
}

int main() {
using namespace G;
std::cout << "x = " << xx << std::endl;
std::cout << "y = " << y << std::endl;
return 0;

}

namespacenamespace

110

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
float y = 2.0;

namespace INNER_G {
long x = 5L;
float z = 10.01;

}
}

int main() {
using namespace G::INNER_G;
std::cout << "x = " << xx << std::endl;
std::cout << "y = " << yy << std::endl;
return 0;

}

namespacenamespace

111

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►In the first versions of C++, mostly ‘.h’ is used as extension for the header
files.

►As C++ evolved, different compiler vendors chose different extensions for
file names (.hpp, .H , etc.). In addition, various operating systems have
different restrictions on file names, in particular on name length. These issues
caused source code portability problems.

►To solve these problems, the standard uses a format that allows file names
longer than eight characters and eliminates the extension.

►For example, instead of the old style of including iostream.h, which looks
like this: #include <iostream.h>, you can now write: #include
<iostream>

Standard C++ Header FilesStandard C++ Header Files

112

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Standard C++ Header FilesStandard C++ Header Files
►The libraries that have been inherited from C are still available with
the traditional ‘.h’ extension. However, you can also use them with the
more modern C++ include style by puting a “c” before the name. Thus:
#include <stdio.h> become: #include <cstdio>
#include <stdlib.h> #include <cstdlib>

►In standard C++ headers all declarations and definitions take place in a
namespace : std

►Today most of C++ compilers support old libraries and header files
too. So you can also use the old header files with the extension '.h'. For a
high-quality program prefer always the new libraries.

113

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

I/OI/O
►Instead of library functions (printf, scanf), in C++ library
objects are used for IO operations.
►When a C++ program includes the iostream header, four
objects are created and initialized:

►cin handles input from the standard input, the
keyboard.
►cout handles output to the standard output, the screen.
►cerr handles unbuffered output to the standard error
device, the screen.
►clog handles buffered error messages to the standard
error device

114

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Using cout ObjectUsing cout Object
To print a value to the screen, write the word cout, followed
by the insertion operator (<<).

#include<iostream> // Header file for the cout object
int main() {

int i=5; // integer i is defined, initial value is 5
float f=4.6; // floating point number f is defined, 4.6
std::cout << "Integer Number = " << i << " Real Number= " << f;
return 0;

}

115

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Using cin ObjectUsing cin Object
The predefined cin stream object is used to read data from
the standard input device, usually the keyboard. The cin
stream uses the >> operator, usually called the "get from"
operator.
#include<iostream>
using namespace std; // we don't need std:: anymore
int main() {

int i,j; // Two integers are defined
cout << "Give two numbers \n"; // cursor to the new line
cin >> i >> j; // Read i and j from the keyboard
cout << "Sum= " << i + j << "\n";
return 0;

}

116

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

#include <string>
#include <iostream>
using namespace std;
int main() {

string test;
while(test.empty() || test.size() <= 5)
{
cout << "Type a string longer string. " << endl;
cin >> test;

}
printfprintf((““%s%s””,test.c_,test.c_strstr())())

std namespacestd namespace

117

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

The type bool represents boolean (logical) values: true and false

Before bool became part of Standard C++, everyone tended to use different
techniques in order to produce Boolean-like behavior.

These produced portability problems and could introduce subtle errors.

Because there’s a lot of existing code that uses an int to represent a flag, the
compiler will implicitly convert from an int to a bool (nonzero values will
produce true while zero values produce false).

Do not prefer to use integers to produce logical values.
bool is_greater; // Boolean variable: is_greater
is_greater = false; // Assigning a logical value
int a,b;
………………
is_greater = a > b; // Logical operation
if (is_greater) …… // Conditional operation

bool Typebool Type

118

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►In standard C, preprocessor directive #define is used to create
constants: #define PI 3.14
►C++ introduces the concept of a named constant that is just like a
variable, except that its value cannot be changed.
►The modifier const tells the compiler that a name represents a
constant:

const int MAX = 100;
…
MAX = 5; // Compiler Error!

►const can take place before (left) and after (right) the type. They are
always (both) allowed and equivalent.

int const MAX = 100; // The same as const int MAX = 100;
►Decreases error possibilities.
►To make your programs more readable, use uppercase font for
constant identifiers.

constantconstant

119

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

Another usage of the keyword const is seen in the declaration of pointers.
There are three different cases:
a) The data pointed by the pointer is constant, but the pointer itself
however may be changed.

const char *p = "ABC";

p is a pointer variable, which points to chars. The const word may also
be written after the type:

char const *p = "ABC";

Whatever is pointed to by p may not be changed: the chars are declared
as const. The pointer p itself however may be changed.

*p = 'Z'; // Compiler Error! Because data is constant
p++; //OK, because the address in the pointer may change.

Use of constant–1Use of constant–1

120

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

b) The pointer itself is a const pointer which may not be changed.
Whatever data is pointed to by the pointer may be changed.
char * const sp = "ABC"; // Pointer is constant, data may change
*sp = 'Z'; // OK, data is not constant
sp++; // Compiler Error! Because pointer is constant

Use of constant–2Use of constant–2

121

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

c) Neither the pointer nor what it points to may be changed
The same pointer definition may also be written as follows:
char const * const ssp = "ABC";
const char * const ssp = "ABC";
*ssp = 'Z'; // Compiler Error! Because data is constant
ssp++; // Compiler Error! Because pointer is const

►The definition or declaration in which const is used should be read
from the variable or function identifier back to the type identifier:

"ssp is a const pointer to const characters"

Use of constant–3Use of constant–3

122

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►Traditionally, C offers the following cast construction:
(typename) expression

Example: f = (float)i / 2;
Following that, C++ initially also supported the function call style cast
notation:
typename(expression)
Example: Converting an integer value to a floating point value
int i=5;
float f;
f = float(i)/2;

►But, these casts are now called old-style casts, and they are
deprecated. Instead, four new-style casts were introduced.

CastsCasts

123

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►The static_cast<type>(expression) operator is used to convert one
type to an acceptable other type.

int i=5;
float f;
f = static_cast<float>(i)/2;

Casts: static_castCasts: static_cast

124

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

►The const_cast<type>(expression) operator is used to do away with
the const-ness of a (pointer) type.
►In the following example p is a pointer to constant data, and q is a
pointer to non-constant data. So the assignment q = p is not allowed.

const char *p = "ABC"; // p points to constant data
char *q; // data pointed by q may change
q = p; // Compiler Error! Constant data may change

If the programmer wants to do this assignment on purpose then he/she
must use the const_cast operator:

q = const_cast<char *>(p);
*q = 'X'; // Dangerous?

Casts: const_castCasts: const_cast

125

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

The reinterpret_cast<type>(expression) operator is used to reinterpret byte
patterns. For example, the individual bytes making up a structure can easily be
reached using a reinterpret_cast

struct S{ // A structure
int i1,i2; // made of two integers

};
int main(){

S x; // x is of type S
x.i1=1; // fields of x are filled
x.i2=2;
unsigned char *xp; // A pointer to unsigned chars
xp = reinterpret_cast<unsigned char *> (&x);
for (int j=0; j<8; j++) // bytes of x on the screen

std::cout << static_cast<int>(*xp++);
return 0;

}
The structure S is made of two integers (2x4=8 bytes). x is a variable of type S.
Each byte of x can be reached by using the pointer xp.

Casts: reinterpret_castCasts: reinterpret_cast

126

C
++

 A
s a

 B
et

te
r C

2

Object Oriented Programming

The dynamic_cast<>() operator is used in the context of inheritance
and polymorphism. We will see these concepts later. The discussion of
this cast is postponed until the section about polymorphism.
► Using the cast-operators is a dangerous habit, as it suppresses the
normal type-checking mechanism of the compiler.

► It is suggested to prevent casts if at all possible.

► If circumstances arise in which casts have to be used, document the
reasons for their use well in your code, to make double sure that the
cast is not the underlying cause for a program to misbehave.

Casts: dynamic_castCasts: dynamic_cast

127

OO Programming ConceptsOO Programming Concepts3

128

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ContentContent
►OOP Concepts

– Class
• Encapsulation
• Information Hiding

– Inheritance
– Polymorphism

129

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

OOP ConceptsOOP Concepts

►When you approach a programming problem in an object-
oriented language, you no longer ask how the problem
will be divided into functions, but how it will be divided
into objects.

►Thinking in terms of objects rather than functions has a
helpful effect on how easily you can design programs.
Because the real world consists of objects and there is a
close match between objects in the programming sense
and objects in the real world.

130

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

What is an Object?What is an Object?

►Many real-world objects have both a state (characteristics
that can change) and abilities (things they can do).

►Real-world object=State (properties)+ Abilities (behavior)
►Programming objects = Data + Functions
►The match between programming objects and real-world

objects is the result of combining data and member
functions.

►How can we define an object in a C++ program?

131

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Classes and ObjectsClasses and Objects

►Class is a new data type which is used to define objects. A
class serves as a plan, or a template. It specifies what data
and what functions will be included in objects of that
class. Writing a class doesn’t create any objects.

► A class is a description of similar objects.
► Objects are instances of classes.

132

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ExampleExample
A model (class) to define points in a graphics program.
►Points on a plane must have two properties (states):

– x and y coordinates. We can use two integer variables
to represent these properties.

►In our program, points should have the following abilities
(behavior):
– Points can move on the plane: move function
– Points can show their coordinates on the screen: print

function
– Points can answer the question whether they are on the

zero point (0,0) or not: is_zero function

133

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Class Definition: PointClass Definition: Point
class Point { // Declaration of Point Class

int x,y; // Properties: x and y coordinates
public: // We will discuss it later

void move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero(); // is the point on the zero point(0,0)

}; // End of class declaration (Don't forget ;)
►In our example first data and then the function prototypes are written.
►It is also possible to write them in reverse order.
►Data and functions in a class are called members of the class.
►In our example only the prototypes of the functions are written in the
class declaration. The bodies may take place in other parts (in other files)
of the program.
►If the body of a function is written in the class declaration, then this
function is defined as an inline function (macro).

134

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Bodies of Member FunctionsBodies of Member Functions

// A function to move the points
void Point::move(int new_x, int new_y) {

x = new_x; // assigns new value to x coordinate
y = new_y; // assigns new value to y coordinate

}
// To print the coordinates on the screen
void Point::print() {

cout << "X= " << x << ", Y= " << y << endl;
}
// is the point on the zero point(0,0)
bool Point::is_zero() {

return (x == 0) && (y == 0); // if x=0 & y=0 returns true
}

135

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Now we have a model (template) to define point objects.
We can create necessary points (objects) using the model.

int main() {
Point point1, point2; // 2 object are defined: point1 and point2
point1.move(100,50); // point1 moves to (100,50)
point1.print(); // point1's coordinates to the screen
point1.move(20,65); // point1 moves to (20,65)
point1.print(); // point1's coordinates to the screen
if(point1.is_zero()) // is point1 on (0,0)?

cout << "point1 is now on zero point(0,0)" << endl;
else cout << "point1 is NOT on zero point(0,0)" << endl;
point2.move(0,0); // point2 moves to (0,0)
if(point2.is_zero()) // is point2 on (0,0)?

cout << "point2 is now on zero point(0,0)" << endl;
else cout << "point2 is NOT on zero point(0,0)" << endl;
return 0;

}

136

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

class Time {
int hour;
int minute;
int second ;

public:
// Get Functions// Get Functions

intint GetHour(){returnGetHour(){return hour;} ;hour;} ;
intint GetMinute(){returnGetMinute(){return minute;} ;minute;} ;
intint GetSecondGetSecond (){return second;} ;(){return second;} ;

// Set Functions// Set Functions
void SetTime(int h,int m,int s){hour=h;minute=m;second=s;};
void void SetHour(intSetHour(int h){hourh){hour= (h>=0 && h<24) ? h : 0;} ;= (h>=0 && h<24) ? h : 0;} ;
void void SetMinute(intSetMinute(int m){minutem){minute= (m>=0 && m<60) ? m : 0;} ;= (m>=0 && m<60) ? m : 0;} ;
void void SetSecond(intSetSecond(int s){seconds){second= (s>=0 && s<60) ? s : 0;} ;= (s>=0 && s<60) ? s : 0;} ;
void PrintTime();

};

Time

Hour
Minute
Second

SetTime()
GetHour()
GetMinute()
GetSecond()
SetHour()
SetMinute()
SetSecond()
PrintTime()

(f rom Design Model)UML Class Diagram

137

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

C++ TerminologyC++ Terminology
►A class is a grouping of data and functions. A class is very much

like a structure type as used in ANSI-C, it is only a pattern to be
used to create a variable which can be manipulated in a program.

►An object is an instance of a class, which is similar to a variable
defined as an instance of a type. An object is what you actually use
in a program.

►A method (member function) is a function contained within the
class. You will find the functions used within a class often referred
to as methods in programming literature.

►A message is the same thing as a function call. In object oriented
programming, we send messages instead of calling functions. For
the time being, you can think of them as identical. Later we will see
that they are in fact slightly different.

138

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ConclusionConclusion
►Until this slide we have discovered some features of the object-

oriented programming and the C++.
►Our programs consist of object as the real world do.
►Classes are living (active) data types which are used to define

objects. We can send messages (orders) to objects to enable them to
do something.

►Classes include both data and the functions involved with these data
(encapsulation). As the result:

► Software objects are similar to the real world objects,
► Programs are easy to read and understand,
► It is easy to find errors,
► It supports modularity and teamwork.

139

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Defining Methods as inline FunctionsDefining Methods as inline Functions
► In the previous example (Example 3.1), only the prototypes of the

member functions are written in the class declaration. The bodies of
the methods are defined outside the class.

► It is also possible to write bodies of methods in the class. Such
methods are defined as inline functions.

►For example the is_zero method of the Point class can be defined as
an inline function as follows:

class Point{ // Declaration of Point Class
int x,y; // Properties: x and y coordinates

public:
void move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero() bool is_zero() {{ // // is the point on the zero point(0,0) inline functionis the point on the zero point(0,0) inline function

return (x == 0) && (y == 0);return (x == 0) && (y == 0); //// the body of is_zerothe body of is_zero
}}

};

140

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Classes can be used to define variables like built-in data types (int,
float, char etc.) of the compiler.

►For example it is possible to define pointers to objects. In the
example below two pointers to objects of type Point are defined.

int main() {
Point *ptr1 = new Point; // allocating memory for the object pointed by ptr1
Point *ptr2 = new Point; // allocating memory for the object pointed by ptr2
ptr1->move(50, 50); // 'move' message to the object pointed by ptr1
ptr1->print(); //'print' message to the object pointed by ptr1
ptr2->move(100, 150); // 'move' message to the object pointed by ptr2
if(ptr2->is_zero()) // is the object pointed by ptr2 on zero

cout << " Object pointed by ptr2 is on zero." << endl;
else cout << " Object pointed by ptr2 is NOT on zero." << endl;
delete ptr1; // Releasing the memory
delete ptr2;
return 0;

}

Defining Dynamic ObjectsDefining Dynamic Objects

141

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►We may define static and dynamic arrays of objects. In the example
below we see a static array with ten elements of type Point.

►We will see later how to define dynamic arrays of objects.

int main()
{

Point array[10]; // defining an array with ten objects
array[0].move(15, 40); // 'move' message to the first element (indices 0)
array[1].move(75, 35); // 'move' message to the second element (indices 1)

: // message to other elements
for (int i = 0; i < 10; i++) // 'print' message to all objects in the array

array[i].print();
return 0;

}

Defining Array of ObjectsDefining Array of Objects

142

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►We can divide programmers into two groups: class creators (those
who create new data types) and client programmers (the class
consumers who use the data types in their applications).

►The goal of the class creator is to build a class that includes all
necessary properties and abilities. The class should expose only what’s
necessary to the client programmer and keeps everything else hidden.

►The goal of the client programmer is to collect a toolbox full of
classes to use for rapid application development.

►The first reason for access control is to keep client programmers’
hands off portions they shouldn’t touch. The hidden parts are only
necessary for the internal machinations of the data type but not part of
the interface that users need in order to solve their particular
problems.

Controlling Access to MembersControlling Access to Members

143

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Controlling Access to MembersControlling Access to Members

►The second reason for access control is that, if it’s hidden,
the client programmer can’t use it, which means that the
class creator can change the hidden portion at will without
worrying about the impact to anyone else.

►This protection also prevents accidentally changes of
states of objects.

Con’t

144

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►The labels public: , private: (and protected: as we will see
later) are used to control access to a class' data members
and functions.

►Private class members can be accessed only by members
of that class.

►Public members may be accessed by any function in the
program.

►The default access mode for classes is private: After each
label, the mode that was invoked by that label applies until
the next label or until the end of class declaration.

Controlling Access to MembersControlling Access to Members Con’t

145

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Controlling Access to MembersControlling Access to Members

bool is_zero()

void
print()

void
move(int,int)

Interface
public members

xx

yy

private
members

point1.move(100,45) point1.print()

if(point1.is_zero())

Messages

►The primary purpose of public members is to present to the
class's clients a view of the services the class provides.
This set of services forms the public interface of the class.

►The private members are not accessible to the clients of a
class. They form the implementation of the class.

Con’t

146

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

class Point{ // Point Class
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero(); // is the point on the zero point(0,0)

};
// A function to move the points (0,500 x 0,300)
bool Point::move(int new_x, int new_y) {

if(new_x > 0 && new_x < 500 && // if new_x is in 0-500
new_y > 0 && new_y < 300) { // if new_y is in 0-300
x = new_x; // assigns new value to x coordinate
y = new_y; // assigns new value to y coordinate
return true; // input values are accepted

}
return false; // input values are not accepted

}

►Example: We modify the move function of the class Point.
Clients of this class can not move a point outside a window
with a size of 500x300.

147

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

int main() {
Point p1; // p1 object is defined
int x,y; // Two variables to read some values from the keyboard
cout << " Give x and y coordinates “;
cin >> x >> y; // Read two values from the keyboard
if(p1.move(x,y)) // send move message and check the result

p1.print(); // If result is OK print coordinates on the screen
else cout << "\nInput values are not accepted";

}

►The new move function returns a boolean value to inform
the client programmer whether the input values are
accepted or not.

►Here is the main function:

It is not possible to assign a value to x or y directly outside
the class.

p1.x = -10; //ERROR! x is private

148

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

struct Keyword in C++structstruct Keyword in C++

►►classclass and structstruct keywords have very similar meaning in
the C++.

►They both are used to build object models.
►The only difference is their default access mode.
►The default access mode for class is privateprivate
►The default access mode for struct is publicpublic

149

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►A function or an entire class may be declared to be a friend of another
class.

►A friend of a class has the right to access all members (private,
protected or public) of the class.

class A{
friend class B; // Class B is a friend of class A
private: // private members of A

int i;
float f;

public: // public members of A
void fonk1(char *c);

};
class B{ // Class B

int j;
public:

void fonk2(A &s) { cout << s.i; } // B can access private members of A
};

In this example, A is not a
friend of B. A can not access
private members of B.

Friend Functions and Friend ClassesFriend Functions and Friend Classes

150

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►A friend function has the right to access all members
(private, protected or public) of the class.

class Point{ // Point Class
friend void zero(Point &); // A friend function of Point
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero(); // is the point on the zero point(0,0)

};

// Assigns zero to all coordinates
void zero(Point &p) // Not a member of any class
{

p.x = 0; // assign zero to x of p
p.y = 0; // assign zero to y of p

}

Friend Functions and Friend ClassesFriend Functions and Friend Classes Con’t

151

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Each object has its own data space
in the memory of the computer.
When an object is defined,
memory is allocated only for its
data members.

►The code of member functions are
created only once. Each object of
the same class uses the same
function code.

►How does C++ ensure that the proper object is referenced?
►C++ compiler maintains a pointer, called the this pointer.

this Pointerthisthis Pointer

x=100
y=50

point1

x=200
y=300

point2

move

print

is_zero

152

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Point *Point::far_away(Point &p) {
unsigned long x1 = x*x; // x1 = x2

unsigned long y1 = y*y; // y1 = y2

unsigned long x2 = p.x * p.x;
unsigned long y2 = p.y * p.y;
if ((x1+y1) > (x2+y2)) return this; // Object returns its address

else return &p; // The address of the incoming object
}

►A C++ compiler defines an object pointer this. When a member
function is called, this pointer contains the address of the object, for
which the function is invoked. So member functions can access the
data members using the pointer this.

►Programmers also can use this pointer in their programs.
►Example: We add a new function to Point class: far_away.
This function will return the address of the object that has the largest

distance from (0,0).

153

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

class Point{ // Point Class
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points

: // other methods are omitted
};
// A function to move the points (0,500 x 0,300)
bool Point::move(int x, int y) // paramters has the same name as
{ // data members x and y

if(x > 0 && x < 500 && // if given x is in 0-500
y > 0 && y < 300) { // if given y is in 0-300
this->x = x; // assigns given x value to member x
this->y = y; // assigns given y value to memeber y
return true; // input values are accepted

}
return false; // input values are not accepted

}

► this pointer can also be used in the methods if a parameter of the method
has the same name as one of the members of the class.

154

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

SummarySummary

data

text
stack

heap

main()

Process Model
Point o;

o

S

o.move(1,1);

155

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

SummarySummary

data

text
stack

heap

main()

Process Model
Point *p;

p

S

?

156

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

SummarySummary

p->move(1,1);
data

text
stack

heap

main()

Process Model Point *p;

p

S
p= new Point();

H

(*p).move(1,1);

157

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

SummarySummary

p[1].move(1,1);

Point p[10];

p

S

move(1,1)

158

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

SummarySummary

p[1].move(1,1);

Point *p;

H

move(1,1)

p= new Point[10];p

(*(p+1)).move(1,1);

(p+1)->move(1,1);

159

Initializing and Finalizing Initializing and Finalizing
ObjectsObjects4

160

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

ContentContent
►Constructors

– Default Constructor
– Copy Constructor

►Destructor

161

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The class designer can guarantee initialization of every
object by providing a special member function called the
constructor.

►The constructor is invoked automatically each time an
object of that class is created (instantiated).

►These functions are used to (for example) assign initial
values to the data members, open files, establish
connection to a remote computer etc.

►The constructor can take parameters as needed, but it
cannot have a return value (even not void).

Initializing Objects: ConstructorsInitializing Objects: Constructors

162

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Initializing Objects: ConstructorsInitializing Objects: Constructors
►The constructor has the same name as the class itself.
►Constructors are generally public members of a class.
►There are different types of constructors.
►For example, a constructor that defaults all its arguments

or requires no arguments, i.e. a constructor that can be
invoked with no arguments is called default constructor.

►In this section we will discuss different kinds of
constructors.

163

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A constructor that defaults all its arguments or requires no
arguments, i.e. a constructor that can be invoked with no
arguments.

class Point{ // Declaration Point Class
int x,y; // Properties: x and y coordinates

public:
Point(); // Declaration of the default constructor
bool move(int, int); // A function to move points
void print(); // to print coordinates on the screen

};

Point::Point() { // Default Constructor
cout << "Constructor is called..." << endl;
x = 0; // Assigns zero to coordinates
y = 0;

}

int main() {
Point p1, p2; // Default construct is called 2 times
Point *pp = new Point; // Default construct is called once

Default ConstructorsDefault Constructors

164

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Like other member functions, constructors may also have
parameters.

►Users of the class (client programmer) must supply constructors
with necessary arguments.

class Point{ // Declaration Point Class
int x,y; // Properties: x and y coordinates

public:
Point(int, int); // Declaration of the constructor
bool move(int, int); // A function to move points
void print(); // to print coordinates on the screen

};

►This declaration shows that the users of the Point class have to give
two integer arguments while defining objects of that class.

Constructors with ParametersConstructors with Parameters

165

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Point::Point(int x_first, int y_first) {
cout << "Constructor is called..." << endl;
if (x_first < 0) // If the given value is negative

x = 0; // Assigns zero to x
else

x = x_first;
if (y_first < 0) // If the given value is negative

y = 0; // Assigns zero to x
else

y = y_first;
}
// -------- Main Program -------------
int main() {

Point p1(20, 100), p2(-10, 45); // Construct is called 2 times
Point *pp = new Point(10, 50); // Construct is called once
Point p3; // ERROR! There is not a default constructor
:

}

Example: Constructors with ParametersExample: Constructors with Parameters

166

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Constructors parameters may have default values
class Point{

public:
Point(int x_first = 0, int y_first = 0);
:

};
Point::Point(int x_first, int y_first) {

if (x_first < 0) // If the given value is negative
x = 0; // Assigns zero to x

else x = x_first;
if (y_first < 0) // If the given value is negative

y = 0; // Assigns zero to x
else y = y_first;

}

►Now, client of the class can create objects
Point p1(15,75); // x=15, y=75
Point p2(100); // x=100, y=0

►This function can be also used as a default constructor
Point p3; // x=0, y=0

Constructor Parameters with Default ValuesConstructor Parameters with Default Values

167

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The rules of function overloading is also valid for constructors. So, a
class may have more than one constructor with different type of
input parameters.
Point::Point() { // Default constructor

............... // Body is not important
}

Point::Point(int x_first, int y_first) { // A constructor with parameters
................. // Body is not important

}

►Now, the client programmer can define objects in different ways:
Point p1; // Default constructor is called
Point p2(30, 10); // Constructor with parameters is called

►The following statement causes an compiler error, because the class
does not include a constructor with only one parameter.

Point p3(10); //ERROR! There isn't a constructor with one parameter

Multiple ConstructorsMultiple Constructors

168

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►When an array of objects is created, the default
constructor of the class is invoked for each element (object)
of the array one time.

Point array[10]; // Default constructor is called 10 times
►To invoke a constructor with arguments, a list of initial
values should be used.
►To invoke a constructor with more than one arguments, its
name must be given in the list of initial values, to make the
program more readable.

Initializing Arrays of ObjectsInitializing Arrays of Objects

169

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Initializing Arrays of ObjectsInitializing Arrays of Objects
►// Constructor
Point(int x_first, int y_first = 0) { }
// Can be called with one or two args
►// Array of Points
Point array[]= { {10} , {20} , Point(30,40) };
►Three objects of type Point has been created and the

constructor has been invoked three times with different
arguments.
Objects: Arguments:
array[0] x_first = 10 , y_first = 0
array[1] x_first = 20 , y_first = 0
array[2] x_first = 30 , y_first = 40

Con’t

170

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►If the class has also a default constructor the programmer may
define an array of objects as follows:
Point array[5]= { {10} , {20} , Point(30,40) };

►Here, an array with 5 elements has been defined, but the list of
initial values contains only 3 values, which are sent as
arguments to the constructors of the first three elements. For
the last two elements, the default constructor is called.

►To call the default constructor for an object, which is not at the
end of the array
Point array[5]= { {10} , {20}, Point() , Point(30,40) };

►Here, for objects array[2] and array[4] the default constructor is
invoked.
Point array[5]= { {10} , {20} , , Point(30,40) }; // ERROR!

Initializing Arrays of ObjectsInitializing Arrays of Objects Con’t

171

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Constructor InitializersConstructor Initializers
►Instead of assignment statements constructor initializers can be used
to initialize data members of an object.
►Specially, to assign initial value to a constant member using the
constructor initializer is the only way.
►Consider the class:

class C{
const int CI;
int x;

public:
C() {

x = 0;
CI = 0;

}
};

class C{
const int CI = 10 ;
int x;

};

172

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

SolutionSolution
The solution is to use a constructor initializer. class C{

const int CI;
int x;

public:
C() : CI(0) {

x = -2;
}

};

All data members of a class
can be initialized by using
constructor initializers.

class C{
const int CI;
int x;

public:
C(int a) : CI(0), x (a)
{ }

};

173

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The destructor is very similar to the constructor except
that it is called automatically
1. when each of the objects goes out of scope or
2. a dynamic object is deleted from memory by using the

delete operator.
►A destructor is characterized as having the same name as

the class but with a tilde ‘~’ preceded to the class name.
►A destructor has no return type and receives no

parameters.
►A class may have only one destructor.

DestructorsDestructors

174

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

ExampleExample
class String{

int size; // Length (number of chars) of the string
char *contents; // Contents of the string

public:
String(const char *); // Constructor
void print(); // An ordinary member function
~String~String(); // Destructor

};
►Actually, the standard library of C++ contains a string

class. Programmers don't need to write their own string
class. We write this class only to show some concepts.

175

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

String::String(const char *in_data) {
cout<< "Constructor has been invoked" << endl;
size = strlen(in_data); // strlen is a function of the cstring library
contents = new char[size +1]; // +1 for null ('\0') character
strcpy(contents, in_data); // input_data is copied to the contents

}
void String::print() {

cout << contents << " " << size << endl;
}
// Destructor: Memory pointed by contents is given back
String::~String() {

cout << "Destructor has been invoked" << endl;
delete[] contents;

}

// Constructor : copies the input character array that terminates with a null character
// to the contents of the string

int main() {
String string1("string 1");
String string2("string 2");
string1.print();
string2.print();
return 0; // destructor is called twice

}

176

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

► It is a special type of constructors and used to copy the contents of
an object to a new object during construction of that new object.

►The type of its input parameter is a reference to objects of the same
type. It takes as argument a reference to the object that will be
copied into the new object.

►The copy constructor is generated automatically by the compiler if
the class author fails to define one.

► If the compiler generates it, it will simply copy the contents of the
original into the new object as a byte by byte copy.

►For simple classes with no pointers, that is usually sufficient, but if
there is a pointer as a class member so a byte by byte copy would
copy the pointer from one to the other and they would both be
pointing to the same allocated member.

Copy ConstructorCopy Constructor

177

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Copy ConstructorCopy Constructor
►For example the copy constructor, generated by the

compiler for the String class will do the following job:

Existing object

size

contents

The new object

8

0x008d0080

size:

contents:

8

0x008d0080

s t r i n g 1 \0

Shallow CopyShallow Copy

Con’t

178

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The copy constructor, generated by the compiler can not copy the
memory locations pointed by the member pointers.

►The programmer must write its own copy constructor to perform these
operations.

Copy ConstructorCopy Constructor Con’t

The new object

size8

0x00ef0080

s
t
r
i
n
g

1
\0

Existing object

size:

contents:

8

0x008d0080

s
t
r
i
n
g

1
\0

Deep CopyDeep Copy

179

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class String {
int size;
char *contents;

public:
String(const char *); // Constructor
String(const String &); // Copy Constructor
void print(); // Prints the string on the screen
~String(); // Destructor

};

String::String(const String &object_in) { // Copy Constructor
cout<< "Copy Constructor has been invoked" << endl;
size = object_in.size;
contents = new char[size + 1]; // +1 for null character
strcpy(contents, object_in.contents);

}

int main() {
String my_string("string 1");
my_string.print();
String other = my_string; // Copy constructor is invoked
String more(my_string); // Copy constructor is invoked

Example: The copy constructor of the String classExample: The copy constructor of the String class

180

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The programmer may use the keyword const to specify that an
object is not modifiable.

►Any attempt to modify (to change the attributes) directly or
indirectly (by calling a function) causes a compiler error.

►C++ compilers totally disallow any member function calls for
const objects. The programmer may declare some functions as
const, which do not modify any data of the object. Only const
functions can operate on const objects.

Constant Objects and Const Member FunctionsConstant Objects and Const Member Functions

const TComplex cz(0,1); // constant object

void print() const // constant method
{
cout << “complex number= “ << real << “, “ << img;

}

181

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A const method can invoke only other const methods, because a
const method is not allowed to alter an object's state either
directly or indirectly, that is, by invoking some nonconst
method.

// -------- Main Program -------------
int main()
{

const Point cp(10,20); // constant point
Point ncp(0,50); // non-constant point
cp.print(); // OK. Const function operates on const object
cp.move(30,15); // ERROR! Non-const function on const object
ncp.move(100,45); // OK. ncp is non-const
return 0;

}

// Constant function: It prints the coordinates on the screen
void Point::print() const
{

cout << "X= " << x << ", Y= " << y << endl;
}

182

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

int main() {
const TComplex cz(0,1); // constant object
TComplex ncz(1.2,0.5) // non-constant object
cz.print(); // OK
cz.reset(); // Error !!!
ncz.reset(); // OK

}

class TComplex{
float real,img;

public:
TComplex(float, float); // constructor
void print() const; // const method
void reset() {real=img=0;} // non-const method

};

void TComplex::print() const { // const method
std::cout << “complex number= “ << real << “, “ << img;

}

TComplex::TComplex(float r=0,float i=0){
real=r;
img=i;

}

183

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Normally, each object of a class has its own copy of all
data members of the class.

►In certain cases only one copy of a particular data member
should be shared by all objects of a class. A static data
member is used for this reason.

class A{
char c;
static int i;

};

int main()
{

A p, q, r;
:

}

int i
static

char c

Object p

char c

Object q

char c

Object r

static Class Membersstaticstatic Class Members

184

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

static Class Membersstaticstatic Class Members
►Static data members exist even no objects of that class

exist.
►Static data members can be public or private.
►To access public static data when no objects exist use the

class name and binary scope resolution operator.
for example A::i= 5;

►To access private static data when no objects exist, a
public static member function must be provided.

►They must be initialized once (and only once) at file
scope.

185

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class A {

char c;

static int count; // Number of created objects (static data)

public:

static void GetCount(){return count;}

A(){count ++; std::cout<< std::endl << "Constructor “ << count;}

~A(){count--; std::cout<< std::endl << "Destructor “ << count;}

};

int A::count=0; // Allocating memory for number

186

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

int main(){

std::cout<<"\n Entering 1. BLOCK............";

A a,b,c;

{

std::cout<<"\n Entering 2. BLOCK............";

A d,e;

std::cout<<"\n Exiting 2. BLOCK............";

}

std::cout<<"\n Exiting 1. BLOCK............";

}

187

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Entering 1. BLOCK............
Constructor 1
Constructor 2
Constructor 3
Entering 2. BLOCK............
Constructor 4
Constructor 5
Exiting 2. BLOCK............
Destructor 5
Destructor 4
Exiting 1. BLOCK............
Destructor 3
Destructor 2
Destructor 1

188

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Objects should be passed or returned by reference unless there are
compelling reasons to pass or return them by value.

►Passing or returning by value can be especially inefficient in the case
of objects. Recall that the object passed or returned by value must be
copied into stack and the data may be large, which thus wastes storage.
The copying itself takes time.

► If the class contains a copy constructor the compiler uses this function
to copy the object into stack.

►We should pass the argument by reference because we don’t want an
unnecessary copy of it to be created. Then, to prevent the function
from accidentally modifying the original object, we make the
parameter a const reference.
ComplexT & ComplexT::add(const ComplexT& z) {

ComplexT result; // local object
result.re = re + z.re;
result.im = im + z.im;
return result; // ERROR!

}

Remember, local
variables can not be
returned by reference.

Passing Objects to Functions as ArgumentsPassing Objects to Functions as Arguments

189

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The only object that’s created is the return value in stack, which is
always necessary when returning by value.

►This could be a better approach, if creating and destroying individual
member data items is faster than creating and destroying a complete
object.

ComplexT ComplexT::add(const ComplexT& c) {
double re_new,im_new;
re_new = re + c.re;
im_new = im + c.im;
return ComplexT(re_new,im_new); // Constructor is called

}

► In the previous example, within the add function a temporary object
is defined to add two complex numbers.

►Because of this object, constructor and destructor are called.
►Avoiding the creation of a temporary object within add() saves time

and memory space.

Avoiding Temporary ObjectsAvoiding Temporary Objects

190

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A class may include objects of other classes as its data
members.

►In the example, a class is designed (ComplexFrac) to
define complex numbers. The data members of this class
are fractions which are objects of another class (Fraction).

re

im

constructor
print()

ComplexFrac

numerator
denominator

constructor
print()Fraction

numerator
denominator

numerator
denominator

Nesting Objects: Classes as Members of Other ClassesNesting Objects: Classes as Members of Other Classes

Composition

191

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Composition & AggregationComposition & Aggregation

►The relation between Fraction and ComplexFrac is called
"has a relation". Here, ComplexFrac has a Fraction
(actually two Fractions).

►Here, the author of the class ComplexFrac has to supply
the constructors of its object members (re , im) with
necessary arguments.

►Member objects are constructed in the order in which they
are declared and before their enclosing class objects are
constructed.

192

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class Fraction { // A class to define fractions
int numerator, denominator;

public:
Fraction(int, int); // CONSTRUCTOR
void print() const;

};

Fraction::Fraction(int num, int denom) { // CONSTRUCTOR
numerator = num;
if (denom==0) denominator = 1;
else denominator = denom;

cout << "Constructor of Fraction" << endl;
}
void Fraction::print() const {

cout << numerator << "/" << denominator << endl;
}

►Example: A class to define fractions

193

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class ComplexFrac { // Complex numbers, real and imag. parts are fractions
Fraction re, im; // objects as data members of another class

public:
ComplexFrac(int,int); // Constructor
void print() const;

};

ComplexFrac::ComplexFrac(int re_in, int im_in) : re(re_in, 1) , im(im_in, 1)
{

:
}
void ComplexFrac::print() const {

re.print();
im.print();

}
int main() {

ComplexFrac cf(2,5);
cf.print();
return 0;

}

Data members are initialized

When an object goes out of scope, the
destructors are called in reverse order:
The enclosing object is destroyed first,
then the member (inner) object.

Example: A class to define complex numbers. It contains two objects as
members

194

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►It is a good way to write each class or a collection of
related classes in separate files.

►It provides managing the complexity of the software and
reusability of classes in new projects.

Working with Multiple Files
(Separate Compilation)

Working with Multiple Files
(Separate Compilation)

195

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Working with Multiple FilesWorking with Multiple Files

header header header

C++
source

object

C++
source

objectlibrary

executable

COMPILER

LINKER

object

Only declarations

Definitions

196

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►When using separate compilation you need some way to
automatically compile each file and to tell the linker to build all the
pieces along with the appropriate libraries and startup code into an
executable file.

►The solution, developed on Unix but available everywhere in some
form, is a program called makemake.

►Compiler vendors have also created their own project building tools.
These tools ask you which files are in your project and determine all
the relationships themselves. These tools use something similar to a
makefile, generally called a project file, but the programming
environment maintains this file so you don’t have to worry about it.

►The configuration and use of project files varies from one
development environment to another, so you must find the
appropriate documentation on how to use them (although project file
tools provided by compiler vendors are usually so simple to use that
you can learn them by playing around).

►We will write the example e410.cpp about fractions and complex
numbers again. Now we will put the class for fractions and complex
numbers in separate files.

197

Operator OverloadingOperator Overloading5

198

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►It is possible to overload the built-in C++ operators such
as +, >=, and ++ so that they invoke different functions,
depending on their operands.

►►aa++bb will call one function if aa and bb are integers, but will
call a different function if aa and bb are objects of a class.

►Operator overloading makes your program easiereasier to write
and to understand.

►Overloading does not actually add any capabilities to C++.
Everything you can do with an overloaded operator you
can also do with a function.

►However, overloaded operators make your programs
easier to write, read, and maintain.

Operator OverloadingOperator Overloading

199

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Operator OverloadingOperator Overloading

►Operator overloading is only another way of calling a
function.

►You have no reason to overload an operator except if it
will make the code involving your class easier to write and
especially easier to read.

►Remember that code is read much more than it is written

200

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►You can’t overload operators that don’t already exist in
C++. You can overload only the built-in operators.

►You can not overload the following operators
. .
**
-->>
,,
::::
?:?:
sizeofsizeof

LimitationsLimitations

201

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

LimitationsLimitations

►The C++ operators can be divided roughly into binary and
unary. Binary operators take two arguments. Examples are
a+b, a-b, a/b, and so on. Unary operators take only one
argument: -a, ++a, a--.

►If a built-in operator is binary, then all overloads of it
remain binary. It is also true for unary operators.

►Operator precedence and syntax (number of arguments)
cannot be changed through overloading.

►All the operators used in expressions that contain only
built-in data types cannot be changed. At least one
operand must be of a user defined type (class).

202

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the + operator for ComplexTOverloading the + operator for ComplexT
/* A class to define complex numbers */
class TComplex {

float real,img;
public:

: // Member functions
TComplex operator+(TComplex&); // header of operator+

function
};
/* The Body of the function for operator + */
TComplex TComplex::operator+(TComplex& z) {

TComplex result;
result.real = real + z.real;
result.img = img + z.img;
return result;

}

int main() {
TComplex z1,z2,z3;
: // Other operations
z3=z1+z2; like z3 = z1.operator+(z2);

}

203

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Because assigning an object to another object of the same
type is an activity most people expect to be possible, the
compiler will automatically create a type::operator=(const
type &) if you don’t make one.

►The behavior of this operator is member wise assignment.
It assigns (copies) each member of an object to members
of another object. (Shallow Copy)

►If this operation is sufficient you don't need to overload
the assignment operator. For example, overloading of
assignment operator for complex numbers is not
necessary.

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

204

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

void ComplexT::operator=(const ComplexT& z)
{

re = z.re;
im = z.im;

}

►You don't need to write such an assignment operator
function, because the operator provided by the compiler
does the same thing.

205

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►In general, you don’t want to let the compiler do this for
you.

►With classes of any sophistication (especially if they
contain pointers!) you want to explicitly create an
operator=.

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

206

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

ExampleExample
class string {

int size;
char *contents;

public:
void operator=(const string &); // assignment operator
: // Other methods

};
void string::operator=(const string &s)
{

size = s.size;
delete []contents;
contents = new char[size+1];
strcpy(contents, s.contents);

}

207

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

a
b
c
\0

3

0x00185d12

Destination objectDestination object

sizesize

contentscontents

8

0x008d0080

s
t
r
i
n
g

1
\0

Source objectSource object

sizesize

contents:contents:

8

0x008d0080

XX

Data is still wasting
memory space.

Operator Provided by the CompilerOperator Provided by the Compiler

208

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

a
b
c
\0

3

0x00185d12

Destination objectDestination object
sizesize

contentscontents

8

0x00ef0080

s
t
r
i
n
g

1
\0

Source objectSource object
sizesize

contentscontents

8

0x008d0080

s
t
r
i
n
g

1
\0

X

Operator of the ProgrammerOperator of the Programmer

209

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►When there’s a void return value, you can’t chain the
assignment operator (as in a = b = c).

►To fix this, the assignment operator must return a reference
to the object that called the operator function (its address).
// Assignment operator , can be chained as in a = b = c
const String& String::operator=(const String &in_object) {

if (size != in_object.size){ // if the sizes of the source and destination
size = in_object.size; // objects are different
delete [] contents; // The old contents is deleted
contents = new char[size+1]; // Memory allocation for the new contents

}
strcpy(contents, in_object.contents);
return *this; // returns a reference to the object

}

Return value of the assignment operatorReturn value of the assignment operator

210

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Copy Constructor vs. Assignment OperatorCopy Constructor vs. Assignment Operator

►The difference between the assignment operator and the
copy constructor is that the copy constructor actually
creates a new object before copying data from another
object into it, whereas the assignment operator copies data
into an already existing object.

211

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Copy Constructor vs. Assignment OperatorCopy Constructor vs. Assignment Operator

►A a;
►A b(a);
►b=a;
►A c=a;

212

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Unary operators operate on a single operand. Examples are the
increment (++) and decrement (--) operators; the unary minus, as in -5;
and the logical not (!) operator.

►Unary operators take no arguments, they operate on the object for
which they were called. Normally, this operator appears on the left
side of the object, as in !obj, -obj, and ++obj.

int main() {
ComplexT z(1.2, 0.5);
++z; // operator++ function is called
z.print();
return 0;

}

Example: We define ++ operator for class ComplexT to increment the
real part of the complex number by 0.1 .

Overloading Unary OperatorsOverloading Unary Operators

void ComplexT::operator++() {
re=re+0.1;

}

213

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// ++ operator
// increments the real part of a complex number by 0.1
const ComplexT & ComplexT::operator++() {

re=re+0.1;
return *this;

}
int main() {

ComplexT z1(1.2, 0.5), z2;
z2 = ++z1; //++ operator is called, incremented value is assigned to z2
z2.print();
return 0;

}

►To be able to assign the incremented value to a new object,
the operator function must return a reference to the object.

214

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Same rules apply to all operators. So we don’t need to
discuss each operator. However, we will examine some
interesting operators.
►One of the interesting operators is the subscript operator.
►It can be declared in two different ways:

class C {
returntype & operator [] (paramtype);

or
const returntype & operator [] (paramtype) const;

};

Overloading the “[]” OperatorOverloading the “[]” Operator

215

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the “[]” OperatorOverloading the “[]” Operator
►The first declaration can be used when the overloaded
subscript operator modifies the object. The second
declaration is used with a const object; in this case, the
overloaded subscript operator can access but not modify the
object.

If cc is an object of class C, the expression
cc[i]
is interpreted as
cc.operator[](i)

216

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// Subscript operator
char & String::operator[](int i) {

if(i < 0)
return contents[0]; // return first character

if(i >= size)
return contents[size-1]; // return last character

return contents[i]; // return i th character
}
int main() {

String s1("String 1");
s1[1] = 'p'; // modifies an element of the contents
s1.print();
cout << " 5 th character of the string s1 is: " << s1[5] << endl;
return 0;

}

►Example: Overloading of the subscript operator for the String
class. The operator will be used to access the iithth character of the
string. If ii is less the zero then the first character and if ii is greater
than the sizesize of the string the last character will be accessed.

217

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

The function call operator is unique in that it allows any number of
arguments.
class C{

returntype operator () (paramtypes);
};

If c is an object of class C, the expression
c(i, j, k) is interpreted as
c.operator()(i, j, k)

// The function call operator without any argument, it prints a complex number
void ComplexT::operator()() const {

cout << re << " , " << im << endl ;
}

Example: The function call operator is overloaded to print complex
numbers on the screen. In this example the function call operator does
not take any arguments.

Overloading the “()” OperatorOverloading the “()” Operator

218

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// The function call operator with two arguments
void String::operator()(char * dest, int num) const {

if (num > size) num=size; // if num is greater the size of the string
for (int k=0; k < num; k++) dest[k]=contents[k];

}

int main() {
String s1("Example Program");
char * c = new char[8]; // Destination memory
s1(c,7); // First 7 letters of string1 are copied into c
c[7] = '\0'; // End of string (null) character
cout << c;
delete [] c;
return 0;

}

Example: The function call operator is overloaded to copy a
part of the contents of a string into a given memory location.
In this example the function call operator takes two arguments:
the address of the destination memory and the numbers of
characters to copy.

219

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Recall that ++ and -- operators come in “pre” and “post”
form.
►If these operators are used with an assignment statement
than different forms has different meanings.

z2= ++ z1; // preincrement
z2 = z1++; // postincrement

►The declaration, operator ++ () with no parameters
overloads the preincrementpreincrement operator.
►The declaration, operator ++ (int) with a single int
parameter overloads the postincrementpostincrement operator. Here, the
int parameter serves to distinguish the postincrement form
from the preincrement form. This parameter is not used.

"Pre" and "post" form of operators ++ and --"Pre" and "post" form of operators ++ and --

220

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Post-Increment OperatorPost-Increment Operator

// postincrement operator
ComplexT ComplexT::operator++(int) {

ComplexT temp;
temp = *this; // old value (original objects)
re= re + 0.1; // increment the real part
return temp; // return old value

}

221

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Pre-Increment OperatorPre-Increment Operator

// postincrement operator
ComplexT ComplexT::operator++() {

re= re + 0.1; // increment the real part
return *this; // return old value

}

222

InheritanceInheritance6

223

In
he

rit
an

ce
6

Object Oriented Programming

ContentContent

►Inheritance
►Reusability in Object-Oriented Programming
►Redefining Members (Name Hiding)
►Overloading vs. Overriding
►Access Control
►Public and Private Inheritance
►Constructor, Destructor and Assignment Operator in

Inheritance
►Multiple Inheritance
►Composition vs Inheritance

224

In
he

rit
an

ce
6

Object Oriented Programming

►Inheritance is one of the ways in object-oriented
programming that makes reusability possible.

►Reusability means taking an existing class and using it in
a new programming situation.

►By reusing classes, you can reduce the time and effort
needed to develop a program, and make software more
robust and reliable.

InheritanceInheritance

225

In
he

rit
an

ce
6

Object Oriented Programming

InheritanceInheritance

History
►The earliest approach to reusability was simply rewriting

existing code. You have some code that works in an old
program, but doesn’t do quite what you want in a new
project.

►You paste the old code into your new source file, make a
few modifications to adapt it to the new environment.
Now you must debug the code all over again. Often you’re
sorry you didn’t just write new code.

226

In
he

rit
an

ce
6

Object Oriented Programming

InheritanceInheritance
►To reduce the bugs introduced by modification of code,

programmers attempted to create self-sufficient program
elements in the form of functions.

►Function libraries were a step in the right direction, but,
functions don’t model the real world very well, because
they don’t include important data.

►All too often, functions require modification to work in a
new environment.

►But again, the modifications introduce bugs.

227

In
he

rit
an

ce
6

Object Oriented Programming

►A powerful new approach to reusability appears in object-
oriented programming is the class library. Because a class
more closely models a real-world entity, it needs less
modification than functions do to adapt it to a new
situation.

►Once a class has been created and tested, it should
(ideally) represent a useful unit of code.

►This code can be used in different ways again.

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

228

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

1. The simplest way to reuse a class is to just use an object
of that class directly. The standard library of the C++ has
many useful classes and objects.
– For example, cin and cout are such built in objects.

Another useful class is string , which is used very
often in C++ programs.

229

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

2. The second way to reuse a class is to place an object of
that class inside a new class.
– We call this “creating a member object.”
– Your new class can be made up of any number and

type of other objects, in any combination that you need
to achieve the functionality desired in your new class.

– Because you are composing a new class from existing
classes, this concept is called composition (or more
generally, aggregation). Composition is often referred
to as a “has-a” relationship.

230

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

3. The third way to reuse a class is inheritance, which is
described next. Inheritance is referred to as a "is a" or "a
kind of" relationship.

231

In
he

rit
an

ce
6

Object Oriented Programming

►While a character array can be fairly useful, it is quite
limited. It’s simply a group of characters in memory, but if
you want to do anything with it you must manage all the
little details.

►The Standard C++ string class is designed to take care of
(and hide) all the low-level manipulations of character
arrays that were previously required of the C programmer.

►To use strings you include the C++ header file <string>.
►Because of operator overloading, the syntax for using

strings is quite intuitive (natural).

stringstringstring

232

In
he

rit
an

ce
6

Object Oriented Programming

stringstringstring

#include <string> // Standard header file of C++ (inc. string class)
#include <iostream>
using namespace std;
int main() {

string s1, s2; // Empty strings
string s3 = "Hello, World."; // Initialized
string s4("I am"); // Also initialized
s2 = "Today"; // Assigning to a string
s1 = s3 + " " + s4; // Combining strings
s1 += " 20 "; // Appending to a string
cout << s1 + s2 + "!" << endl;
return 0;

}

233

In
he

rit
an

ce
6

Object Oriented Programming

►The first two strings, s1 and s2, start out empty, while s3 and s4
show two equivalent ways to initialize string objects from character
arrays (you can just as easily initialize string objects from other
string objects).

►You can assign to any string object using ‘=’. This replaces the
previous contents of the string with whatever is on the right-hand
side, and you don’t have to worry about what happens to the
previous contents – that’s handled automatically for you.

►To combine strings you simply use the ‘+’ operator, which also
allows you to combine character arrays with strings. If you want to
append either a string or a character array to another string, you can
use the operator ‘+=’.

►Finally, note that cout already knows what to do with strings, so you
can just send a string (or an expression that produces a string, which
happens with

► s1 + s2 + "!" directly to cout in order to print it.

stringstringstring

234

In
he

rit
an

ce
6

Object Oriented Programming

►OOP provides a way to modify a class without changing
its code.

►This is achieved by using inheritance to derive a new class
from the old one.

►The old class (called the base classbase class) is not modified, but
the new class (the derived classderived class) can use all the features of
the old one and additional features of its own.

InheritanceInheritance

235

In
he

rit
an

ce
6

Object Oriented Programming

"is a" Relationship"is a" Relationship

►We know that PCs, Macintoshes and Cray are kinds of
computers; a worker, a section manager and general
manager are kinds of employee.

►If there is a "kind of" relation between two objects then
we can derive one from other using the inheritance.

236

In
he

rit
an

ce
6

Object Oriented Programming

Inheritance SyntaxInheritance Syntax

►The simplest example of inheritance requires two classes:
a base class and a derived class.

►The base class does not need any special syntax. The
derived class, on the other hand, must indicate that it’s
derived from the base class.

►This is done by placing a colon after the name of the
derived class, followed by a keyword such as public and
then the base class name.

237

In
he

rit
an

ce
6

Object Oriented Programming

►Example: Modeling teachers and the principal (director) in
a school.

►First, assume that we have a class to define teachers, then
we can use this class to model the principal. Because the
principal is a teacher.
class TeacherTeacher { // Base class
private: // means public for derived class members

string name;
int age, numberOfStudents;

public:
void setName (const string & new_name){ name = new_name; }

};
class PrincipalPrincipal : public Teacher Teacher { // Derived class

string schoolName; // Additional members
int numberOfTeachers;

public:
void setSchool(const string & s_name){ schoolName = s_name; }

};

238

In
he

rit
an

ce
6

Object Oriented Programming

int main() {
Teacher t1;
Principal p1;
p1.setName(" Principal 1");
t1.setName(" Teacher 1");
p1.setSchool(" Elementary School");
return 0;

}

principal (derived class)

schoolName
numberOfTeachers
setSchool(string)

teacher (base class)
Name,
Age,
numberOfStudents
setName(string)

principal is ais a teacher

239

In
he

rit
an

ce
6

Object Oriented Programming

►Some members (data or function) of the base class may not
suitable for the derived class. These members should be
redefined in the derived class.

►For example, assume that the Teacher class has a print
function that prints properties of teachers on the screen.

►But this function is not sufficient for the class Principal,
because principals have more properties to be printed. So
the print function must be redefined.

Redefining Members (Name Hiding)Redefining Members (Name Hiding)

240

In
he

rit
an

ce
6

Object Oriented Programming

Redefining MembersRedefining Members

class Teacher{ // Base class
protected:
string name;
int age, numOfStudents;

public:
void setName (const string & new_name) { name = new_name; }
void print() const;

};

void Teacher::print() const { // Print method of Teacher class
cout << "Name: " << name<< " Age: " << age << endl;
cout << "Number of Students: " << numOfStudents << endl;

}

241

In
he

rit
an

ce
6

Object Oriented Programming

class Principal : public Teacher{ // Derived class
string school_name;
int numOfTeachers;

public:
void setSchool(const string & s_name) { school_name = s_name; }
void print() const; // Print function of Principal class

};

void Principal::print() const { // Print method of principal class
cout << "Name: " << name << " Age: " << age << endl;
cout << "Number of Students: " << numOfStudents << endl;
cout << "Name of the school: " << school_name << endl;

}

►print() function of the Principal class overrides (hides) the
print() function of the Teacher class.

242

In
he

rit
an

ce
6

Object Oriented Programming

Redefining MembersRedefining Members

void Principal::print() const { // Print method of Principal class
Teacher::print(); // invokes the print function of the teacher class
cout << "Name of the school: " << school_name << endl;

}

►Now the Principal class has two print() functions. The
members of the base class can be accessed by using the
scope operator (::).

243

In
he

rit
an

ce
6

Object Oriented Programming

►If you modify the signature and/or the return type of a
member function from the base class then the derived class
has two member functions with the same name. But this is
not overloading, it is overriding.
►If the author of the derived class redefines a member
function, it means he or she changes the interface of the base
class. In this case the member function of the base class is
hidden.

Overloading vs. OverridingOverloading vs. Overriding

244

In
he

rit
an

ce
6

Object Oriented Programming

class A{
public:

int ia1,ia2;
void fa1();
int fa2(int);

};

class B: public A{
public:
float ia1; // overrides ia1
float fa1(float); // overrides fa1

};

ExampleExample

int main(){
B b;

b.ia1=4; // B::ia1

float y=b.fa1(3.14); // B::fa1
b.fa1(); // ERROR fa1 function in B hides the function of A
b.A::fa1(); // OK
b.A::ia1=1; // OK

}

int j=b.fa2(1);

b.ia2=3; // A::ia2 if ia2 is public in A

example14.cpp

245

In
he

rit
an

ce
6

Object Oriented Programming

ExampleExample

3

4

b
A::ia1

A::ia2

B::ia1

b.ia1=4;
b.ia2=3;

246

In
he

rit
an

ce
6

Object Oriented Programming

►Remember, when inheritance is not involved, class member
functions have access to anything in the class, whether public or
private, but objects of that class have access only to public members.
►Once inheritance enters the picture, other access possibilities arise
for derived classes. Member functions of a derived class can access
public and protected members of the base class, but not private
members. Objects of a derived class can access only public members of
the base class.

Access Base Class Derived Class Object

public yes yes yes

protected yes yes no

private yes no no

Access ControlAccess Control

247

In
he

rit
an

ce
6

Object Oriented Programming

class A{
private:

int ia1;
protected:
int ia2;

public:
void fa1();
int fa2(int);

};

class B: public A{
private:
float ia1; // overrides ia1
public:
float fa1(float); // overrides fa1
};

ExampleExample

float B::fa1(float f){
ia1= 2.22 ;
ia2=static_cast<int>(f*f);

}

248

In
he

rit
an

ce
6

Object Oriented Programming

class Teacher { // Base class
private: // only members of Teacher can access
string name;

protected: // Also members of derived classes can
int age, numOfStudents;

public: // Everyone can access
void setName (const string & new_name){ name = new_name; }
void print() const;

};
class Principal : public Teacher { // Derived class

private: // Default
string school_name;
int numOfTeachers;

public:
void setSchool(const string & s_name) { school_name = s_name; }
void print() const;
int getAge() const { return age; } // It works because age is protected
const string & get_name(){ return name;}// ERROR! name is private

};

249

In
he

rit
an

ce
6

Object Oriented Programming

t1.numberOfStudents=54;

t1.setName(“Sema Catir");
p1.setSchool(“Halide Edip Adivar Lisesi");

int main()
{

teacher t1;
principal p1;

}

250

In
he

rit
an

ce
6

Object Oriented Programming

►In general, class data should be private. Public data is open to
modification by any function anywhere in the program and should
almost always be avoided.
►Protected data is open to modification by functions in any derived
class. Anyone can derive one class from another and thus gain access
to the base class’s protected data. It’s safer and more reliable if derived
classes can’t access base class data directly.
►But in real-time systems, where speed is important, function calls to
access private members is a time-consuming process. In such systems
data may be defined as protected to make derived classes access data
directly and faster.

Protected vs. Private MembersProtected vs. Private Members

251

Private data: Slow and reliablePrivate data: Slow and reliable

class A{ // Base class
private:
int i; // safe

public:
void access(int new_i){ // public interface to access i

if (new_i > 0 && new_i <= 100)
i=new_i;

}
};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i, new_k){

A::access(new_i); // reliable but slow
:

}
};

Protected data: Fast, author of the derived
class is responsible
class A{ // Base class
protected:
int i; // derived class can access directly

public:
:

};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i,new_k){

i=new_i; // fast
:

}
};

Protected data: Fast, author of the derived
class is responsible
class A{ // Base class
protected:
int i; // derived class can access directly

public:
:

};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i,new_k){

i=new_i; // fast
:

}
};

252

In
he

rit
an

ce
6

Object Oriented Programming

►In inheritance, you usually want to make the access
specifier public.

class Base
{ };

class Derived : publicpublic Base {
►This is called public inheritance (or sometimes public
derivation). The access rights of the members of the base
class are not changed.
►Objects of the derived class can access public members of
the base class.
►Public members of the base class are also public members
of the derived class.

Public InheritancePublic Inheritance

253

In
he

rit
an

ce
6

Object Oriented Programming

Private InheritancePrivate Inheritance
class Base

{ };
class Derived : privateprivate Base {

►This is called private inheritance.
►Now public members of the base class are private
members of the derived class.
►Objects of the derived class can not access members of the
base class.
►Member functions of the derived class can still access
public and protected members of the base class.

254

In
he

rit
an

ce
6

Object Oriented Programming

private

public

protected

Class A

private

public

protected

Class B: public A

private

public

protected

Class C: private A

ObjB ObjC

ObjA

error

255

In
he

rit
an

ce
6

Object Oriented Programming

►Access specifications of public members of the base class
can be redefined in the derived class.
►When you inherit privately, all the public members of the
base class become private.
►If you want any of them to be visible, just say their names
(no arguments or return values) along with the using
keyword in the public section of the derived class:

Redefining AccessRedefining Access

256

In
he

rit
an

ce
6

Object Oriented Programming

class Base{
private:
int k;

public:
int i;
void f();

};

class Derived : privateprivate Base{ // All members of Base are private now
int m;

public:
Base::f(); // f() is public again
void fb1();

};

int main(){
Base b;
Derived d;
b.i=5; // OK public in Base
d.i=0; // ERROR private inheritance
b.f(); // OK
d.f(); // OK
return 0;

};

257

In
he

rit
an

ce
6

Object Oriented Programming

class Base{
private:
int k;

public:
int i;
void f(int);
bool f(int,float);

};

class Derived : privateprivate Base{ // All members of Base are private now
int m;

public:
Base::f(int); // f(int) is public again
void fb1();

};

int main(){
Base b;
Derived d;
b.i=5; // OK public in Base
d.i=0; // ERROR private inheritance
b.f(); // OK
d.f(); // OK
return 0;

};

258

In
he

rit
an

ce
6

Object Oriented Programming

►Some functions will need to do different things in the base class and
the derived class. They are the overloaded = operator, the destructor,
and all constructors.
►Consider a constructor. The base class constructor must create the
base class data, and the derived class constructor must create the
derived class data.
►Because the derived class and base class constructors create
different data, one constructor cannot be used in place of another.
Constructor of the base class can not be the constructor of the derived
class.
►Similarly, the = operator in the derived class must assign values to
derived class data, and the = operator in the base class must assign
values to base class data. These are different jobs, so assignment
operator of the base class can not be the assignment operator of the
derived class.

Special Member Functions and InheritanceSpecial Member Functions and Inheritance

259

In
he

rit
an

ce
6

Object Oriented Programming

►When you define an object of a derived class, the base class
constructor will be called before the derived class constructor. This is
because the base class object is a subobject—a part—of the derived
class object, and you need to construct the parts before you can
construct the whole.
►If the base class has a constructor that needs arguments, this
constructor must be called before the constructor of the derived class.

classclass TTeachereacher { // turetilmis sinif
char *Name;
int Age,numberOfStudents;

public:
Teacher(char *newName){Name=newName;} // temel sinif kurucusu

};

classclass PPrincipalrincipal : public TTeachereacher{ // turetilmis sinif
int numberOfTeachers;

public:
Principal(char *, int); // // turetilmis sinif kurucusu

};

example15.cpp

Constructors and InheritanceConstructors and Inheritance

260

// Constructor of the derived class
// constructor of the base is called before the body of the constructor of the derived class
Principal::Principal(const string & new_name, int numOT):Teacher(new_name)
{

numOfTeachers = numOT;
}

int main() {
Principal p1("Ali Bilir", 20); // An object of derived class is defined
return 0;

}

►If the base class has a constructor, which must take some arguments, then
the derived class must also have a constructor that calls the constructor of
the base with proper arguments.

►Remember, the constructor initializer can also be used to initialize
members.
// Constructor of the derived class
Principal::Principal(const string & new_name, int numOT)

:Teacher(new_name), numOfTeachers(numOT)
{ } // body of the constructor is empty

261

In
he

rit
an

ce
6

Object Oriented Programming

►Destructors are called automatically.
►When an object of the derived class goes out of scope, the
destructors are called in reverse order: The derived object is
destroyed first, then the base class object.

Destructors and InheritanceDestructors and Inheritance

262

In
he

rit
an

ce
6

Object Oriented Programming

#include <iostream.h>
class B {

public:
B() { cout << "B constructor" << endl; }
~B() { cout << "B destructor" << endl; }

};
class C : public B {
public:

C() { cout << "C constructor" << endl; }
~C() { cout << "C destructor" << endl; }

};
int main(){

std::cout << "Start" << std::endl;
C ch; // create a C object
std::cout << "End" << std::endl;

}

263

#include <iostream.h>
class A {

private:
int xx;
float y;

public:
A(int i, float f) :

x(i), y(f) // initialize A
{ cout << "Constructor A" << endl; }

void display() {
cout << intA << ", " << floA << "; ";}

};
class B : public A {

private:
int v;
float w;

public:
B(int i1, float f1, int i2, float f2) :

A(i1, f1), // initialize A
v(i2), w(f2) // initialize B
{ cout << "Constructor B" << endl; }

void display(){
A::display();
cout << v << ", " << w << "; ";
}

};

class C : public Bclass C : public B {{
private:private:

intint rr;;
float float ss;;

public:public:
C(intC(int i1,float f1, i1,float f1, intint i2,float f2,int i3,float f3) :i2,float f2,int i3,float f3) :

B(i1, f1, i2, f2), // initialize BB(i1, f1, i2, f2), // initialize B
rr(i3), (i3), ss(f3) // initialize(f3) // initialize CC
{ cout << "Constructor C" << { cout << "Constructor C" << endlendl; }; }

void display() {void display() {
B::displayB::display();();
coutcout << << rr << ", " << << ", " << ss;;

}}
};};

int main() {
C c(1, 1.1, 2, 2.2, 3, 3.3);
cout << "\nData in c = ";
c.display();

}

Example: Constructor ChainExample: Constructor Chain

example19.cpp

264

In
he

rit
an

ce
6

Object Oriented Programming

►A C class is inherited from a B class, which is in turn
inherited from a A class.
►Each class has one int and one float data item.
►The constructor in each class takes enough arguments to
initialize the data for the class and all ancestor classes. This
means two arguments for the A class constructor, four for B
(which must initialize A as well as itself), and six for C
(which must initialize A and B as well as itself).
►Each constructor calls the constructor of its base class.

ExplanationExplanation

265

In
he

rit
an

ce
6

Object Oriented Programming

ExplanationExplanation
►In main(), we create an object of type C, initialize it to six
values, and display it.
►When a constructor starts to execute, it is guaranteed that
all the subobjects are created and initialized.
►Incidentally, you can’t skip a generation when you call an
ancestor constructor in an initialization list. In the following
modification of the C constructor:
C(int i1, float f1, int i2, float f2, int i3, float f3) :

A(i1, f1), // ERROR! can't initialize A
intC(i3), floC(f3) // initialize C

{ }
the call to A() is illegal because the A class is not the
immediate base class of C.

266

In
he

rit
an

ce
6

Object Oriented Programming

Explanation: Constructor ChainExplanation: Constructor Chain

►You never need to make explicit destructor calls because
there’s only one destructor for any class, and it doesn’t take
any arguments.
►The compiler ensures that all destructors are called, and
that means all of the destructors in the entire hierarchy,
starting with the most-derived destructor and working back
to the root.

267

In
he

rit
an

ce
6

Object Oriented Programming

►Assignment operator of the base class can not be the
assignment operator of the derived class.
►Recall the String example.
class SStringtring {
protected:

int size;
char *contents;

public:
const String & operator=(const String &); // assignment operator
: // Other methods

};
const String & SStringtring::operatoroperator==(const String &in_object) {

size = in_object.size;
delete[] contents; // delete old contents
contents = new char[size+1];
strcpy(contents, in_object.contents);
return *this;

}

Assignment Operator and InheritanceAssignment Operator and Inheritance

268

In
he

rit
an

ce
6

Object Oriented Programming

class String2 : public String { // String2 is derived from String
int size2;
char *contents2;

public:
const String2 & operator=(const String2 &);
:

};

// **** Assignment operator for String2 ****
const String2 & String2::operator=(const String2 &in_object) {

size = in_object.size; // inherited size
delete []contents;
contents= strdup(in_object.contents);
size2 = in_object.size2;
delete[] contents2;
contents2 = strdup(in_object.contents2);
return *this;

}

►Example: Class String2 is derived from class String. If an
assignment operator is necessary it must be written

269

In
he

rit
an

ce
6

Object Oriented Programming

//** Assignment operator **
const String2 & String2::operator=(const String2 & in_object)
{

String::operator=(in_object); // call the operator= of String (Base)
cout<< "Assignment operator of String2 has been invoked" << endl;
size2 = in_object.size2;
delete[] contents2;
contents2 = new char[size2 + 1];
strcpy(contents2, in_object.contents2);
return *this;

}

In previous example, data members of String (Base) class must be protected. Otherwise
methods of the String2 (Derived) can not access them.
The better way to write the assignment operator of String2 is to call the assignment
operator of the String (Base) class.
Now, data members of String (Base) class may be private.

In this method the assignment operator of the String is called with an argument of type
(String2 &). Actually, the operator of String class expects a parameter of type (String &).
This does not cause a compiler error, because as we will se in Section 7, a reference to
base class can carry the address of an object of derived class.

270

In
he

rit
an

ce
6

Object Oriented Programming

►Every time you place instance data in a class, you are
creating a “has a” relationship. If there is a class Teacher and
one of the data items in this class is the teacher’s name, I can
say that a Teacher object has a name.
►This sort of relationship is called composition because the
Teacher object is composed of these other variables.
►Remember the class ComplexFrac. This class is composed
of two Fraction objects.
►Composition in OOP models the real-world situation in
which objects are composed of other objects.

Composition vs. InheritanceComposition vs. Inheritance

271

In
he

rit
an

ce
6

Object Oriented Programming

Composition vs. InheritanceComposition vs. Inheritance
►Inheritance in OOP mirrors the concept that we call
generalization in the real world. If I model workers, managers
and researchers in a factory, I can say that these are all
specific types of a more general concept called an employee.
►Every kind of employee has certain features: name, age, ID
num, and so on.
►But a manager, in addition to these general features, has a
department that he/she manages.
►A researcher has an area on which he/she studies.
►In this example the manager has not an employee.
►The manager is an employee

272

►You can use composition & inheritance together. The following example
shows the creation of a more complex class using both of them.
class A {

int i;
public:

A(int ii) : i(ii) {}
~A() {}
void f() const {}

};

class B {
int i;

public:
B(int ii) : i(ii) {}
~B() {}
void f() const {}

};

class C : public B { // Inheritance, C is B
A a; // Composition, C has A

public:
C(int ii) : B(ii), a(ii) {}
~C() {} // Calls ~A() and ~B()
void f() const { // Redefinition
a.f();
B::f();

}
};

273

In
he

rit
an

ce
6

Object Oriented Programming

►C inherits from B and has a member object (“is composed
of”) of type A. You can see the constructor initializer list
contains calls to both the base-class constructor and the
member-object constructor.
►The function C::f() redefines B::f(), which it inherits,
and also calls the base-class version. In addition, it calls
a.f().
►Notice that the only time you can talk about redefinition
of functions is during inheritance; with a member object you
can only manipulate the public interface of the object, not
redefine it.
►In addition, calling f() for an object of class C would not
call a.f() if C::f() had not been defined, whereas it would
call B::f().

274

In
he

rit
an

ce
6

Object Oriented Programming

Multiple InheritanceMultiple Inheritance
class Base1{ // Base 1
public:
int a;
void fa1();
char *fa2(int);

};

class Base2{ // Base 2
public:
int a;
char *fa2(int, char*);
int fc();

};

class Deriv : public Base1 ,public Base2{
public:

int a;
float fa1(float);
int fb1(int);

};

Base1 Base2

Deriv

+ +

int main(){
Deriv d;
d.a=4;
float y=d.fa1(3.14);
int i=d.fc();
}

char * c=d.fa2(1);
is not valid.
In inheritance functions are not
overloaded. They are overridden.
You have to write

char * c=d.Base1::fa2(1);
or

char * c=d.Base2::fa2(1,"Hello");

example20.cpp

275

In
he

rit
an

ce
6

Object Oriented Programming

►Both Mother and Father inherit from Gparent, and Child inherits
from both Mother and Father. Recall that each object created through
inheritance contains a subobject of the base class. A Mother object and
a Father object will contain subobjects of Gparent, and a Child object
will contain subobjects of Mother and Father, so a Child object will
also contain two Gparent subobjects, one inherited via Mother and one
inherited via Father.
►This is a strange situation. There are two subobjects when really
there should be one.

Child

Gparent

Mother Father

Repeated Base ClassesRepeated Base Classes
class Gparent

{ };
class Mother : public Gparent

{ };
class Father : public Gparent

{ };
class Child : public Mother, public Father

{ };

276

In
he

rit
an

ce
6

Object Oriented Programming

►Suppose there’s a data item in Gparent:

►The compiler will complain that the reference to gdata is ambiguous.
It doesn’t know which version of gdata to access: the one in the Gparent
subobject in the Mother subobject or the one in the Gparent subobject in
the Father subobject.

Repeated Base ClassesRepeated Base Classes

class Gparent {
protected:

int gdata;
};
class Child : public Mother, public Father {

public:
void Cfunc() {

int temp = gdata; // error: ambiguous
}

};

277

In
he

rit
an

ce
6

Object Oriented Programming

►You can fix this using a new keyword, virtual, when deriving Mother
and Father from Gparent :

►The virtual keyword tells the compiler to inherit only one subobject
from a class into subsequent derived classes. That fixes the ambiguity
problem, but other more complicated problems arise that are too
complex to delve into here.
►In general, you should avoid multiple inheritance, although if you
have considerable experience in C++, you might find reasons to use it in
unusual situations.

class Gparent
{ };

class Mother : virtual public Gparent
{ };

class Father : virtual public Gparent
{ };

class Child : public Mother, public Father
{ };

example21.cpp

Solution: Virtual Base ClassesSolution: Virtual Base Classes

278

In
he

rit
an

ce
6

Object Oriented Programming

class Base
{

public:
int a,b,c;

};
class Derived : public Base
{
public:

int b;
};
class Derived2 : public Derived
{
public:

int c;
};

BaseBase

DrivedDrived

Derived2Derived2

279

In
he

rit
an

ce
6

Object Oriented Programming

class A {
...

};
class B {

...
};
class C {

...
};
class D : public A, public B, private C {

...
};

AA
BB

DD

CC

280

In
he

rit
an

ce
6

Object Oriented Programming

class L {
public:

int next;
};
class A : public L {

...
};
class B : public L {

...
};
class C : public A, public B {

void f() ;
...

};

A B

C

L L

281

In
he

rit
an

ce
6

Object Oriented Programming

class L {
public:

int next;
};
class A : virtual public L {

...
};
class B : virtual public L {

...
};
class C : public A, public B {

...
};

A B

C

L

282

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : virtual public B {

...
};
class Z : public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

B

283

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : public B {

...
};
class Z : public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

B

284

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : virtual public B {

...
};
class Z : virtual public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

285

Object PointersObject Pointers7

286

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►Objects are stored in memory, so pointers can point to
objects just as they can to variables of basic types.
The new Operator:
►The new operator allocates memory of a specific size from
the operating system and returns a pointer to its starting
point. If it is unable to find space, in returns a 0 pointer.
►When you use new with objects, it does not only allocates
memory for the object, it also creates the object in the sense
of invoking the object’s constructor. This guarantees that the
object is correctly initialized, which is vital for avoiding
programming errors.

Pointers to ObjectsPointers to Objects

287

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers to ObjectsPointers to Objects
The delete Operator
► To ensure safe and efficient use of memory, the new

operator is matched by a corresponding delete operator
that releases the memory back to the operating system.

►If you create an array with new Type[];, you need the
brackets when you delete it:
int * ptr = new int[10];
:
delete [] ptr;

Don’t forget the brackets when deleting arrays of objects. Using them ensures
that all the members of the array are deleted and that the destructor is called
for each one. If you forget the brackets, only the first element of the array will
be deleted.

288

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

class String {
int size;
char *contents;

public:
String();
String(const char *);
String(const String &);
const String& operator=(const String &);
void print() const ;
~String();

};

ExampleExample

int main()int main() {{
String *sptr = new String[3];String *sptr = new String[3];
String s1("String_1");String s1("String_1");
String s2("String_2");String s2("String_2");
*sptr = s1;*sptr = s1;
(sptr + 1) = s2;(sptr + 1) = s2;
sptrsptr-->print();>print();
(sptr+1)(sptr+1)-->print();>print();
sptr[1].print();sptr[1].print();
delete[] sptr;delete[] sptr;
return 0;return 0;

}}

289

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

A class may contain a pointer to objects of its type.
This pointer can be used to build a chain of objects, a linked list.

class Teacher {
friend class Teacher_list;
string name;
int age, numOfStudents;
Teacher * next;

public:
Teacher(const string &, int, int);
void print() const;
const string& getName() const {

return name; }
~Teacher()

};

// linked list for teachers
class Teacher_list{

Teacher *head;
public:
Teacher_list(){head=0;}
bool append(const string &,int,int);
bool del(const string &);
void print() const ;
~Teacher_list();

};

Linked List of ObjectsLinked List of Objects

290

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►In the previous example the Teacher class must have a
pointer to the next object and the list class must be declared
as a friend, to enable users of this class building linked lists.
►If this class is written by the same group then it is possible
to put such a pointer in the class.
►But usually programmers use ready classes, written by
other groups, for example classes from libraries.
►These classes may not have a next pointer.
►To build linked lists of such ready classes the programmer
have to define a node class.
►Each object of the node class will hold the addresses of
an element of the list.

Linked List of ObjectsLinked List of Objects

291

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Linked List of ObjectsLinked List of Objects
class Teacher_node{

friend class Teacher_list;
Teacher * element; // The element of the list
Teacher_node * next; // next node
Teacher_node(const string &, int, int); // constructor
~Teacher_node(); // destructor

};
Teacher_node::Teacher_node(const string & n, int a, int nos){

element = new Teacher(n, a, nos);
next = 0;

}
Teacher_node::~Teacher_node(){

delete element;
}

292

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►If a class Derived has a public base class Base, then a
pointer to Derived can be assigned to a variable of type
pointer to Base without use of explicit type conversion. A
pointer to Base can carry the address of an object of
Derived.

►The opposite conversion, for pointer to Base to pointer to
Derived, must be explicit.

►For example, a pointer to Teacher can point to objects of
Teacher and to objects of Principal. A principal is a
teacher, but a teacher is not always a principal.

Pointers and InheritancePointers and Inheritance

293

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers and InheritancePointers and Inheritance
class Base{

};

class Derived : public Base {

};

Derived d;
Base *bp = &d; // implicit conversion
Derived *dp = bp; // ERROR! Base is not Derived
dp = static_cast<Derived *>(bp); // explicit conversion

294

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►If the class Base is a private base of Derived , then the
implicit conversion of a Derived* to Base* would not be
done.
►Because, in this case a public member of Base can be
accessed through a pointer to Base but not through a pointer
to Derived.

Pointers and InheritancePointers and Inheritance

295

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers and InheritancePointers and Inheritance
class Base{

int m1;
public:
int m2; // m2 is a public member of Base

};
class Derived : private Base { // m2 is not a public member of Derived

:
};
Derived d;
d.m2 = 5; // ERROR! m2 is private member of Derived
Base *bp = &d; // ERROR! private base
bp = static_cast<Base*>(&d); // ok: explicit conversion
bp->m2 = 5; // ok

296

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►Using the inheritance and pointers, heterogeneous linked
lists can be created.
►A list specified in terms of pointers to a base class can
hold objects of any class derived from this base class.
►We will discuss heterogeneous lists again, after we have
learnt polymorphism.
Example: A list of teachers and principals

Heterogeneous Linked ListsHeterogeneous Linked Lists

next

Teacher t3

next

Teacher t2

next

Principal p2

next

Principal p1

next

Teacher t1

head

insert()
delete()

List my_list

297

PolymorphismPolymorphism8

298

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

ContentContent

►Polymorphism
►Virtual Members
►Abstract Class

299

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►There are three major concepts in object-oriented programming:
1. Classes,
2. Inheritance,
3. Polymorphism, which is implemented in C++ by virtual functions.

► In real life, there is often a collection of different objects that, given
identical instructions (messages), should take different actions. Take
teacher and principal, for example.

►Suppose the minister of education wants to send a directive to all
personnel: “Print your personal information!” Different kinds of staff
(teacher or principal) have to print different information. But the
minister doesn’t need to send a different message to each group. One
message works for everyone because everyone knows how to print his
or her personal information.

PolymorphismPolymorphism

300

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Polymorphism means “taking many shapes”. The minister’s single
instruction is polymorphic because it looks different to different
kinds of personnel.

►Typically, polymorphism occurs in classes that are related by
inheritance. In C++, polymorphism means that a call to a member
function will cause a different function to be executed depending on
the type of object that invokes the function.

►This sounds a little like function overloading, but polymorphism is a
different, and much more powerful, mechanism. One difference
between overloading and polymorphism has to do with which
function to execute when the choice is made.

►With function overloading, the choice is made by the compiler
(compile-time). With polymorphism, it’s made while the program is
running (run-time).

PolymorphismPolymorphism

301

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Normal Member Functions Accessed with PointersNormal Member Functions Accessed with Pointers

class Square Square { // Base Class
protected:

double edge;
public:

Square(double e):edge(e){ } //Base class constructor
double aarearea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Derived Class

public:
Cube(double e):Square(e){} // Derived class cons.
double aarearea(){ return(6.0 * edge * edge) ; }

};

302

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Square S(2.0) ;
Cube C(2.0) ;
Square *ptr ;
char c ;
cout << “Square or Cube"; cin >> c ;
if (c==‘s') ptr=&S ;

else ptr=&C ;
ptr→areaarea(); // which Area ???

}

►ptr = &C;
►Remember that it’s perfectly all right to assign an address of one

type (Derived) to a pointer of another (Base), because pointers to
objects of a derived class are type compatible with pointers to
objects of the base class.

►Now the question is, when you execute the statement
ptr->area();

what function is called? Is it Square::area() or Cube::area()?

303

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Let’s make a single change in the program: Place the keyword virtual
in front of the declaration of the area() function in the base class.

class SquareSquare { // Temel sinif
protected:

double edge;
public:

Square(double e):edge(e){ } // temel sinif kurucusu
virtualvirtual double areaarea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Turetilmis sinif

public:
Cube(double e):Square(e){} // Turetilmis sinif kurucusu
double areaarea(){ return(6.0 * edge * edge) ; }

};

Virtual Member Functions Accessed with PointersVirtual Member Functions Accessed with Pointers

304

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Square S(2.0) ;
Cube C(8.0) ;
Square *ptr ;
char c ;

cout << “Square or Cube"; cin >> c ;
if (c==‘s') ptr=&S ;

else ptr=&C ;
ptr→Area();

}

square.cpp

305

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Teacher{ // Base class
string *name;
int numOfStudents;

public:
Teacher(const string &, int); // Constructor of base
virtual void print() const; // A virtual (polymorphic) function

};

class Principal : public Teacher{ // Derived class
string *SchoolName;

public:
Principal(const string &, int , const string &);
void print() const; // It is also virtual (polymorphic)

};

The function in the base class (Teacher) is executed in both cases. The compiler ignores
the contents of the pointer ptr and chooses the member function that matches the type
of the pointer.

Let’s make a single change in the program: Place the keyword virtual in front of the
declaration of the print() function in the base class.

Virtual Member Functions Accessed with PointersVirtual Member Functions Accessed with Pointers

306

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Now, different functions are executed, depending on the contents of
ptr. Functions are called based on the contents of the pointer ptr, not
on the type of the pointer. This is polymorphism at work. I’ve made
print() polymorphic by designating it virtual.

►How does the compiler know what function to compile? In e81.cpp,
the compiler has no problem with the expression

►ptr->print();
► It always compiles a call to the print() function in the base class. But

in e82.cpp, the compiler doesn’t know what class the contents of ptr
may be a pointer to. It could be the address of an object of the
Teacher class or the Principal class. Which version of print() does
the compiler call? In fact, at the time it’s compiling the program, the
compiler doesn’t know what to do, so it arranges for the decision to
be deferred until the program is running.

Late BindingLate Binding

307

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Late BindingLate Binding
►At runtime, when the function call is executed, code that the

compiler placed in the program finds out the type of the object
whose address is in ptr and calls the appropriate print() function:
Teacher::print() or Principal::print(), depending on the class of the
object.

►Selecting a function at runtime is called late binding or dynamic
binding. (Binding means connecting the function call to the
function.)

►Connecting to functions in the normal way, during compilation, is
called early binding or static binding. Late binding requires a small
amount of overhead (the call to the function might take something
like 10 percent longer) but provides an enormous increase in power
and flexibility.

308

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Remember that, stored in memory, a normal object—that is, one
with no virtual functions—contains only its own data, nothing else.

►When a member function is called for such an object, the compiler
passes to the function the address of the object that invoked it. This
address is available to the function in the this pointer, which the
function uses (usually invisibly) to access the object’s data.

►The address in this is generated by the compiler every time a
member function is called; it’s not stored in the object and does not
take up space in memory.

►The thisthis pointer is the only connection that’s necessary between an
object and its normal member functions.

How It WorksHow It Works

309

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

How It WorksHow It Works
►With virtual functions, things are more complicated. When a derived

class with virtual functions is specified, the compiler creates a table—
an array—of function addresses called the virtual table.

►The Teacher and Principal classes each have their own virtual table.
There is an entry in each virtual table for every virtual function in the
class. Objects of classes with virtual functions contain a pointer to the
virtual table of the class. These object are slightly larger than normal
objects.

► In the example, when a virtual function is called for an object of
Teacher or Principal, the compiler, instead of specifying what
function will be called, creates code that will first look at the object’s
virtual table and then uses this to access the appropriate member
function address. Thus, for virtual functions, the object itself
determines what function is called, rather than the compiler.

310

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Principal : public Teacher{ // Derived class
string *SchoolName;

public:
void read(); // Virtual function
void print() const; // Virtual function

};

Example: Assume that the classes Teacher and Principal contain two virtual functions.

class Teacher{ // Base class
string *name;
int numOfStudents;

public:
virtual void read(); // Virtual function
virtual void print() const; // Virtual function

};

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

311

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Objects of Teacher and Principal will contain a pointer to their virtual tables.
int main(){

Teacher t1("Teacher 1", 50);
Teacher t2("Teacher 2", 35);
Principal p1("Principal 1", 45 , "School 1");
:

}
vptr

Teacher 1

50

t1

vptr

Teacher 2

35

t2

vptr

Principal 1

45

School 1

p1

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

MC68000-like assembly counterpart
of the statement
ptr->print(); Here ptr contains the
address of an object.

move.l ptr, this ; this to object
movea.l ptr, a0 ; a0 to object
movea.l (a0), a1 ; a1<-vptr
jsr 4(a1) ; jsr print

If the print() function would not a
virtual function:

move.l ptr, this ; this to object
jsr teacher_print

or
jsr principal_print

312

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Be aware that the virtual function mechanism works only
with pointers to objects and, with references, not with objects
themselves.

int main(){
Square S(4);
Cube C(8);
S.Area();
C.Area();

}

Don’t Try This with ObjectsDon’t Try This with Objects

Calling virtual functions is a time-consuming process, because
of indirect call via tables. Don’t declare functions as virtual if
it is not necessary.

313

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Square Square { // Base
protected:

double edge;
public:

Square(double e):edge(e){ } // Base Class Constructor
virtualvirtual double AreaArea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Derived Class
public:

Cube(double e):Square(e){} // Derived Class Constructor
double AreaArea(){ return(6.0 * Square::AreaSquare::Area()()) ; }

};

Warning

Here, Square::AreaSquare::Area()() is not virtual

314

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Most frequent use of polymorphism is on collections such as
linked list: class SquareSquare {

protected:
double edge;

public:
Square(double e):edge(e){ }
virtualvirtual double areaarea(){ return(edge * edge) ; }
Sqaure *next ;

};
class CubeCube : public SquareSquare {

public:
Cube(double e):Square(e){}
double areaarea(){ return(6.0 * edge * edge) ; }

};

Homogeneous Linked Lists and PolymorphismHomogeneous Linked Lists and Polymorphism

315

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Circle c1(50);
Square s1(40);
Circle c2(23);
Square s2(78);
Square *listPtr; // Pointer of the linked list
/*** Construction of the list ***/
listPtr=&c1;
c1.next=&s1;
s1.next=&c2;
c2.next=&s2;
s2.next=0L;
while (listPtr){ // Printing all elements of the list

cout << listPtr->Area() << endl ;
listPtr=listPtr->next;

}
}

example27.cpp

316

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

► To write polymorphic functions wee need to have derived classes.
But sometimes we don’t need to create any base class objects, but
only derived class objects. The base class exists only as a starting
point for deriving other classes.
► This kind of base classes we can call are called an abstract class,
which means that no actual objects will be created from it.
► Abstract classes arise in many situations. A factory can make a
sports car or a truck or an ambulance, but it can’t make a generic
vehicle. The factory must know the details about what kind of vehicle
to make before it can actually make one. Similarly, you’ll see
sparrows, wrens, and robins flying around, but you won’t see any
generic birds.
► Actually, a class is an abstract class only in the eyes of humans.

Abstract ClassesAbstract Classes

317

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

► It would be nice if, having decided to create an abstract base class, I
could instruct the compiler to actively prevent any class user from ever
making an object of that class. This would give me more freedom in
designing the base class because I wouldn’t need to plan for actual
objects of the class, but only for data and functions that would be used
by derived classes. There is a way to tell the compiler that a class is
abstract: You define at least one pure virtual function in the class.
► A pure virtual function is a virtual function with no body. The body
of the virtual function in the base class is removed, and the notation =0=0
is added to the function declaration.

Pure Virtual ClassesPure Virtual Classes

318

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Are they the same or different?

319

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Not in the real world, but in our thoughts as an abstractionabstraction
classification.
►A “Cleaning Utensil” does not exist, but specific kinds do!

320

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CGenericShape{ // Abstract base class
protected:

int x,y;
CGenericShape *next ;

public:
CGenericShape(int x_in,int y_in,

CGenericShape *nextShape){
x=x_in;
y=y_in;
next = nextShape ;

} // Constructor
CGenericShape* operator++(){return next;}
virtual void draw(HDC)=0; // pure virtual function

};

Example in Visual C++ 6Example in Visual C++ 6

321

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CLine:public CGenericShape{ // Line class
protected:

int x2,y2; // End coordinates of line
public:

CLine(int x_in,int y_in,int x2_in,int y2_in,
CGenericShape *nextShape)
:CGenericShape(x_in,y_in,nextShape){
x2=x2_in;
y2=y2_in;

}
void draw(HDC hdc){ // virtual draw function

MoveToEx(hdc,x,y,(LPPOINT) NULL);
LineTo(hdc,x2,y2); }

};

322

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CRectangle:public CLine{ // Rectangle class
public:

CRectangle (int x_in,int y_in,int x2_in,int y2_in,
CGenericShape *nextShape)

:CLine(x_in,y_in,x2_in,y2_in,nextShape)
{ }

void draw(HDC hdc){// virtual draw
Rectangle(hdc,x,y,x2,y2);

}
};

323

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CCircle:public CGenericShape{ // Circle class
protected:

int radius;
public:

CCircle (int x_cen,int y_cen,int r,
CGenericShape *nextShape)
:CGenericShape(x_cen,y_cen,nextShape)

{
radius=r;

}
void draw(HDC hdc) { // virtual draw

Ellipse(hdc,x-radius,y-radius,x+radius,y+radius);
}

};

324

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

void ShowShapes(CGenericShape &shape,HDC hdc)
{

CGenericShape *p = &shape ;
// Which draw function will be called?

while (p!=NULL){
p->draw(hdc); // It 's unknown at compile-time
p = ++*p ;
Sleep(100);

}
}

325

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

PAINTSTRUCT ps;
HDC hdc;

CLine Line1(50,50,150,150,NULL);
CLine Line2(150,50,50,150,&Line1) ;
CCircle Circle1(100,100,20,&Line2);
CCircle Circle2(100,100,50,&Circle1);
CRectangle Rectangle1(50,50,150,150,&Circle2);

switch (message) {
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps);
ShowShapesShowShapes (Rectangle1,hdc);

EndPaint (hwnd, &ps);
return 0;

PolyDraw.dsw

326

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

1

a/y

2
b/x

b/y

3

a/x

b/x

State : { 1 , 2 , 3 }
Input : { a, b }, x to exit
Output : { x , y }

a/y

States of the FSM are defined using
a class structure.
Each state is derived from the same
base class.

A Finite State Machine (FSM) ExampleA Finite State Machine (FSM) Example

327

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class State{ // Base State (Abstract Class)
protected:

State * const next_a, * const next_b; // Pointers to next state
char output;

public:
State(State & a, State & b):next_a(&a), next_b(&b) { }
virtual State* transition(char)=0; // pure virtual function

};

class State1:public State{ // *** State1 ***
public:

State1(State & a, State & b):State(a, b) { }
State* transition(char);

};
class State2:public State{ // *** State2 ***

public:
State2(State & a, State & b):State(a, b) { }
State* transition(char);

};
class State3:public State{ // *** State3 ***

public:
State3(State & a, State & b):State(a, b) { }
State* transition(char);

};

328

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

State* State1::transition(char input)
{

switch(input){
case 'a': output = 'y';

return next_a;
case 'b': output = 'x';

return next_b;
default : cout << endl << "Undefined input";

cout << endl << "Next State: Unchanged";
return this;

}
}

The transition function of each state defines the behavior of
the FSM. It takes the input value as argument, examines the
input, produces an output value according to the input value
and returns the address of the next state.

329

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

The FSM in our example has three states.
class FSM{ // Finite State Machine

State1 s1;
State2 s2;
State3 s3;
State *current; // points to the current state

public:
FSM() : s1(s1,s2), s2(s3,s2), s3(s1,s2), current(&s1) { } //Starting state is State1
void run();

};
void FSM::run() {

char in;
do {

cout << endl << "Give the input value (a or b; x: EXIT) ";
cin >> in;
if (in != 'x')

current = current->transition(in); // Polymorphic function call
else

curent = 0; // EXIT
} while(current);

}
The transition function of the current state is called.
Return value of this function determines the next state of the FSM.

330

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Can constructors be virtual?
No, they can’t be.

►When you’re creating an object, you usually already know
what kind of object you’re creating and can specify this to the
compiler. Thus, there’s not a need for virtual constructors.
►Also, an object’s constructor sets up its virtual mechanism
(the virtual table) in the first place. You don’t see the code
for this, of course, just as you don’t see the code that
allocates memory for an object.
►Virtual functions can’t even exist until the constructor has
finished its job, so constructors can’t be virtual.

Virtual Constructors?Virtual Constructors?

331

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Recall that a derived class object typically contains data
from both the base class and the derived class.

►To ensure that such data is properly disposed of, it may be
essential that destructors for both base and derived classes
are called.

Virtual DestructorsVirtual Destructors

332

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class BaseBase {
public:

~Base() { cout << "\nBase destructor"; }
};
class DerDeriivveded : public BaseBase {

public:
~Derv() { cout << "\nDerived destructor"; }

};
int main(){

BaseBase* pb = new DerDeriivveded;
delete pb;
cout << endl << "Program terminates.“ << endl ;

}

Virtual DestructorsVirtual Destructors

333

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Virtual DestructorsVirtual Destructors
►But the output is

Base Destructor
Program terminates

►In this program bp is a pointer of Base type. So it can
point to objects of Base type and Derived type. In the
example, bp points to an object of Derived class, but while
deleting the pointer only the Base class destructor is
called.

►This is the same problem you saw before with ordinary
(nondestructor) functions. If a function isn’t virtual, only
the base class version of the function will be called when
it’s invoked using a base class pointer, even if the contents
of the pointer is the address of a derived class object. Thus
in e85.cpp, the Derived class destructor is never called.
This could be a problem if this destructor did something
important.

334

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Base {
public:

virtualvirtual ~Base() { cout << "\nBase destructor"; }
};
class DerDeriivveded : public BaseBase {

public:
~Derv() { cout << "\nDerived destructor"; }

};
int main(){

BaseBase* pb = new DerDeriivveded;
delete pb;
cout << endl << "Program terminates.“ << endl ;

}

To fix this problem, we have to make the base class destructor virtual.

335

EXCEPTIONEXCEPTION9

336

Ex
ce

pt
io

n
9

Object Oriented Programming

►Kinds of errors with programs
– Poor logic - bad algorithm
– Improper syntax - bad implementation
– Exceptions - Unusual, but predictable problems

►The earlier you find an error, the less it costs to fix it
►Modern compilers find errors early

Program ErrorsProgram Errors

337

Ex
ce

pt
io

n
9

Object Oriented Programming

►In C, the default response to an error is to continue,
possibly generating a message

►In C++, the default response to an error is to terminate the
program

►C++ programs are more “brittle”, and you have to strive
to get them to work correctly

►Can catch all errors and continue as C does

Paradigm Shift from CParadigm Shift from C

338

Ex
ce

pt
io

n
9

Object Oriented Programming

►a macro (processed by the precompiler)
– Returns TRUE if its parameter is TRUE

– Takes an action if it is FALSE

–abort the program

–throw an exception

►If DEBUG is not defined, asserts are collapsed so that they
generate no code

assert()assert()

339

Ex
ce

pt
io

n
9

Object Oriented Programming

►When writing your program, if you know something is true,
you can use an assert

►If you have a function which is passed a pointer, you can do
– assert(pTruck);

– if pTruck is 0, the assertion will fail

►Use of assert can provide the code reader with insight to
your train of thought

assert() (cont’d)assert() (cont’d)

340

Ex
ce

pt
io

n
9

Object Oriented Programming

►Assert is only used to find programming errors
►Runtime errors are handled with exceptions

– DEBUG false => no code generated for assert

– Animal *pCat = new Cat;

– assert(pCat); // bad use of assert

– pCat ->memberFunction();

assert() (cont’d)assert() (cont’d)

341

Ex
ce

pt
io

n
9

Object Oriented Programming

►assert() can be helpful
►Don’t overuse it
►Don’t forget that it “instruments” your code

– invalidates unit test when you turn DEBUG off

►Use the debugger to find errors

assert() (cont’d)assert() (cont’d)

342

Ex
ce

pt
io

n
9

Object Oriented Programming

►You can fix poor logic (code reviews, debugger)
►You can fix improper syntax (asserts, debugger)
►You have to live with exceptions

– Run out of resources (memory, disk space)

– User enters bad data

– Floppy disk goes bad

ExceptionsExceptions

343

Ex
ce

pt
io

n
9

Object Oriented Programming

►The types of problems which cause exceptions (running
out of resources, bad disk drive) are found at a low level
(say in a device driver)

►The low level code implementer does not know what
your application wants to do when the problem occurs, so
s/he “throws” the problem “up” to you

Why are Exceptions Needed?Why are Exceptions Needed?

344

Ex
ce

pt
io

n
9

Object Oriented Programming

►Crash the program
►Display a message and exit
►Display a message and allow the user to continue
►Correct the problem and continue without disturbing the

user

Steinbach's Corollary to Murphy's Law:
"Never test for a system error you don't
know how to handle."

How To Deal With ExceptionsHow To Deal With Exceptions

345

Ex
ce

pt
io

n
9

Object Oriented Programming

►An object
– passed from the area where the problem occurs

– passed to the area where the problem is handled

►The type of object determines which exception handler
will be used

What is a C++ Exception?What is a C++ Exception?

346

Ex
ce

pt
io

n
9

Object Oriented Programming

try {try {

// a block of code which might generate an exception// a block of code which might generate an exception

}}

catch(xNoDiskcatch(xNoDisk) {) {

// the exception // the exception handler(tellhandler(tell the user to the user to

// // insert ainsert a disk)disk)

}}

catch(xNoMemorycatch(xNoMemory) {) {

// another exception handler for this // another exception handler for this ““try blocktry block””

}}

SyntaxSyntax

347

Ex
ce

pt
io

n
9

Object Oriented Programming

►Define like any other class:
class Set {

private:

int *pData;

public:

...

class xBadIndex {}; // just like any other class

};

The Exception ClassThe Exception Class

348

Ex
ce

pt
io

n
9

Object Oriented Programming

►In your code where you reach an error node:
if(memberIndex < 0)

throw xBadIndex();

►Exception processing now looks for a catch block which
can handle your thrown object

►If there is no corresponding catch block in the immediate
context, the call stack is examined

Throwing An ExceptionThrowing An Exception

349

Ex
ce

pt
io

n
9

Object Oriented Programming

►As your program executes, and functions are called, the
return address for each function is stored on a push down
stack

►At runtime, the program uses the stack to return to the
calling function

►Exception handling uses it to find a catch block

The Call StackThe Call Stack

350

Ex
ce

pt
io

n
9

Object Oriented Programming

►The exception is passed up the call stack until an
appropriate catch block is found

►As the exception is passed up, the destructors for objects
on the data stack are called

►There is no going back once the exception is raised

Passing The ExceptionPassing The Exception

351

Ex
ce

pt
io

n
9

Object Oriented Programming

►Once an appropriate catch block is found, the code in the
catch block is executed

►Control is then given to the statement after the group of
catch blocks

►Only the active handler most recently encountered in the
thread of control will be invoked

Handling The ExceptionHandling The Exception

352

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xBadIndex) {
// display an error message
}
catch (Set::xBadData) {
// handle this other exception
}
//control is given back here

►If no appropriate catch block is found, and the stack is at
main(), the program exits

Handling The Exception (cont’d)Handling The Exception (cont’d)

353

Ex
ce

pt
io

n
9

Object Oriented Programming

►Similar to the switch statement
catch (Set::xBadIndex)
{ // display an error message }
catch (Set::xBadData)
{ // handle this other exception }
catch (…)
{ // handle any other exception }

Default catch SpecificationsDefault catch Specifications

354

Ex
ce

pt
io

n
9

Object Oriented Programming

►Exception classes are just like every other class; you can
derive classes from them

►So one try/catch block might catch all bad indices, and
another might catch only negative bad indices

xBadIndexxBadIndex

xNegativexNegative xTooLargexTooLarge

Exception HierarchiesException Hierarchies

355

Ex
ce

pt
io

n
9

Object Oriented Programming

class Set {
private:

int *pData;
public:

class xBadIndex {};
class xNegative : public xBadIndex {};
class xTooLarge: public xBadIndex {};

};
// throwing xNegative will be
// caught by xBadIndex, too

Exception Hierarchies (cont’d)Exception Hierarchies (cont’d)

356

Ex
ce

pt
io

n
9

Object Oriented Programming

►Since Exceptions are just like other classes, they can have
data and member functions

►You can pass data along with the exception object
►An example is to pass an error subtype for xBadIndex,

you could throw the type of bad index

Data in ExceptionsData in Exceptions

357

Ex
ce

pt
io

n
9

Object Oriented Programming

// Add member data,ctor,dtor,accessor method
class xBadIndex {
private:

int badIndex;
public:

xBadIndex(int iType):badIndex(iType) {}
int GetBadIndex () { return badIndex; }
~xBadIndex() {}

};

Data in Exceptions (Continued)Data in Exceptions (Continued)

358

Ex
ce

pt
io

n
9

Object Oriented Programming

// the place in the code where the index is used
if (index < 0)

throw xBadIndex(index);
if (index > MAX)

throw xBadIndex(index);
// index is ok

Passing Data In ExceptionsPassing Data In Exceptions

359

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xBadIndex &theException)
{

int badIndex = theException.GetBadIndex();
if (badIndex < 0)

cout << “Set Index “ << badIndex << “ less than 0”;
else

cout << “Set Index “ << badIndex << “ too large”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

360

Ex
ce

pt
io

n
9

Object Oriented Programming

// the place in the code where the index is used
if (index < 0)

throw xNegative (index);
if (index > MAX)

throw xTooLarge(index);
// index is ok

Passing Data In ExceptionsPassing Data In Exceptions

361

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xNegative &theException)
{

int badIndex = theException.GetBadIndex();
cout << “Set Index “ << badIndex << “ less than 0”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

362

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xTooLarge &theException)
{

int badIndex = theException.GetBadIndex();
cout << “Set Index “ << badIndex << “ is too large”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

363

Ex
ce

pt
io

n
9

Object Oriented Programming

►When you write an exception handler, stay aware of the
problem that caused it

►Example: if the exception handler is for an out of memory
condition, you shouldn’t have statements in your
exception object constructor which allocate memory

CautionCaution

364

Ex
ce

pt
io

n
9

Object Oriented Programming

►You can create a single exception for all instances of a
template

– declare the exception outside of the template

►You can create an exception for each instance of the
template

– declare the exception inside the template

Exceptions With TemplatesExceptions With Templates

365

Ex
ce

pt
io

n
9

Object Oriented Programming

class xSingleException {};

template <class T>
class Set {
private:

T *pType;
public:

Set();
T& operator[] (int index) const;

};

Single Template ExceptionSingle Template Exception

366

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>
class Set {
private:

T *pType;
public:

class xEachException {};
T& operator[] (int index) const;

};
// throw xEachException();

Each Template ExceptionEach Template Exception

367

Ex
ce

pt
io

n
9

Object Oriented Programming

►Single Exception (declared outside the template class)
catch (xSingleException)

►Each Exception (declared inside the template class)
catch (Set<int>::xEachException)

Catching Template ExceptionsCatching Template Exceptions

368

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►A function that might throw an exception can warn its
users by specifying a list of the exceptions that it can
throw.
class Zerodivide{/*..*/};
int divide (int, int) throw(Zerodividethrow(Zerodivide));

►If your function never throws any exceptions
bool equals (int, int) throw();

►Note that a function that is declared without an exception
specification such as bool equals (int, int); guarantees
nothing about its exceptions: It might throw any
exception, or it might throw no exceptions.

369

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►Exception Specifications Are Enforced At Runtime
►When a function attempts to throw an exception that it is

not allowed to throw according to its exception
specification, the exception handling mechanism detects
the violation and invokes the standard function
unexpected()unexpected().

►The default behavior of unexpected()unexpected() is to call
terminate()terminate(), which terminates the program.

►The default behavior can be altered, nonetheless, by using
the function set_unexpectedset_unexpected()().

370

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►Because exception specifications are enforced only at
runtime, the compiler might deliberately ignore code that
seemingly violates exception specifications.

►Consider the following:
int f(); //no exception specification

►What if f throws an exception
void g(int j) throw()
{

int result = f();
}

371

Ex
ce

pt
io

n
9

Object Oriented Programming

Concordance of Exception SpecificationConcordance of Exception Specification

C++ requires exception specification concordance in derived
classes. This means that an overriding virtual function in a
derived class has to have an exception specification that is at
least as restrictive as the exception specification of the
overridden function in the base class.

372

Ex
ce

pt
io

n
9

Object Oriented Programming

class BaseEx{};
class DerivedEx: public BaseEx{};
class OtherEx {};

class D: public A {
public:

void f() throw (DerivedEx); //OKOK
void g() throw (OtherEx); //errorerror
void h() throw (DerivedEx); //OKOK
void i() throw (BaseEx); //errorerror
void j() throw (BaseEx,OtherEx); //errorerror

};

class A {
public:

virtual void f() throw (BaseEx);
virtual void g() throw (BaseEx);
virtual void h() throw (DerivedEx);
virtual void i() throw (DerivedEx);
virtual void j() throw(BaseEx);

};

373

Ex
ce

pt
io

n
9

Object Oriented Programming

An exception could belong to two groups:

class Netfile_err : public Network_errNetwork_err, public File_system_errFile_system_err {
/* ... */

};

Netfile_err can be caught by functions dealing with network exceptions:

void f(){
try {

/ / something
}
catch (Network_err& e) {

// ...
}

}

Concordance of Exception SpecificationConcordance of Exception Specification

374

Ex
ce

pt
io

n
9

Object Oriented Programming

void g() {
try {

/ / something else
}
catch(File_system_err& e) {

/ / ...
}

}

375

Ex
ce

pt
io

n
9

Object Oriented Programming

void f() {
try {

throw EE() ;
}
catch(HH) {

// when do we get here?
}

}

The handler is invoked:
[1] If HH is the same type as EE.
[2] If HH is an unambiguous public base of EE.
[3] If HH and EE are pointer types and [1] or [2] holds for the
types to which they refer.
[4] If HH is a reference and [1] or [2] holds for the type to
which HH refers.

Exception MatchingException Matching

376

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management
When a function acquires a resource – that is, it opens a file,
allocates some memory from the free store, sets an access
control lock, etc., – it is often essential for the future running
of the system that the resource be properly released.

void use_file(const char* fn)
{

FILE* f = fopenfopen(fn,"w") ;
// use f
fclosefclose(f) ;

}

377

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management

Fault-tolerant implementation using try-catch:

void use_ file(const char* fn)
{

FILE* f = fopen(fn,"r") ;
try {

// use f
}
catch (Ex e) {

fclose(f) ;
throw e;

}
fclose(f) ;

}

void f(){
try {
…
use_file(“c:\\dat.txt”);
…
}
catch(SomeEx e){
}

}

378

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management
The problem with this solution is that it is verbose, tedious,
and potentially expensive.
class File_ptr {

FILE* p;
public:

File_ptr(const char* n, const char* a) { p = fopen(n,a) ; }
File_ptr(FILE* pp) { p = pp; }
~File_ ptr() { fclose(p) ; }
operator FILE*() { return p; }

};
void use_file(const char* fn) {

File_ptr f(fn,"r") ;
// use f

}

379

Ex
ce

pt
io

n
9

Object Oriented Programming

►The C++ standard includes some predefined exceptions,
in <stdexcept>

►The base class is exceptionexception
– Subclass logic_errorlogic_error is for errors which could have

been avoided by writing the program differently
– Subclass runtime_errorruntime_error is for other errors

Standard ExceptionsStandard Exceptions

380

Ex
ce

pt
io

n
9

Object Oriented Programming

class exception {
public:

exception() throw() ;
exception(const exception&) throw() ;
exception& operator=(const exception&) throw() ;
virtual ~exception() throw() ;
virtual const char*what() const throw() ;

private:
/ / ...

};

Standard ExceptionsStandard Exceptions

381

Ex
ce

pt
io

n
9

Object Oriented Programming

logic_errorlogic_error

iinvalid_argumentnvalid_argumentdomain_errordomain_error length_errorlength_error out_of_rangeout_of_range

Logic Error HierarchyLogic Error Hierarchy

382

Ex
ce

pt
io

n
9

Object Oriented Programming

runtime_errorruntime_error

overflow_erroroverflow_error range_errorrange_error

The idea is to use one of the specific classes (e.g. range_error)
to generate an exception

Runtime Error HierarchyRuntime Error Hierarchy

underunderflow_errorflow_error

383

Ex
ce

pt
io

n
9

Object Oriented Programming

// standard exceptions allow you to specify
// string information
throw overflow_error(“Doing float division in function div”);

// the exceptions all have the form:
class overflow_error : public runtime_error

{
public:

overflow_error(const string& what_arg)

: runtime_error(what_arg) {};

Data For Standard ExceptionsData For Standard Exceptions

384

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (overflow_error)
{

cout << “Overflow error” << endl;
}

catch (exception& e)
{

cout << typeid(e).name() << “: “ << e.what() << endl;
}

Catching Standard ExceptionsCatching Standard Exceptions

385

Ex
ce

pt
io

n
9

Object Oriented Programming

►catch (exception& e)
– Catches all classes derived from exception
– If the argument was of type exception, it would be

converted from the derived class to the exception
class

– The handler gets a reference to exception as an
argument, so it can look at the object

More Standard Exception DataMore Standard Exception Data

386

Ex
ce

pt
io

n
9

Object Oriented Programming

RTTI (RunTime Type Information)RTTI (RunTime Type Information)

► It's one of the more recent additions to C++ and isn't supported by
many older implementations. Other implementations may have
compiler settings for turning RTTI on and off.

► The intent of RTTI is to provide a standard way for a program to
determine the type of object during runtime.

►Many class libraries have already provided ways to do so for their
own class objects, but in the absence of built-in support in C++, each
vendor's mechanism typically is incompatible with those of other
vendors.

►Creating a language standard for RTTI should allow future libraries
to be compatible with each other.

387

Ex
ce

pt
io

n
9

Object Oriented Programming

What is RTTI for?What is RTTI for?

► Suppose you have a hierarchy of classes descended from a common
base. You can set a base class pointer to point to an object of any of
the classes in this hierarchy. Next, you call a function that, after
processing some information, selects one of these classes, creates an
object of that type, and returns its address, which gets assigned to a
base class pointer.

►How can you tell what kind of object it points to?

388

Ex
ce

pt
io

n
9

Object Oriented Programming

How does it work?How does it work?

C++ has three components supporting RTTI:
► dynamic_castdynamic_cast pointer

generates a pointer to a derived type from a pointer to a base
type, if possible. Otherwise, the operator returns 0, the null
pointer.

► typeidtypeid operator
returns a value identifying the exact type of an object.

► type_infotype_info structure
holds information about a particular type.

RTTI works only for classes with virtual functionsRTTI works only for classes with virtual functions

389

Ex
ce

pt
io

n
9

Object Oriented Programming

► The dynamic_cast operator is intended to be the most heavily used
RTTI component.
► It doesn't answer the question of what type of object a pointer
points to.
► Instead, it answers the question of whether you can safely assign
the address of the object to a pointer of a particular type.

dynamic_cast<>dynamic_cast<>

390

Ex
ce

pt
io

n
9

Object Oriented Programming

class Grand { // has virtual methods} ;
class Superb : public Grand { ... } ;
class Magnificent : public Superb { ... } ;

Grand * pg = new Grand;
Grand * ps = new Superb;
Grand * pm = new Magnificent;

Magnificent * p1 = (Magnificent *) pm; // #1
Magnificent * p2 = (Magnificent *) pg; // #2
Superb * p3 = (Magnificent *) pm; // #3

Which of the previous type casts are safe?

Superb pm = dynamic_cast<Superb *>(pg);

391

Ex
ce

pt
io

n
9

Object Oriented Programming

class Grand {
virtual void speak() ;

} ;
class Superb : public Grand {

void speak() ;
virtual void say() ;

} ;
class Magnificent : public Superb {

char ch ;
void speak() ;
void say() ;

} ;

for (int i = 0; i < 5; i++)
{

pg = getOne();
pg->speak();
...

392

Ex
ce

pt
io

n
9

Object Oriented Programming

►However, you can't use this exact approach to invoke the ssayay()
function; it's not defined for the Grand class.
►However, you can use the dynamic_castdynamic_cast operator to see if pg can
be type cast to a pointer to Superb.
►This will be true if the object is either type Superb or Magnificent.
In either case, you can invoke the ssayay() function safely:

if (ps = dynamic_cast<Superb *>(pg))
ps->say();

393

Ex
ce

pt
io

n
9

Object Oriented Programming

►typeid is an operator which allows you to access the type of
an object at runtime

►This is useful for pointers to derived classes
►typeid overloads ==, !=, and defines a member function

name
if(typeid(*carType) == typeid(Ford))

cout << “This is a Ford” << endl;

typeidtypeid

394

Ex
ce

pt
io

n
9

Object Oriented Programming

cout << typeid(*carType).name() << endl;
// If we had said:
// carType = new Ford();
// The output would be:
// Ford

► So:
cout << typeid(e).name()

returns the name of the exception

typeid().nametypeid().name

395

Ex
ce

pt
io

n
9

Object Oriented Programming

► The class exception has a member function what
virtual char* what();virtual char* what();

► This is inherited by the derived classes
►what() returns the character string specified in the throw statement for

the exception

e.what()e.what()

throw overflow_error(“Doing float division in function div”);

cout << typeid(e).name() << “: “ << e.what() << endl;

396

Ex
ce

pt
io

n
9

Object Oriented Programming

class xBadIndex : public runtime_error {
public:

xBadIndex(const char *what_arg = “Bad Index”)
: runtime_error(what_arg) {}

};
// we inherit the virtual function what
// default supplementary information character string

Deriving New exception ClassesDeriving New exception Classes

397

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

class Array{

private:

T *data ;

int Size ;

public:

Array(void);

Array(int);

class eNegativeIndex{};

class eOutOfBounds{};

class eEmptyArray{};

T& operator[](int) ;

};

398

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

Array<T>::Array(void){

data = NULL ;

Size = 0 ;

}

template <class T>

Array<T>::Array(int size){

Size = size ;

data = new T[Size] ;

}

399

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

T& Array<T>::operator[](int index){

if(data == NULL) throw eEmptyArray() ;

if(index < 0) throw eNegativeIndex() ;

if(index >= Size) throw eOutOfBounds() ;

return data[index] ;

}

400

Ex
ce

pt
io

n
9

Object Oriented Programming

Array<int> a(10) ;

try{

int b = a[200] ;

}

catch(Array<int>::eEmptyArray){

cout << "Empty Array" ;

}

catch(Array<int>::eNegativeIndex){

cout << "Negative Array" ;

}

catch(Array<int>::eOutOfBounds){

cout << "Out of bounds" ;

}

401

TEMPLATESTEMPLATES10

402

Te
m

pl
at

es
10

Object Oriented Programming

Sınıflardaki fonksiyonların gövdeleri incelendiğinde, yapılan işlemler
çoğu zaman, üzerinde işlem yapılan verinin tipinden bağımsızdır. Bu
durumda fonksiyonun gövdesi, verinin tipi cinsinden, parametrik
olarak ifade edilebilir:

intint abs(intint n) {
return (n<0) ? -n : n;

}

floatfloat abs(floatfloat n) {
return (n<0) ? -n : n;

}

longlong abs(longlong n) {
return (n<0) ? -n : n;

}

Kalıp-Parametrik Çok Şekillilik Nedir?Kalıp-Parametrik Çok Şekillilik Nedir?

403

Te
m

pl
at

es
10

Object Oriented Programming

►► CC
Her tip için farklı adlarda fonksiyonlar.
örnek mutlak değer fonksiyonları:

abs(), fabs(), fabsl(), labs(), cabs(), ...
►► CC++

Fonksiyonlara işlev yükleme bir çözüm olabilir mi?
İşlev yüklenen fonksiyonların gövdeleri değişmiyor !
Gövdeler tekrar ediliyor ⇒ Hata !

►► ÇöÇözzüümm
Tipi parametre kabul eden bir yapı : Template

404

Te
m

pl
at

es
10

Object Oriented Programming

template <class T>
inline T const& max (T const& a, T const& b){

return a<b?b:a;
}
int main(){
int i = 42;
std::cout << "max(7,i): " << ::max(7,i) << std::endl;
double f1 = 3.4;
double f2 = -6.7;
std::cout << "max(f1,f2): " << ::max(f1,f2) << std::endl;
std::string s1 = "mathematics"; std::string s2 = "math";
std::cout << "max(s1,s2): " << ::max(s1,s2) << std::endl;

}

Fonksiyon Kalıbı TanımlamakFonksiyon Kalıbı Tanımlamak

405

Te
m

pl
at

es
10

Object Oriented Programming

max(4,7) // Tamam: Her iki argüman int
max(4,4.2) // Hata: ilk T int, ikinci T double

max<double>(4,4.2) // Tamam
max(static_cast<double>(4),4.2) // Tamam

406

Te
m

pl
at

es
10

Object Oriented Programming

templatetemplate <class TT>

void printArrayprintArray(TT *array,const int size){

for(int i=0;i < size;i++)

cout << array[i] << " " ;

cout << endl ;

}

ÖrnekÖrnek

407

Te
m

pl
at

es
10

Object Oriented Programming

int main() {

int aa[3]={1,2,3} ;

double bb[5]={1.1,2.2,3.3,4.4,5.5} ;

char cc[7]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’ , ‘f’, ‘g’} ;

printArrayprintArray(aa,3) ;

printArrayprintArray(bb,5) ;

printArrayprintArray(cc,7) ;

return 0 ;

}

408

Te
m

pl
at

es
10

Object Oriented Programming

void printArrayprintArray(int *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] << " " ;

cout << endl ;

}

void printArrayprintArray(char *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] << "" ;

cout << endl ;

}

409

Te
m

pl
at

es
10

Object Oriented Programming

Gerçekte derleyici template ile verilmiş fonksiyon gövdesi için
herhangi bir kod üretmez. Çünkü template ile bazı verilerin tipi
parametrik olarak ifade edilmiştir. Verinin tipi ancak bu fonksiyona
ilişkin bir çağrı olduğunda ortaya çıkacaktır. Derleyici her farklı tip
için yeni bir fonksiyon oluşturacaktır. template yeni fonksiyonun
verinin tipine bağlı olarak nasıl oluşturulacağını tanımlamaktadır.

cout << "abs(" << int << ")=" << absabs(intintVarVar11);

intint intintVarVar11 = 5;

template’in İşleyişitemplatetemplate’in İşleyişi

410

Te
m

pl
at

es
10

Object Oriented Programming

►Programı ister template yapısı ile oluşturalım ister de template
yapısı olmaksızın oluşturalım, programın bellekte kaplayacağı alan
değişmeyecektir.

►Değişen, kaynak kodun boyu olacaktır. template yapısı
kullanılarak oluşturulan programın kaynak kodu, daha anlaşılır ve
hata denetimi daha yüksek olacaktır. Çünkü template yapısı
kullanıldığında değişiklik sadece tek bir fonksiyon gövdesinde
yapılacaktır.

template’in İşleyişitemplatetemplate’in İşleyişi

411

Te
m

pl
at

es
10

Object Oriented Programming

class TComplex { /* A class to define complex numbers */
float real,imag;

public:
: // other member functions

bool operator>(const TComplex&) const ;
};
bool TComplex::operator>(const TComplex& z) const {

float norm1 = real * real + imag * imag;
float norm2 = z.real * z.real + z.imag * z.imag;
if (norm1 > norm2) return true;

else return false;
}

Template Parametresi bir Nesne OlabilirTemplate Parametresi bir Nesne Olabilir

412

Te
m

pl
at

es
10

Object Oriented Programming

template <class TT>
const TT & maxmax(const TT &v1, const TT & v2)
{

if (v1 > v2) return v1;
else return v2;

}

int main(){
int i1=5, i2= -3;
char c1='D', c2='N';
float f1=3.05, f2=12.47;
TComplex z1(1.4,0.6), z2(4.6,-3.8);
cout << ::maxmax(i1,i2) << endl;
cout << ::maxmax(c1,c2) << endl;
cout << ::maxmax(f1,f2) << endl;
cout << ::maxmax(z1,z2) << endl;

}

413

Te
m

pl
at

es
10

Object Oriented Programming

templatetemplate <classclass atypeatype>
int find(const atypeatype *array, atypeatype value, int size) {

for(int j=0; j<size; j++)
if(array[j]==value) return j;

return -1;
}

charchar chrArr[] = {'a', 'c', 'f', 's', 'u', 'z'}; // array
charchar ch = 'f'; // value to find
intint intArr[] = {1, 3, 5, 9, 11, 13};
intint in = 6;
doubledouble dubArr[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
doubledouble db = 4.0;

Çoklu template Parametreli ArgümanlarÇoklu template Parametreli Argümanlar

414

Te
m

pl
at

es
10

Object Oriented Programming

int main()
{

cout << "\n 'f' in chrArray: index=" << find(chrArr, ch, 6);
cout << "\n 6 in intArray: index=" << find(intArr, in, 6);
cout << "\n 4 in dubArray: index=" << find(dubArr, db, 6);

}

415

Te
m

pl
at

es
10

Object Oriented Programming

hatahata

templatetemplate <classclass TT>
void swap(TT& x, TT& y) {

TT temp ;
temp = x ;
x = y ;
y = temp ;

}
charchar str1[100], str2[100] ;
intint i,j ;
TComplexTComplex c1,c2;
swap(i , j) ;
swap(c1 , c2) ;
swap(str1[50] , str2[50]) ;
swap(i , str[25]) ;
swap(str1 , str2) ;

ÖrnekÖrnek

416

Te
m

pl
at

es
10

Object Oriented Programming

void swap(charchar** x, charchar** y) {
int max_len ;
max_len = (strlen(s1)>=strlen(s2)) ? strlen(s1):strlen(s2);
charchar** temp = new char[max_len+1];
strcpy(temp,s1);
strcpy(s1,s2);

strcpy(s2,temp);
delete []temp;

}

417

Te
m

pl
at

es
10

Object Oriented Programming

Tipsiz Template ParametreleriTipsiz Template Parametreleri

template <typename T, int VAL>
T addValue (T const& x) {

return x + VAL;
}
template <double VAT>
double process (double v) {

return v * VAT;
}

doubledouble’’aa izin verilmezizin verilmez

418

Te
m

pl
at

es
10

Object Oriented Programming

İşlev Yüklemede Eşleme Önceliğiİşlev Yüklemede Eşleme Önceliği
► Kalıp dışında aynı imzaya sahip fonksiyon

► Kalıp ile tanımlanmış aynı imzaya sahip fonksiyon

templatetemplate <classclass TT>
void swap(TT& x, TT& y) {

TT temp ;
temp = x ;
x = y ;
y = temp ;

}

void swap(charchar** x, charchar** y) {
...

}

charchar str1[100], str2[100] ;
...
swap(str1 , str2) ;

419

Te
m

pl
at

es
10

Object Oriented Programming

►Template parametre sayısı birden fazla olabilir:
template <class atype, class btype>
btype find(const atype* array, atype value, btype size) {

for (btype j=0; j<size; j++)
if(array[j]==value) return j;

return (btype)-1;
}

►Bu durumda, derleyici sadece farklı dizi tipleri için değil aynı
zamanda aranan elemanın farklı tipte olması durumunda da farklı bir
kod üretecektir:

short int result,si=100;
int invalue=5;
result = find(intArr, invalue,si) ;

Çoklu template Parametreli YapılarÇoklu template Parametreli Yapılar

420

Te
m

pl
at

es
10

Object Oriented Programming

class Stack {
int st[MAX]; // array of ints
int top; // index number of top of stack

public:
Stack(); // constructor
void push(int var); // takes int as argument
int pop(); // returns int value

};

class LongStack {
long st[MAX]; // array of longs
int top; // index number of top of stack

public:
LongStack(); // constructor
void push(long var); // takes long as argument
long pop(); // returns long value

};

Sınıf template YapısıSınıf template Yapısı

421

Te
m

pl
at

es
10

Object Oriented Programming

template <class Type,int maxSize>
class Stack{

Type st[maxSize]; // stack: array of any type
int top; // number of top of stack

public:
Stack(){top = 0;} // constructor
void push(Type); // put number on stack
Type pop(); // take number off stack

};
template<class Type>
void Stack<Type>::push(Type var) // put number on stack
{

if(top > maxSize-1) // if stack full,
throw "Stack is full!"; // throw exception

st[top++] = var;
}

422

Te
m

pl
at

es
10

Object Oriented Programming

template<class Type>
Type Stack<Type>::pop() { // take number off stack

if(top <= 0) // if stack empty,
throw "Stack is empty!"; // throw exception

return st[--top];
}

// s2 is object of class Stack<long>
Stack<long,10> s2;
// push 2 longs, pop 2 longs
try{

s2.push(123123123L);
s2.push(234234234L);
cout << "1: " << s2.pop() << endl;
cout << "2: " << s2.pop() << endl;

}
// exception handler
catch(const char * msg) {

cout << msg << endl;
}

} // End of program

int main()
{

// s1 is object of class Stack<float>
Stack<float,20> s1;
// push 2 floats, pop 2 floats
try{

s1.push(1111.1);
s1.push(2222.2);
cout << "1: " << s1.pop() << endl;
cout << "2: " << s1.pop() << endl;

}
// exception handler
catch(const char * msg) {

cout << msg << endl;
}

423

Te
m

pl
at

es
10

Object Oriented Programming

Sınıf template Yapısının FarkıSınıf template Yapısının Farkı

►Template fonksiyonları için template parametresinin ne
olacağını derleyiciderleyici çağrı yapılan fonksiyon için imzaya
bakarak karar verir.
►Template sınıflar için tanımlandığında template
parametresini programcprogramcıı verir.

Stack<float,20> s1;
Stack<long,10> s2;

swap(c1 , c2) ;
swap(str1[50] , str2[50]) ;

424

Te
m

pl
at

es
10

Object Oriented Programming

locallocal typestypes

enumenum typestypes

Neler Template Parametresi Olamaz?Neler Template Parametresi Olamaz?

template <typename T> class List { … };
typedef struct { double x, y, z; } Point;
typedef enum { red, green, blue } *ColorPtr;
int main() {

struct Association { int* p; int* q; };
List<Assocation*> error1;
List<ColorPtr> error2;
List<Point>;

}

425

Te
m

pl
at

es
10

Object Oriented Programming

Static Polymorphism×Dynamic PolymorphismStatic Polymorphism×Dynamic Polymorphism

►Run-time Polymorphism vs. Compile-time Polymorphism
►Run-time Polymorphism:

– Inheritance & virtual functions
►Compile-time Polymorphism

– templates

426

Te
m

pl
at

es
10

Object Oriented Programming

class GeoObjGeoObj {
public:

virtual void draw() const = 0;
virtual Coord center_of_gravity() const = 0;

};
class CircleCircle : public GeoObjGeoObj {
public:
virtual void draw() const;
virtual Coord center_of_gravity() const;
…

};
class LineLine : public GeoObjGeoObj {
public:
virtual void draw() const;
virtual Coord center_of_gravity() const;
…

};

427

Te
m

pl
at

es
10

Object Oriented Programming

void void myDrawmyDraw ((GeoObjGeoObj const& const& objobj))
{ {

obj.drawobj.draw(); ();
} }

intint main() main()
{ {

Line l; Line l;
Circle c, c1, c2; Circle c, c1, c2;

myDraw(lmyDraw(l); //); // myDraw(GeoObjmyDraw(GeoObj&) => &) => Line::drawLine::draw() ()
myDraw(cmyDraw(c); //); // myDraw(GeoObjmyDraw(GeoObj&) => &) => Circle::drawCircle::draw() ()

RunRun--time Polymorphismtime Polymorphism

428

Te
m

pl
at

es
10

Object Oriented Programming

// concrete geometric object class Circle
// - not derived from any class
class CircleCircle {
public:
void draw() const;
Coord center_of_gravity() const;
…

};
// concrete geometric object class Line
// - not derived from any class
class LineLine {

public:
void draw() const;
Coord center_of_gravity() const;
…

};

429

Te
m

pl
at

es
10

Object Oriented Programming

template <typename GeoObj>
void myDraw (GeoObj const& obj)
{

obj.draw();
}

int main()
{

Line l;
Circle c, c1, c2;

myDraw(l); // myDraw<Line>(GeoObj&)=>Line::draw()
myDraw(c); // myDraw<Circle>(GeoObj&)=>Circle::draw()

CompileCompile--time Polymorphismtime Polymorphism

430

Te
m

pl
at

es
10

Object Oriented Programming

Advantages & DisadvantagesAdvantages & Disadvantages

Dynamic polymorphism in C++:
►Heterogeneous collections are handled elegantly.
►The executable code size is potentially smaller (because

only one polymorphic function is needed, whereas distinct
template instances must be generated to handle different
types).

►Code can be entirely compiled; hence no implementation
source must be published (distributing template libraries
usually requires distribution of the source code of the
template implementations).

431

Te
m

pl
at

es
10

Object Oriented Programming

Advantages & DisadvantagesAdvantages & Disadvantages
In contrast, the following can be said about static

polymorphism in C++:
►Collections of built-in types are easily implemented. More

generally, the interface commonality need not be
expressed through a common base class.

►Generated code is potentially faster (because no
indirection through pointers is needed a priori and
nonvirtual functions can be inlined much more often)

►Concrete types that provide only partial interfaces can still
be used if only that part ends up being exercised by the
application.

432

Te
m

pl
at

es
10

Object Oriented Programming

New Approaches–Design PatternsNew Approaches–Design Patterns
►A Design Pattern

– “Bridge Pattern”
► Inheritance based implementation

433

Te
m

pl
at

es
10

Object Oriented Programming

New Approaches–Design PatternsNew Approaches–Design Patterns

►Implementation with template

434

Generic Programming Generic Programming
((with with STLSTL in in C++)C++)11

435

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Nesneye dayalı programlamada, verinin birincil öneme sahip
programlama birimi olduğunu belirtmiştik. Veri, fiziksel yada soyut bir
çok büyüklüğü modelleyebilir. Bu model oldukça basit yada karmaşık
olabilir. Her nasıl olursa olsun, veri mutlaka bellekte saklanmaktadır ve
veriye benzer biçimlerde erişilmektedir. C++, oldukça karmaşık veri
tiplerini ve yapılarını oluşturmamıza olanak sağlayan mekanizmalara
sahiptir. Genel olarak, programların, bu veri yapılarına belirli bazı
biçimlerde eriştiğini biliyoruz:

array, list, stack, queue, vector, map, ...

STL kütüphanesi verinin bellekteki organizasyonuna, erişimine ve
işlenmesine yönelik çeşitli yöntemler sunmaktadır. Bu bölümde bu
yöntemleri inceleyeceğiz.

Standard Template LibraryStandard Template Library

436

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Standard Template Library (STL) Hewlett Packard’ın Palo Alto (
California)’daki laboratuarlarında Alexander Stepanov ve Meng Lee
tarafından geliştirilmiştir.

1970’lerin sonlarında Alexander Stepanov bir kısım algoritmaların veri
yapısının nasıl depolandıklarından bağımsız olduklarını gözlemledi.
Örneğin, sıralama algoritmalarında sıralanacak sayıların bir dizide mi?
yoksa bir listede mi? bulunduğunun bir önemi yoktur. Değişen sadece
bir sonraki elemana nasıl erişildiği ile ilgilidir. Stepanov bu ve benzeri
algoritmaları inceleyerek, algoritmaları veri yapısından bağımsız olarak
performanstan ödün vermeksizin soyutlamayı başarmıştır. Bu fikrini
1985’de Generic ADA dilinde gerçekleştirmiştir. Ancak o dönemde
henüz C++’da bir önceki bölümde incelediğimiz Template yapısı
bulunmadığı için bu fikrini C++’da ancak 1992 yılında
gerçekleştirebilmiştir.

437

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Bir yazılım ürününün bileşenlerini, üç boyutlu uzayda bir nokta
olarak düşünebiliriz :

veri tipi : int, float, ...

algoritma :
sıralama, kaynaştırma, arama ...

kap :
dizi, liste, kuyruk ...

j

k

i

(sıralama,int,array)
(sıralama,double,list)
(sıralama,int,list)
...

(sıralama,array)
(sıralama,list)
...

(sıralama)

templatetemplate

genericgeneric progprog..

Generic ProgrammingGeneric Programming

438

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

STL üç temel bileşenden oluşmaktadır:

• AlgoritmaAlgoritma,

• Kap (Kap (ContainerContainer):): nesneleri depolamak ve yönetmekten
sorumlu nesne,

• Lineer Kaplar : Vector, Deque, List

• Asosyatif Kaplar : Set, Map, Multi-set, Multi-map

• Yineleyici (Yineleyici (IteratorIterator)): algoritmanın farklı tipte kaplarla
çalışmasını sağlayacak şekilde erişimin soyutlar.

STL BileşenleriSTL Bileşenleri

439

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

CCoonnttaaiinneerr DDeessccrriippttiioonn RReeqquuiirreedd HHeeaaddeerr
bitset A set of bits <bitset>
deque A double-ended queue <deque>

list A linear list <list>

map Stores key/value pairs in which each key
is associated with only one value <map>

multimap
Stores key/value pairs in which one key
may be associated with two or more
values

<map>

multiset A set in which each element is not
necessarily unique <set>

priority_queue A priority queue <queue>
queue A queue <queue>

set A set in which each element is unique <set>
stack A stack <stack>
vector A dynamic array <vector>

KaplarKaplar

440

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

C++’da sabit boyutlu dizi tanımlamak yürütme zamanında belleğin ya kötü kullanılmasına
yada dizi boyunun yetersiz kalmasına neden olmaktadır.

STL kütüphanesindeki vector kabı bu sorunları gidermektedir.

STL kütüphanesindeki list kabı, bağlantılı liste yapısıdır.

deque (Double-Ended QUEue) kabı, yığın ve kuyruk yapılarının birleşimi olarak
düşünülebilir. deque kabı her iki uçtan veri eklemeye ve silmeye olanak sağlamaktadır.

VectorVector Relocating,
expandable array Quick random access (by index number).
Slow to insert or erase in the middle.

Quick to insert or erase at end.

ListList Doubly linked list Quick to insert or delete at any location.
Quick access to both ends.

Slow random access.
DequeDeque Like vector,

but can be accessed
at either end Quick random access (using index number).
Slow to insert or erase in the middle.

Quick to insert or erase (push and pop) at
either the beginning or the end.

441

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

VectorVector
►#include <vector>
►Kurucular

– Boş: vector<string> object;
– Belirli sayıda eleman:

• vector<string> object(5,string(“hello”)) ;
• vector<string> container(10)
• vector<string> object(&container[5], &container[9]);
• vector<string> object(container) ;

442

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Vector Member FunctionsVector Member Functions
►Type &vector::back(): returns the reference to the last element
►Type &vector::front():returns the reference to the first element
►vector::iterator vector::begin()
►vector::iterator vector::end()
►vector::clear()
►bool vector::empty()
►vector::iterator vector::erase()

– erase(pos)
– erase(first,beyond)

443

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Vector Member FunctionsVector Member Functions
►vector::insert

– vector::iterator insert(pos)
– vector::iterator insert(pos,value)
– vector::iterator insert(pos,first,beyond)
– vector::iterator insert(pos,n,value)

►void vector::pop_back()
►void vector::push_back(value)
►vector::resize()

– resize(n,value)
►vector::swap()

– vector<int> v1(7),v2(10) ;
– v1.swap(v2);

►unsigned vector::size()

444

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

EmptyEmpty

v = (5,5,3)v = (5,5,3)

v = (3)v = (3)

vector<int> v;
cout << v.capacity() << v.size() ;
v.insert(v.end(),3) ;
cout << v.capacity() << v.size() ;
v.insert (v.begin(), 2, 5);

v = (9,9,9,9,5,5,3) w=(5,v = (9,9,9,9,5,5,3) w=(5,5,3)5,3)
w = (9,9,9,9,5,5,3)w = (9,9,9,9,5,5,3)
w = (9,9,9,9)w = (9,9,9,9)vector<int> w (4,9);

w.insert(w.end(), v.begin(), v.end());
w.swap(v) ;

w = (5,3)w = (5,3)w.erase(w.begin());
w.erase(w.begin(),w.end()) ;
cout << w.empty() ? “Empty” : “not Empty”

ÖrnekÖrnek

445

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

55

55

v = (3)v = (3)

33

v = (5,3)v = (5,3)

vector<int> v;
v.insert(v.end(),3) ;
v.insert(v.begin(),5) ;
cout << v.front() << endl;
cout << v.back() ;
v.pop_back();
cout << v.back() ;

#define __USE_STL

// STL include files

#include <vector>

#include <list>

446

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

ListList
►#include <list>
►Eklenecek eleman sayısı belirli olmadığı durumlarda uygundur
►Kurucular

– Boş: list<string> object;
– Belirli sayıda eleman:

• list<string> object(5,string(“hello”)) ;
• list<string> container(10)
• list<string> object(&container[5], &container[9]);
• list<string> object(container) ;

447

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

List Member FunctionsList Member Functions
►Type &list::back(): returns the reference to the last element
►Type &list::front():returns the reference to the first element
► list::iterator list::begin()
► list::iterator list::end()
► list::clear()
►bool list::empty()
► list::iterator list::erase()

– erase(pos)
– erase(first,beyond)

448

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

List Member FunctionsList Member Functions
► list::insert

– list::iterator insert(pos)
– list::iterator insert(pos,value)
– list::iterator insert(pos,first,beyond)
– list::iterator insert(pos,n,value)

►void list::pop_back()
►void list::push_back(value)
► list::resize()

– resize(n,value)
►void list<type>::merge(list<type> other)
►void list<type>::remove(value)
►unsigned list::size() list1.cpp

list2.cpp

449

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

List Member FunctionsList Member Functions
► list::sort()
►void list::splice(pos,object)
►void list::unique(): operates on sorted list, removes consecutive

identical elements

list3.cpp

list4.cpp

450

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

QueueQueue
►#include <queue>
►FIFO (=First In First Out)
►Kurucular

– Boş: queue<string> object;
– Kopya Kurucu: queue<string> object(container) ;

451

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Queue Member FunctionsQueue Member Functions
►Type &queue::back(): returns the reference to the last

element
►Type &queue::front(): returns the reference to the first

element
►bool queue::empty()
►void queue::push(value)
►void queue::pop()

452

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Priority_QueuePriority_Queue
►#include <queue>
►Temel olarak queue ile aynı
►Kuyruğa ekleme belirli bir önceliğe göre yürütülür
►Öncelik: operator<()

priqueue1.cpp

priqueue2.cpp

453

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Priority_Queue Member FunctionsPriority_Queue Member Functions
►Type &queu::back(): returns the reference to the last

element
►Type &queue::front():returns the reference to the first

element
►bool queue::empty()
►void queue::push(value)
►void queue::pop()

454

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

DequeDeque
►#include <deque>
►Head &Tail, Doubly Linked
►deque<string> object

• deque<string> object(5,string(“hello”)) ;
• deque<string> container(10)
• deque<string> object(&container[5], &container[9]);
• deque<string> object(container) ;

455

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Deque Member FunctionsDeque Member Functions
►Type &deque::back(): returns the reference to the last element
►Type &deque::front():returns the reference to the first element
►deque::iterator deque::begin()
►deque::iterator deque::end()
►deque::clear()
►bool deque::empty()
►deque::iterator deque::erase()

– erase(pos)
– erase(first,beyond)

456

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Deque Member FunctionsDeque Member Functions
►vector::insert

– deque::iterator insert(pos)
– deque::iterator insert(pos,value)
– deque::iterator insert(pos,first,beyond)
– deque::iterator insert(pos,n,value)

►void deque::pop_back()
►void deque::push_back(value)
►deque::resize()

– resize(n,value)

►deque::swap()
►unsigned deque::size()

457

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

► Set sıralı küme oluşturmak için kullanılır.
#include <set>
using namespace std;
int main(){

string names[] = {"Katie", "Robert","Mary", "Amanda", "Marie"};
set<string> nameSet(names, names+5);// initialize set to array
set<string>::const_iterator iter; // iterator to set
nameSet.insert("Jack"); // insert some more names
nameSet.insert("Larry");
nameSet.insert("Robert"); // no effect; already in set
nameSet.insert("Barry");
nameSet.erase("Mary"); // erase a name

Asosyatif Kaplar: Set, Multiset, Map, MultimapAsosyatif Kaplar: Set, Multiset, Map, Multimap

458

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

cout << "\nSize=" << nameSet.size() << endl;
iter = nameSet.begin(); // display members of set
while(iter != nameSet.end())

cout << *iter++ << '\n';
string searchName; // get name from user
cout << "\nEnter name to search for: ";
cin >> searchName; // find matching name in set
iter = nameSet.find(searchName);
if(iter == nameSet.end())

cout << "The name" << searchName << " is NOT in the set.";
else

cout << "The name " << *iter << " IS in the set.";
}

459

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

// set2.cpp set
int main() {

set<string> city;
set<string>::iterator iter;
city.insert("Trabzon"); // insert city names
city.insert("Adana");
city.insert("Edirne");
city.insert("Bursa");
city.insert(“Istanbul");
city.insert("Rize");
city.insert("Antalya");
city.insert(“Izmir");
city.insert("Hatay");
city.insert("Ankara");
city.insert("Zonguldak");

460

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

iter = city.begin(); // display set
while(iter != city.end())

cout << *iter++ << endl;

string lower, upper; // display entries in range
cout << "\nEnter range (example A Azz): ";
cin >> lower >> upper;
iter = city.lower_bound(lower);
while(iter != city.upper_bound(upper))

cout << *iter++ << endl;
}

461

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

MapMap
►#include <map>
►Key/Value pairs
►map<string,int> object

• pair<string,int>
pa[]= {

pair<string,int>(“one”,1),
pair<string,int>(“two”,2),
pair<string,int>(“three”,3),
pair<string,int>(“four”,4)

} ;
• map<string,int> object(&pa[0],&pa[3]);

►object[“two”]

462

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Map Member FunctionsMap Member Functions
►map::insert

– pair<map::iterator,bool> insert(keyvalue)
– pair<map::iterator,bool> insert(pos,keyvalue)
– void insert(first,beyond)

►map::iterator map::lower_bound(key)
►map::iterator map::upper_bound(key)
►pair<map::iterator,map::iterator> map::equal_range(key)
►map::iterator map::find(key)

– returns map::end() if not found

►unsigned deque::size()

463

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Map Member FunctionsMap Member Functions
►map::iterator map::begin()
►map::iterator map::end()
►map::clear()
►bool map::empty()
►map::iterator map::erase()

– erase(keyvalue)
– erase(pos)
– erase(first,beyond)

464

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

int main(){

map<string,int> city_num;

city_num["Trabzon"]=61;

...

string city_name;

cout << "\nEnter a city: ";

cin >> city_name;

if (city_num.end()== city_num.find(city_name))

cout << city_name << " is not in the database" << endl;

else

cout << "Number of " << city_name << ": " << city_num[city_name];

}

ÖrnekÖrnek

465

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

MultiMapMultiMap
►#include <map>
►Main difference between map and multimap is that the

multimap supports multiple entries of values having the
same keys and the same values.

466

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

İİİşşşllleeemmm DDDööönnnüüüşşş DDDeeeğğğeeerrriii YYYüüürrrüüütttüüüllleeennn İİİşşşllleeemmm UUUyyyggguuulllaaannnaaabbbiiillldddiiiğğğiii
KKKaaappplllaaarrr

a.front() T& *a.begin() vector, list, deque
a.back() T& *a.end() vector, list, deque

a.push_front(x) void a.insert(a.begin(),x) list,deque
a.push_back(x) void a.insert(a.end(),x) vector, list,deque
a.pop_front() void a.erase(a.begin()) list,deque
a.pop_back() void a.erase(--a.end()) list,deque

a[n] T& *(a.begin()+n) vector,deque

İİİşşşllleeemmm YYYüüürrrüüütttüüüllleeennn İİİşşşllleeemmm
a.size() a.end() – a.begin()

a.max_size()
a.empty() a.size() == 0

ÖzetçeÖzetçe

467

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Random Access
Iterators

BIDIRECTIONAL
Iterators

FORWARD
Iterators

INPUT
Iterators

OUTPUT
Iterators

vector, vector, dequedeque listlist

Iterators : Genelleştirilmiş İşaretçi

OutputIterator r;
InputIterator r;
ForwardIterator r;
BidirectionalIterator r;
RandomIterator r ;

IteratorsIterators

468

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Iterator Capability Input Output Forward Bidirectional Random Access
Dereferencing read yes no yes yes yes
Dereferencing write no yes yes yes yes
Fixed and repeatable order no no yes yes yes
++i
i++

yes yes yes yes yes

--i
i--

no no no yes yes

i[n] no no no no yes
i + n no no no no yes
i - n no no no no yes
i += n no no no no yes
i -=n no no no no yes

Iterator CapabilityIterator Capability

469

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Hata

OutputIterator a ;
…
*a=t ;
t = *a ;

Hata

OutputIterator r ;
…
*r=0 ;
*r=1 ;

Hata

OutputIterator r ;
…
r++ ;
r++ ;

Hata

OutputIterator i,j ;
…
i=j ;
*i++=a ;
*j=b ;

Output IteratorsOutput Iterators

470

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

John Tom Peter Mary …… Andy Bill

range[v.begin(),v.end()]range[v.begin(),v.end()]

list<int> l (1,1) ;
l.push_back(2) ; // list l : 1 2
list<int>::iterator first=l.begin() ;
list<int>::iterator last=l.end() ;
while(last != first){

-- last ;
cout << *last << “ ” ;

}

Forward and Bidirectional IteratorsForward and Bidirectional Iterators

471

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class ForwardIterator, class T>
ForwardIterator find_linear(ForwardIterator first,

ForwardIterator last, T& value){
while(first != last) if(*first++ == value) return first;

else return last ;
}

vector<int> v(3,1) ;
v.push_back(7); // vector : 1 1 1 7
vector<int>::iterator i=find_linear(v.begin(), v.end(),7) ;
if(i != v.end()) cout << *i ;
else cout << “not found!” ;

472

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class Compare>
void bubble_sort(BidirectionalIterator first,

BidirectionalIterator last, Compare comp){
BidirectionalIterator left = first , right = first ;
right ++ ;

while(first != last){
while(right != last){

if(comp(*right,*left))
iter_swap(left,right) ;

right++ ;
left++;

}
last -- ;
left = first ; right = first ;

}
}

list<int> l ;
bubble_sort(l.begin(),l.end(),less<int>()) ;
bubble_sort(l.begin(),l.end(),greater<int>()) ;

Bubble SortBubble Sort

473

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

vector<int> v(1,1) ;
v.push_back(2) ; v.push_back(3) ; v.push_back(4) ; // v : 1 2 3 4
vector<int>::iterator i=v.begin() ;
vector<int>::iterator j=i+2;
cout << *j << “ ” ;
i += 3 ; cout << *i << “” ;
j = i – 1 ; cout << *j << “” ;
j -= 2 ; cout << *j << “” ;
cout << v[1] << endl ;
(j<i) ? cout << “j < i” : cout << “not j < i” ; cout << endl ;
(j>i) ? cout << “j > i” : cout << “not j > i” ; cout << endl ;
(j>=i) && (j<=i)? cout << “j and i equal” : cout << “j and i not equal > i” ; cout <<
endl ;
i = j ;
j= v.begin();
i = v.end ;
cout << “iterator distance end – begin : ” << (i-j) ;

Random Access IteratorsRandom Access Iterators

474

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Iterator OperatorsIterator Operators
►STL provides two functions that return the number of

elements between two elements and that jump from one
element to any other element in the container:
– distance()
– advance()

475

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

distance()distance()
►The distance() function finds the distance between the

current position of two iterators.
template<class RandomAccessIterator>
iterator_traits<RandomAccessIterator>::difference_type
distance(RandomAccessIterator first, RandomAccessIterator

last) {
return last – first;

}
template<class InputIterator>
iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last) {
iterator_traits<InputIterator>::difference_type n = 0;

while (first++ != last) ++n;
return n;

}

476

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

advance()advance()
►So far, we have seen how we can move iterators forward

and backward by using the increment and decrement
operators, respectively. We can also move random access
iterators several steps at a time using the addition and
subtraction functions. Other types of iterators, however,
do not have the addition and subtraction functions.

►The STL provides the advance() function to move any
iterator—except the output iterators—several steps at a
time:

477

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class InputIterator, class Distance>
void advance(InputIterator& ii, Distance& n) {

while (n--) ++ii;
}
template<class BidirectionalIterator, class Distance>
void advance(BidirectionalIterator & bi, Distance& n) {

if (n >= 0) while (n--) ++bi;
else while (n++) --bi;

}
template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& ri, Distance& n) {

ri += n;
}

478

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Designing Generic AlgorithmDesigning Generic Algorithm

implementing an algorithm such as computing the maximum value inimplementing an algorithm such as computing the maximum value in a a
sequence can be done without knowing the details of how values asequence can be done without knowing the details of how values are re
stored in that sequence:stored in that sequence:
template <class Iterator> template <class Iterator>
Iterator Iterator max_elementmax_element (Iterator beg, // refers to start of collection (Iterator beg, // refers to start of collection

Iterator end) // refers to end of collecIterator end) // refers to end of collection tion
{ {

……
} }

479

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

const int * binary_search(const int * array, int n, int x){
const int *lo = array, *hi = array + n , *mid ;
while(lo != hi) {

mid = lo + (hi-lo)/2 ;
if(x == *mid) return mid ;
if(x < *mid) hi = mid ;
else lo = mid + 1 ;

}
return 0 ;

}

Binary Search for Integer ArrayBinary Search for Integer Array

480

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class T>
const T * binary_search(const T * array, int n, T& x){

const T *lo = array, *hi = array + n , *mid ;
while(lo != hi) {

mid = lo + (hi-lo)/2 ;
if(x == *mid) return mid ;
if(x < *mid) hi = mid ;
else lo = mid + 1 ;

}
return 0 ;

}

Binary Search─Template Solution (Form-1)Binary Search─Template Solution (Form-1)

481

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class T>
const T * binary_search(T * first,T * last, T& x){

const T *lo = first, *hi = last , *mid ;
while(lo != hi) {

mid = lo + (hi-lo)/2 ;
if(x == *mid) return mid ;
if(x < *mid) hi = mid ;
else lo = mid + 1 ;

}
return last ;

}

Binary Search─Template Solution (Form-2)Binary Search─Template Solution (Form-2)

482

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class RandomAccessIterator,class T>
const T * binary_search(RandomAccessIterator first,

RandomAccessIterator last, T& value){
RandomAccessIterator not_found = last, mid ;
RandomAccessIterator lo= first, hi=last ;

while(lo != hi) {
mid = lo + (hi-lo)/2 ;
if(value == *mid) return mid ;
if(value < *mid) hi = mid ;
else lo = mid + 1 ;

}
return not_found ;

}

Generic Binary SearchGeneric Binary Search

483

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Algorithm Purpose
find Returns first element equivalent to a specified value
count Counts the number of elements that have a specified value

equal Compares the contents of two containers and returns true if
all corresponding elements are equal

search Looks for a sequence of values in one container that
correspond with the same sequence in another container

copy Copies a sequence of values from one container to another
(or to a different location in the same container)

swap Exchanges a value in one location with a value in another

iter_swap Exchanges a sequence of values in one location with a
sequence of values in another location

fill Copies a value into a sequence of locations

sort Sorts the values in a container according to a specified
ordering

merge Combines two sorted ranges of elements to make a larger
sorted range

accumulate Returns the sum of the elements in a given range

for_each Executes a specified function for each element in the
container

STL AlgorithmsSTL Algorithms
#i

nc
lu

de
 <

al
go

rit
hm

>

484

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

find()find()
►The find() algorithm looks for the first element in a

container that has a specified value.
►find() example program shows how this looks when we’re

trying to find a value in an array of int’s.

485

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

ExampleExample
#include <iostream>

#include <algorithm> //for find()

int arr[] = { 11, 22, 33, 44, 55, 66, 77, 88 };

int main() {

int* ptr;

ptr = find(arr, arr+8, 33); //find first 33

cout << “First object with value 33 found at offset ”

<< (ptr-arr) << endl;

return 0;

}

486

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

count()count()
►count() counts how many elements in a container have a

specified value and returns this number.

#include <iostream>
#include <algorithm> //for count()
int arr[] = { 33, 22, 33, 44, 33, 55, 66, 77 };

int main(){
int n = count(arr, arr+8, 33); //count number of 33’s
cout << “There are “ << n << ” 33’s in arr.” << endl;
return 0;

}

487

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

count_if()count_if()
►size_t count_if(InputIterator first, InputIterator last,

Predicate predicate)
#include <vector>
#include <algorithm> //for count_if()
int a[] = { 1, 2, 3, 4, 3, 4, 2, 1, 3 };
class Odd {

public:
bool operator()(int val){ return val&1 ; }

};
int main(){

std::vector<int> iv(a,a+9) ;
std::cout << count_if(iv.begin(),iv.end(),Odd()) ;
return 0 ;

}

488

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

equal()equal()
►bool equal(InputIterator first, InputIterator last,

InputIterator otherFirst)
►bool equal(InputIterator first, InputIterator last,

InputIterator otherFirst,Predicate predicate)

489

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

class CaseString {
public:

bool operator()(string const &first,string const &second){
return !strcasecmp(first.c_str(),second.c_str()) ;

}
};
int main(){

string
first[]={"Alpha","bravo","Charley","echo","Delta","golf"},
second[]={"alpha","Bravo","charley","Echo","delta","Golf"} ;
std::string *last = first + sizeof(first)/sizeof(std::string) ;
cout << (equal(first,last,second)?"Equal":"Not equal") ;
cout << (equal(first,last,second,CaseString())?"Equal":

"Not equal") ;
return 0 ;

}

490

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

fill(),fill_n()fill(),fill_n()
►void fill(ForwardIterator first,ForwardIterator last,

Type const &value)

vector<int> iv(8) ;
fill(iv.begin(),iv.end(),8) ;

►void fill_n(ForwardIterator first,Size n,
Type const &value)

vector<int> iv(8) ;
fill_n(iv.begin()+2,4,8) ;

491

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

sort()sort()
►You can guess what the sort() algorithm does.

Here’s an example:

#include <iostream>
#include <algorithm>
int arr[] = {45, 2, 22, -17, 0, -30, 25, 55};
int main(){

sort(arr, arr+8); //sort the numbers
for(int j=0; j<8; j++) //display sorted array

cout << arr[j] << ‘ ‘;
return 0;

}

492

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

search()search()
►Some algorithms operate on two containers at once. For instance,

while the find() algorithm looks for a specified value in a single
container, the search() algorithm looks for a sequence of values,
specified by one container, within another container.

int source[] = { 11, 44, 33, 11, 22, 33, 11, 22, 44 };
int pattern[] = { 11, 22, 33 };
int main(){
int* ptr;
ptr = search(source, source+9, pattern, pattern+3);
if(ptr == source+9) cout << “No match found\n”;
else cout << “Match at ” << (ptr - source) ;
return 0;

}

493

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

binary_search()binary_search()
►#include <algorithm>

– bool binary_search(ForwardIterator first, ForwardIterator last,Type const
&value)

– bool binary_search(ForwardIterator first, ForwardIterator last,Type const
&value,Comparator comp)

494

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

merge()merge()

#include <iostream>
#include <algorithm> //for merge()
using namespace std;
int src1[] = { 2, 3, 4, 6, 8 };
int src2[] = { 1, 3, 5 };
int dest[8];
int main(){ //merge src1 and src2 into dest

merge(src1, src1+5, src2, src2+3, dest);
for (int j=0; j<8; j++) //display dest

cout << dest[j] << ‘ ‘;
cout << endl;
return 0;

}

495

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

accumulate()accumulate()
►#include <numeric>

– Type accumulate(InputIterator first, InputIterator last,Type init)
operator+() is applied to all elements and the result is returned

– Type accumulate(InputIterator first, InputIterator last,
Type

init,BinaryOperation op)
binary operator op() is applied to all elements

496

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

#include <iostream>
#include <numeric>
#include <vector>

int main(){
int ia[]={1,2,3,4} ;
std::vector<int> iv(ia,ia+4) ;

cout << accumulate(iv.begin(),iv.end(),int()) << std::endl ;
cout << accumulate(iv.begin(),iv.end(),int(1),multiplies<int>())

<< endl ;
system("pause") ;
return 0 ;

}

497

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

adjacent_difference()adjacent_difference()
►#include <numeric>

– OutputIterator adjacent_difference(InputIterator first, InputIterator
last,OutputOperator result)

– OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputOperator result,BinaryOperation op)

498

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

#include <iostream>
#include <numeric>
#include <vector>
int main(){

int ia[]={1,3,7,23} ;
std::vector<int> iv(ia,ia+4) ;
std::vector<int> ov(iv.size()) ;
adjacent_difference(iv.begin(),iv.end(),ov.begin()) ;
copy(ov.begin(),ov.end(),std::ostream_iterator<int>(cout," ")) ;
std::cout << std::endl ;

adjacent_difference(iv.begin(),iv.end(),ov.begin(),minus<int>()) ;
copy(ov.begin(),ov.end(),ostream_iterator<int>(cout," ")) ;
system("pause") ;
return 0 ;

}

499

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

copy(), copy_backward()copy(), copy_backward()
►#include <algorithm>

– OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator destination)

– BidirectionalIterator copy(InputIterator first, InputIterator last,
BidirectionalIterator last2)

500

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

for_eachfor_each
►Function for_each(ForwardIterator first,

ForwardIterator last,Function func)

void lowerCase(char &c){
c = static_cast<char>(tolower(c)) ;

}
void capitalizedOutput(std::string const &str){

char *tmp = strcpy(new char[str.size()+1],str.c_str()) ;
std::for_each(tmp+1,tmp+str.size(),lowerCase) ;

tmp[0] = toupper(*tmp) ;
std::cout << tmp << " " ;
delete []tmp;

}
foreach1.cpp

501

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

int main(){
std::string

sarr[] =
{

"alpha", "BRAVO", "charley", "ECHO", "delta",
"FOXTROT", "golf", "HOTEL"

},
*last = sarr + sizeof(sarr) / sizeof(std::string) ;

void (*f)(std::string const&) ;
f = std::for_each(sarr,last,capitalizedOutput) ;
std::cout << std::endl ;
f("alpha") ;
std::cout << std::endl ;
system("pause") ;
return 0 ;

}

502

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Another ExampleAnother Example
class Show{

int d_count ;
public:

void operator()(std::string &str){
for_each(str.begin(),str.end(),lowerCase) ;
str[0] =toupper(str[0]);
std::cout << ++d_count << " " << str << "; " ;

}
int getCount() const{

return d_count ;
}

} ;

foreach2.cpp

503

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

int main(){
std::string

sarr[] = {
"alpha", "BRAVO", "charley", "ECHO", "delta",
"FOXTROT", "golf", "HOTEL"

},
*last = sarr + sizeof(sarr) / sizeof(std::string) ;

cout << for_each(sarr,last,Show()).getCount() << endl ;
system("pause") ;
return 0 ;

}

504

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

transform()transform()
int _3_n_plus_1(int n) { void show(int n) {

return (n&1) ? 3*n+1 : n/2 ; std::cout << n << " " ;
} }
int main(){

int iArr[] = { 5,2,23,76,33,44} ;
std::for_each(iArr,iArr+6,show) ; std::cout << std::endl ;
std::transform(iArr,iArr+6,iArr,_3_n_plus_1) ;
std::for_each(iArr,iArr+6,show) ;
system("pause") ;
return 0 ;

}

transform.cpp

505

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

Predicates in <functional>Predicates in <functional>
►When the type of the return value of a unary function

object is bool, the function is called a unary predicate. A
binary function object that returns a bool value is called a
binary predicate.

►The Standard C++ Library defines several common
predicates in <functional>

506

G
en

er
ic

 P
ro

gr
am

m
in

g
11

Object Oriented Programming

template<class T>
class equal_to : binary_function<T, T, bool> {
bool operator()(T& arg1, T& arg2) const { return arg1 == arg2; }
};

507

STREAMSSTREAMS12

508Object Oriented Programming

St
re

am
s

12

►A streamstream is a general name given to a flow of data in an
input/output situation. For this reason, streams in C++ are
often called iostreamsiostreams.
►An iostreamiostream can be represented by an object of a
particular class.
►For example, you’ve already seen numerous examples of
the cincin and coutcout stream objects used for input and output.

StreamsStreams

509Object Oriented Programming

St
re

am
s

12

Advantages of StreamsAdvantages of Streams
►Old-fashioned C programmers may wonder what advantages there
are to using the stream classes for I/O instead of traditional C
functions such as printf() and scanf() and—for files—fprintf(),
fscanf(), and so on.
►One reason is that the stream classes are less prone to errors. If
you’ve ever used a %d formatting character when you should have
used a %f in printf(), you’ll appreciate this. There are no such
formatting characters in streams, because each object already knows
how to display itself. This removes a major source of program bugs.
►Second, you can overload existing operators and functions, such as
the insertion (<<) and extraction (>>) operators, to work with classes
you create. This makes your classes work in the same way as the
built-in types, which again makes programming easier and more error
free (not to mention more aesthetically satisfying).

510Object Oriented Programming

St
re

am
s

12

ios

istream ostream fstreambase

iostream ifstream ofstream

fstream

Stream Class HierarchyStream Class Hierarchy

511Object Oriented Programming

St
re

am
s

12

►The iosios class is the base class for the iostreamiostream hierarchy.
–contains many constants and member functions common
to input and output operations of all kinds.
–also contains a pointer to the streambufstreambuf class, which
contains the actual memory buffer into which data is read
or written and the low-level routines for handling this
data.

Stream Class HierarchyStream Class Hierarchy

512Object Oriented Programming

St
re

am
s

12

Stream Class HierarchyStream Class Hierarchy
►The istreamistream and ostreamostream classes are derived from iosios and

are dedicated to input and output, respectively.
►The istreamistream class contains such member functions as

get(), getline(), read(), and the extraction (») operators,
whereas ostreamostream contains put() and write() and the
insertion («) operators.

►The iostreamiostream class is derived from both istreamistream and
ostreamostream by multiple inheritance.
– used with devices, such as disk files, that may be

opened for both input and output at the same time.

513Object Oriented Programming

St
re

am
s

12

Stream Class HierarchyStream Class Hierarchy

►The ifstreamifstream class is used for creating input file objects
►The oofstreamfstream class is used for creating input file objects

is used for creating output file objects.
►To create a read/write file the fstreamfstream class should be

used.

514Object Oriented Programming

St
re

am
s

12

►The ios class is the grand daddy of all the stream classes
and contains the majority of the features you need to operate
C++ streams.
►The three most important features are

– the formatting flags,
– the error-status bits,
– the file operation mode.

We’ll look at formatting flags and error-status bits now.

iosiosios

515Object Oriented Programming

St
re

am
s

12

Formatting FlagsFormatting Flags
Formatting flags are a set of enum definitions in ios. They act as on/off
switches that specify choices for various aspects of input and output
format and operation.
skipws Skip (ignore) whitespace on input.
left Left adjust output.
right Right adjust output.
dec Convert to decimal.
oct Convert to octal.
hex Convert to hexadecimal.
showbase Use base indicator on output (0 for octal, 0x for hex).
showpoint Show decimal point on output.
uppercase Use uppercase X, E, and hex output letters ABCDEF.
showpos Display ‘+’ before positive integers.
scientific Use exponential format on floating-point output [9.1234E2].
fixed Use fixed format on floating-point output [912.34].
unitbuf Flush all streams after insertion.

516Object Oriented Programming

St
re

am
s

12

►There are several ways to set the formatting flags, and
different flags can be set in different ways. Because they are
members of the ios class, flags must usually be preceded by
the name ios and the scope-resolution operator (e.g.,
ios::skipws). All the flags can be set using the setfsetf() and
unsetfunsetf() ios member functions.
►For example,

cout.setf(ios::left); //left justify output text
cout >> "This text is left-justified";
cout.unsetf(ios::left); //return to default

//(right justified)

►Many formatting flags can be set using manipulators, so
let’s look at them now.

Formatting FlagsFormatting Flags

517Object Oriented Programming

St
re

am
s

12

►Manipulators are formatting instructions inserted directly
into a stream.
►You’ve seen examples before, such as the manipulator
endlendl, which sends a new line to the stream and flushes it:

cout << "To each his own." << endl;
►There is also used the setiosflags() manipulator:

cout << setiosflags(ios::fixed) // use fixed decimal point
<< setiosflags(ios::showpoint) //always show decimal point
<< var;

ManipulatorsManipulators

518Object Oriented Programming

St
re

am
s

12

You insert these manipulators directly into the stream. e.g., to output var
in hexadecimal format, you can say

cout << hex << var;

No-argument ios ManipulatorsNo-argument ios Manipulators
ws Turn on whitespace skipping on input

dec Convert to decimal
oct Convert to octal
hex Convert to hexadecimal

endl Insert new line and flush the output stream
ends Insert null character to terminate an output string
flush Flush the output stream
lock Lock file handle

unlock Unlock file handle

519Object Oriented Programming

St
re

am
s

12

ios Manipulators with Argumentsios Manipulators with Arguments
►Manipulators that take arguments affect only the next item
in the stream.
►For example, if you use setwsetw to set the width of the field in
which one number is displayed, you’ll need to use it again for
the next number.

setw() field width (int) Set field width for output

setfill() fill character (int) Set fill character for output
(default is a space)

setprecision() precision (int) Set precision (number of
digits displayed)

setiosflags() formatting flags (long) Set specified flags

resetiosflags() formatting flags (long) Clear specified flags

520Object Oriented Programming

St
re

am
s

12

FunctionsFunctions
►The ios class contains a number of functions that you can
use to set the formatting flags and perform other tasks.
►Most of these functions are shown below:

ch=fill() Return the fill character (fills unused part of
field; default is space).

fill(ch) Set the fill character.

p=precision() Get the precision (number of digits displayed
for floating point).

precision(p) Set the precision.
w=width() Get the current field width (in characters).
width(w) Set the current field width.
setf(flags) Set specified formatting flags (e.g., ios::left).

unsetf(flags) Unset specified formatting flags.

521Object Oriented Programming

St
re

am
s

12

►These functions are called for specific stream objects using the
normal dot operator. For example, to set the field width to 14, you can
say

cout.width(14);
►Similarly, the following statement sets the fill character to an asterisk
(as for check printing):

cout.fill('*');
►You can use several functions to manipulate the ios formatting flags
directly.
For example, to set left justification, use

cout.setf(ios::left);
To restore right justification, use

cout.unsetf(ios::left);

522Object Oriented Programming

St
re

am
s

12

istreamistream

The istream class, which is derived from ios, performs input-
specific activities.

istreamistream functions:
>>>> Formatted extraction for all basic (and overloaded) types.
get(chget(ch)) Extract one character into ch.
get(strget(str)) Extract characters into array str, until ‘\0’.
get(strget(str, MAX), MAX) Extract up to MAX characters into array.
get(strget(str, DELIM), DELIM) Extract characters into array str until specified delimiter

(typically ‘\n’).
Leave delimiting char in stream.

523Object Oriented Programming

St
re

am
s

12

ggeett((ssttrr,, MMAAXX,, DDEELLIIMM)) Extract characters into array str until MAX characters or
the DELIM character. Leave delimiting char in stream

ggeettlliinnee((ssttrr,, MMAAXX,, DDEELLIIMM)) Extract characters into array str until MAX characters or
the DELIM character. Extract delimiting character

ppuuttbbaacckk((cchh)) Insert last character read back into input stream

iiggnnoorree((MMAAXX,, DDEELLIIMM)) Extract and discard up to MAX characters until (and
including) the specified delimiter (typically ‘\n’)

ppeeeekk((cchh)) Read one character, leave it in stream

ccoouunntt == ggccoouunntt(()) Return number of characters read by a (immediately
preceding) call to get(), getline(), or read()

rreeaadd((ssttrr,, MMAAXX)) For files. Extract up to MAX characters into str until
EOF

sseeeekkgg((ppoossiittiioonn)) Sets distance (in bytes) of file pointer from start of file

sseeeekkgg((ppoossiittiioonn,, sseeeekk__ddiirr)) Sets distance (in bytes) of file pointer from specified
place in file: seek_dir can be ios::beg, ios::cur, ios::end

ppoossiittiioonn == tteellllgg((ppooss)) Return position (in bytes) of file pointer from start of file

istream Functionsistreamistream Functions

524Object Oriented Programming

St
re

am
s

12

ostreamostreamostream
The ostream class handles output or insertion activities.
ostream functions:
<< Formatted insertion for all basic (and overloaded) types.
put(ch) Insert character ch into stream.
flush() Flush buffer contents and insert new line.
write(str, SIZE) Insert SIZE characters from array str into file.
seekp(position) Sets distance in bytes of file pointer from start of file.
seekp(position, seek_dir) Set distance in bytes of file pointer from specified place in

file. seek_dir can be ios::beg, ios::cur, or ios::end.
position = tellp() Return position of file pointer, in bytes.

525Object Oriented Programming

St
re

am
s

12

►The iostream class, which is derived from both istream and
ostream, acts only as a base class from which other classes,
specifically iostream_withassign, can be derived.
►It has no functions of its own (except constructors and destructors).
Classes derived from iostream can perform both input and output.
►There are three _withassign classes:

istream_withassign, derived from istream
ostream_withassign, derived from ostream
iostream_withassign, derived from iostream

►These _withassign classes are much like those they’re derived from
except they include overloaded assignment operators so their objects
can be copied.

Ostream and _withassign ClassesOstream and _withassign Classes

526Object Oriented Programming

St
re

am
s

12

Objects Name Class Used for
cin istream_withassign Keyboard input
cout ostream_withassign Normal screen output
cerr ostream_withassign Error output
clog ostream_withassign Log output

The cerr object is often used for error messages and program diagnostics. Output
sent to cerr is displayed immediately, rather than being buffered, as output sent
to cout is. Also, output to cerr cannot be redirected. For these reasons, you have
a better chance of seeing a final output message from cerr if your program dies
prematurely. Another object, clog, is similar to cerr in that it is not redirected,
but its output is buffered, whereas cerr’s is not.

Predefined Stream Objects

Stream Errors

What happens if a user enters the string “nine” instead of the integer 9, or pushes
ENTER without entering anything? What happens if there’s a hardware failure?
We’ll explore such problems in this session. Many of the techniques you’ll see here
are applicable to file I/O as well.

527Object Oriented Programming

St
re

am
s

12

The stream error-status bits (error byte) are an ios member that report errors
that occurred in an input or output operation.
goodbit No errors (no bits set, value = 0).
eofbit Reached end of file.
failbit Operation failed (user error, premature EOF).
badbit Invalid operation (no associated streambuf).
hardfail Unrecoverable error.

Various ios functions can be used to read (and even set) these error bits.
int = eof(); Returns true if EOF bit set.
int = fail(); Returns true if fail bit or bad bit or hard-fail bit set.
int = bad(); Returns true if bad bit or hard-fail bit set.
int = good(); Returns true if everything OK; no bits set.
clear(int=0); With no argument, clears all error bits;

otherwise sets specified bits, as in clear(ios::failbit).

Error-Status BitsError-Status Bits

528Object Oriented Programming

St
re

am
s

12

#include <iostream>
int main() {

int i;
char ok=0;
while(!ok) { // cycle until input OK

cout << "\nEnter an integer: ";
cin >> i;
if(cin.good()) ok=1; // if no errors
else {

cin.clear(); // clear the error bits
cout << "Incorrect input";
cin.ignore(20, '\n'); // remove newline

}
}
cout << "integer is " << i; // error-free integer

}

inp.cpp

529Object Oriented Programming

St
re

am
s

12

►Whitespace characters, such as TAB, ENTER , and ‘\n’, are normally
ignored (skipped) when inputting numbers. This can have some
undesirable side effects. For example, users, prompted to enter a number,
may simply press the key without typing any digits. Pressing ENTER
causes the cursor to drop down to the next line while the stream continues
to wait for the number.
►What’s wrong with the cursor dropping to the next line?

–First, inexperienced users, seeing no acknowledgment when they
press , may assume the computer is broken.
–Second, pressing repeatedly normally causes the cursor to drop
lower and lower until the entire screen begins to scroll upward.

►Thus it’s important to be able to tell the input stream not to ignore
whitespace. This is done by clearing the skipws flag:

No-Input InputNo-Input Input

530Object Oriented Programming

St
re

am
s

12

cout << "\nEnter an integer: ";
cin.unsetf(ios::skipws); // don't ignore whitespace
cin >> i;
if(cin.good())

{
// no error
}
// error

Now if the user types without any digits, failbit will be set and an
error will be generated. The program can then tell the user what to
do or reposition the cursor so the screen does not scroll.

531Object Oriented Programming

St
re

am
s

12

► Disk files require a different set of classes than files used with the
keyboard and screen. These are ifstream for input, fstream for input and
output, and ofstream for output. Objects of these classes can be
associated with disk files and you can use their member functions to
read and write to the files.
► The ifstream, ofstream, and fstream classes are declared in the
FSTREAM.H file.
► This file also includes the IOSTREAM.H header file, so there is no
need to include it explicitly;
► FSTREAM.H takes care of all stream I/O.

Disk File I/O with StreamsDisk File I/O with Streams

532Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file I/O
int main(){

char ch = 'x'; // character
int j = 77; // integer
double d = 6.02; // floating point
char str1[] = "Kafka"; // strings
char str2[] = "Proust"; // (no embedded spaces)
ofstream outfile("fdata.txt"); // create ofstream object
outfile << ch // insert (write) data

<< j << ' ' // needs space between numbers
<< d
<< str1 << ' ' // needs space between strings
<< str2;

}

533Object Oriented Programming

St
re

am
s

12

Here the program defines an object called outfile to be a member of the ofstream class.
At the same time, it initializes the object to the file name FDATA.TXT. This
initialization sets aside various resources for the file, and accesses or opens the file of
that name on the disk. If the file doesn’t exist, it is created. If it does exist, it is truncated
and the new data replaces the old. The outfile object acts much as cout did in previous
programs, so the insertion operator (<<) is used to output variables of any basic type to
the file. This works because the insertion operator is appropriately overloaded in
ostream, from which ofstream is derived.

When the program terminates, the outfile object goes out of scope. This calls its
destructor, which closes the file, so you don’t need to close the file explicitly.

You must separate numbers (such as 77 and 6.02) with nonnumeric characters. Because
numbers are stored as a sequence of characters rather than as a fixed-length field, this is
the only way the extraction operator will know, when the data is read back from the file,
where one number stops and the next one begins. Second, strings must be separated with
whitespace for the same reason. This implies that strings cannot contain embedded
blanks. In this example, I use the space character (“ “) for both kinds of delimiters.
Characters need no delimiters, because they have a fixed length.

534Object Oriented Programming

St
re

am
s

12

Any program can read the file generated by previous program by using
an ifstream object that is initialized to the name of the file. The file is
automatically opened when the object is created. The program can then
read from it using the extraction (>>) operator.

Reading DataReading Data

535Object Oriented Programming

St
re

am
s

12
// reads formatted output from a file, using >>
#include <fstream.h>
const int MAX = 80;
int main(){

char ch; // empty variables
int j;
double d;
char str1[MAX];
char str2[MAX];
ifstream infile("fdata.txt"); // create ifstream object
infile >> ch >> j >> d >> str1 >> str2; // extract data from it
cout << ch << endl // display the data

<< j << endl
<< d << endl
<< str1 << endl
<< str2 << endl;

}

536Object Oriented Programming

St
re

am
s

12

► Objects derived from ios contain error-status bits that can be
checked to determine the results of operations. When you read a file
little by little, you will eventually encounter an end-of-file condition.
The EOF is a signal sent to the program from the hardware when there
is no more data to read. The following construction can be used to
check for this:

while(!infile.eof()) // until eof encountered
► However, checking specifically for an eofbit means that I won’t
detect the other error bits, such as the failbit and badbit, which may
also occur, although more rarely. To do this, I could change the loop
condition:
while(infile.good()) // until any error encountered

Detecting End-OF-FileDetecting End-OF-File

537Object Oriented Programming

St
re

am
s

12

► But even more simply, I can test the stream directly
while(infile) // until any error encountered

Any stream object, such as infile, has a value that can be tested for the
usual error conditions, including EOF. If any such condition is true,
the object returns a zero value.
► If everything is going well, the object returns a nonzero value. This
value is actually a pointer, but the “address” returned has no
significance except to be tested for a zero or nonzero value.

538Object Oriented Programming

St
re

am
s

12

You can write a few numbers to disk using formatted I/O, but if you’re storing
a large amount of numerical data, it’s more efficient to use binary I/O in which
numbers are stored as they are in the computer’s RAM memory rather than as
strings of characters. In binary I/O an integer is always stored in 2 bytes,
whereas its text version might be 12345, requiring 5 bytes. Similarly, a float is
always stored in 4 bytes, whereas its formatted version might be 6.02314e13,
requiring 10 bytes.

The next example shows how an array of integers is written to disk and then
read back into memory using binary format. I use two new functions: write(),
a member of ofstream, and read(), a member of ifstream. These functions
think about data in terms of bytes (type char). They don’t care how the data is
formatted, they simply transfer a buffer full of bytes from and to a disk file.
The parameters to write() and read() are the address of the data buffer and its
length. The address must be cast to type char, and the length is the length in
bytes (characters), not the number of data items in the buffer.

Binary I/OBinary I/O

539Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file streams
const int MAX = 100; // number of ints
int buff[MAX]; // buffer for integers
int main() {

int j;
for(j=0; j<MAX; j++) // fill buffer with data
buff[j] = j; // (0, 1, 2, ...)
ofstream os("edata.dat", ios::binary); // create output stream
os.write((char*)buff, MAX*sizeof(int)); // write to it
os.close(); // must close it
for(j=0; j<MAX; j++) // erase buffer

buff[j] = 0;
ifstream is("edata.dat", ios::binary); // create input stream
is.read((char*)buff, MAX*sizeof(int)); // read from it
for(j=0; j<MAX; j++) // check data

if(buff[j] != j) std::cerr << "\nData is incorrect";
else std::cout << "\nData is correct";

}

ExampleExample

540Object Oriented Programming

St
re

am
s

12

When writing an object, you generally want to use binary mode. This
writes the same bit configuration to disk that was stored in memory and
ensures that numerical data contained in objects is handled properly.
#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void getData(void) { // get person's data

std::cout << "Enter name: "; cin >> name;
std::cout << "Enter age: "; cin >> age;

}
};

Writing an Object to DiskWriting an Object to Disk

541Object Oriented Programming

St
re

am
s

12
int main() {

person pers; // create a person
pers.getData(); // get data for person
ofstream outfile("PERSON.DAT", ios::binary);
outfile.write((char*)&pers, sizeof(pers)); // write to it

}

#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void showData(void) { // display person's data

std::cout << "\n Name: " << name;
std::cout << "\n Age: " << age;

}
};

Reading an Object from Disk

542Object Oriented Programming

St
re

am
s

12
int main() {

person pers; // create person variable
ifstream infile("PERSON.DAT", ios::binary); // create stream
infile.read((char*)&pers, sizeof(pers)); // read stream
pers.showData(); // display person

}
To work correctly, programs that read and write objects to files, must be working
on the same class of objects. Objects of class person in these programs are exactly
42 bytes long, with the first 40 occupied by a string representing the person’s name
and the last 2 containing an int representing the person’s age.

Notice, however, that although the person classes in both programs have the same
data, they may have different member functions. The first includes the single
function getData(), whereas the second has only showData(). It doesn’t matter
what member functions you use, because members functions are not written to disk
along with the object’s data. The data must have the same format, but
inconsistencies in the member functions have no effect. This is true only in simple
classes that don’t use virtual functions.

543Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void getData() { // get person's data

cout << "\n Enter name: "; cin >> name;
cout << " Enter age: "; cin >> age;

}
void showData() { // display person's data

cout << "\n Name: " << name;
cout << "\n Age: " << age;

}
};

I/O with Multiple ObjectsI/O with Multiple Objects

544Object Oriented Programming

St
re

am
s

12

int main(){
char ch;
person pers; // create person object
fstream file; // create input/output file
file.open("PERSON.DAT", ios::out | ios::binary); // open for append
do{ // data from user to file

cout << "\nEnter person's data:";
pers.getData(); // get one person's data
file.write((char*)&pers, sizeof(pers)); // write to file
cout << "Enter another person (y/n)? ";
cin >> ch;

} while(ch=='y'); // quit on 'n'
file.close(); // reset to start of file
file.open("PERSON.DAT", ios::in | ios::binary);
file.read((char*)&pers, sizeof(pers)); // read first person
while(!file.eof()) // quit on EOF
{

cout << "\nPerson:"; // display person
pers.showData();
file.read((char*)&pers, sizeof(pers)); // read another

} // person
}

objfile.cpp

545Object Oriented Programming

St
re

am
s

12

The next program shows how errors are most conveniently handled. All disk operations are
checked after they are performed. If an error has occurred, a message is printed and the program
terminates. We will use the technique, discussed earlier, of checking the return value from the
object itself to determine its error status. The program opens an output stream object, writes an
entire array of integers to it with a single call to write(), and closes the object. Then it opens an
input stream object and reads the array of integers with a call to read().

#include <fstream> // for file streams
#include <process> // for exit()
const int MAX = 1000;
int buff[MAX];
int main(){
for(int j=0; j<MAX; j++) buff[j] = j; // fill buffer with data
ofstream os; // create output stream
os.open("edata.dat", ios::trunc | ios::binary); // open it
if(!os) { cerr << "\nCould not open output file"; exit(1); }
std::cout << "\nWriting..."; // write buffer to it
os.write((char*)buff, MAX*sizeof(int));
if(!os) { cerr << "\nCould not write to file"; exit(1); }
os.close(); // must close it

}

Reacting to ErrorsReacting to Errors

546Object Oriented Programming

St
re

am
s

12

for(j=0; j<MAX; j++) buff[j] = 0; // clear buffer
ifstream is; // create input stream
is.open("edata.dat", ios::binary);
if(!is) { std::cerr << "\nCould not open input file"; exit(1); }
std::cout << "\nReading...";
is.read((char*)buff, MAX*sizeof(int)); // read file
if(!is) { std::cerr << "\nCould not read from file"; exit(1); }
for(j=0; j<MAX; j++) // check data
if(buff[j] != j) { std::cerr << "\nData is incorrect"; exit(1); }

std::cout << "\nData is correct";
}

Analyzing Errors
In the previous example, we determined whether an error occurred in an I/O
operation by examining the return value of the entire stream object.
if(!is)

// error occurred
However, it’s also possible, using the ios error-status bits, to find out more specific
information about a file I/O error.

547Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file functions
int main(){

ifstream file;
file.open("GROUP.DAT", ios::nocreate);
if(!file)

cout << endl <<"Can't open GROUP.DAT";
else

cout << endl << "File opened successfully.";
cout << endl << "file = " << file;
cout << endl << "Error state = " << file.rdstate();
cout << endl << "good() = " << file.good();
cout << endl << "eof() = " << file.eof();
cout << endl << "fail() = " << file.fail();
cout << endl << "bad() = " << file.bad();
file.close();

}

548Object Oriented Programming

St
re

am
s

12

This program first checks the value of the object file. If its value is zero, the
file probably could not be opened because it didn’t exist. Here’s the output of
the program when that’s the case:
Can't open GROUP.DAT
file = 0x1c730000
Error state = 4
good() = 0
eof() = 0
fail() = 4
bad() = 4
The error state returned by rdstate() is 4. This is the bit that indicates the file
doesn’t exist; it’s set to 1. The other bits are all set to 0. The good() function
returns 1 (true) only when no bits are set, so it returns 0 (false). I’m not at
EOF, so eof() returns 0. The fail() and bad() functions return nonzero because
an error occurred.

In a serious program, some or all of these functions should be used after every
I/O operation to ensure that things have gone as expected.

549Object Oriented Programming

St
re

am
s

12

// seeks particular person in file
#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age

public:
void showData() { // display person's data

cout << "\n Name: " << name; cout << "\n Age: " << age;
}

};

Each file object has associated with it two integer values called the get pointer and the put
pointer. These are also called the current get position and the current put position, or—if it’s
clear which one is meant—simply the current position. These values specify the byte number
in the file where writing or reading will take place

There are times when you must take control of the file pointers yourself so that you can read
from or write to an arbitrary location in the file. The seekg() and tellg() functions allow you to
set and examine the get pointer, and the seekp() and tellp() functions perform the same actions
on the put pointer.

File PointersFile Pointers

550Object Oriented Programming

St
re

am
s

12
int main(){

person pers; // create person object
ifstream infile; // create input file
infile.open("PERSON.DAT", ios::binary); // open file
infile.seekg(0, ios::end); // go to 0 bytes from end
int endposition = infile.tellg(); // find where we are
int n = endposition / sizeof(person); // number of persons
cout << endl << "There are " << n << " persons in file";
cout << endl << "Enter person number: "; cin >> n;
int position = (n-1) * sizeof(person); // number times size
infile.seekg(position); // bytes from begin
infile.read((char*)&pers, sizeof(pers)); // read one person
pers.showData(); // display the person

}

Here’s the output from the program, assuming that the PERSON.DAT file
contains 3 persons:
There are 3 persons in file
Enter person number: 2

Name: Rainier
Age: 21

551Object Oriented Programming

St
re

am
s

12

So far, we’ve let the main() function handle the details of file I/O. This
is nice for demonstrations, but in real object-oriented programs, it’s
natural to include file I/O operations as member functions of the class.

In the next example, we will add member functions, diskOut() and
diskIn() to the person class. These functions allow a person object to
write itself to disk and read itself back in.
Simplifying assumptions: First, all objects of the class will be stored in
the same file, called PERSON.DAT. Second, new objects are always
appended to the end of the file. An argument to the diskIn() function
allows me to read the data for any person in the file. To prevent
attempts to read data beyond the end of the file, I include a static
member function, diskCount(), that returns the number of persons
stored in the file.

File I/O Using Member FunctionsFile I/O Using Member Functions

552Object Oriented Programming

St
re

am
s

12
#include <fstream.h> // for file streams
class person {// class of persons
protected:
char name[40]; // person's name
int age; // person's age

public:
void getData(){ // get person's data
cout << "\n Enter name: "; cin >> name; cout << " Enter age: "; cin >> age;}

void showData(){ // display person's data
cout << "\n Name: " << name; cout << "\n Age: " << age; }

void diskIn(int); // read from file
void diskOut(); // write to file
static int diskCount(); // return number of persons in file

};

void person::diskIn(int pn){ // read person number pn from file
ifstream infile; // make stream
infile.open("PERSON.DAT", ios::binary); // open it
infile.seekg(pn*sizeof(person)); // move file ptr
infile.read((char*)this, sizeof(*this)); // read one person

}

553Object Oriented Programming

St
re

am
s

12

void person::diskOut() // write person to end of file
{

ofstream outfile; // make stream
outfile.open("PERSON.DAT", ios::app | ios::binary); // open it
outfile.write((char*)this, sizeof(*this)); // write to it

}

int person::diskCount() // return number of persons in file
{

ifstream infile;
infile.open("PERSON.DAT", ios::binary);
infile.seekg(0, ios::end); // go to 0 bytes from end
return infile.tellg() / sizeof(person); // calculate number of persons

}

554Object Oriented Programming

St
re

am
s

12

int main(void){
person p; // make an empty person
char ch;
do{ // save persons to disk

cout << "\nEnter data for person:";
p.getData(); // get data
p.diskOut(); // write to disk
cout << "Do another (y/n)? ";
cin >> ch;

}while(ch=='y'); // until user enters 'n'
int n = person::diskCount(); // how many persons in file?
cout << "\nThere are " << n << " persons in file";
for(int j=0; j<n; j++) { // for each one,

cout << "\nPerson #" << (j+1);
p.diskIn(j); // read person from disk
p.showData(); // display person

}
}

555Object Oriented Programming

St
re

am
s

12

In this session I’ll show how to overload the extraction and insertion operators. This is a
powerful feature of C++. It lets you treat I/O for user-defined data types in the same
way as for basic types such as int and double. For example, if you have an object of
class TComplex called c1, you can display it with the statement
cout << c1; just as if it were a basic data type.
You can overload the extraction and insertion operators so they work with the display
and keyboard (cout and cin). With a little more care, you can also overload them so they
work with disk files as well.

#include<iostream>
class TComplex {

float real,img;
friend std::istream& operator >>(std::istream&, TComplex&);
friend std::ostream& operator <<(std::ostream&, const TComplex&);

public:
TComplex(float rl=0,float ig=0){real=rl;img=ig;}
TComplex operator+(const TComplex&);

};

Overloading the « and » OperatorsOverloading the « and » Operators

556Object Oriented Programming

St
re

am
s

12
istream& operator >>(istream& stream, TComplex& z){ // Overloading >>

cout << "Enter real part:";
stream >> z.real;
cout << "Enter imaginer part:";
stream >> z.img;
return stream;

}
ostream& operator <<(ostream& stream, const TComplex & z){

stream << "(" << z.real << " , " << z.img << ") \n";
return stream;

}
TComplex TComplex::operator+(const TComplex & z){ // Operator +

return TComplex (real+z.real , img+z.img);
}
int main(){

TComplex z1,z2,z3;
std::cin >> z1;
std::cin >> z2;
z3=z1+z2;
std::cout << " Result=" << z3;

}
inout.cpp

557Object Oriented Programming

St
re

am
s

12

The next example shows how the << and >> operators can be overloaded so they
work with both file I/O and cout and cin.

#include<fstream>
class TComplex {

float real,img;
friend istream& operator >>(istream&, TComplex&);
friend ostream& operator <<(ostream&, const TComplex&);

public:
TComplex(float rl=0,float ig=0){real=rl;img=ig;}

};
istream& operator >>(istream& stream, TComplex &z){

char dummy;
stream >> dummy >> z.real;
stream >> dummy >> z.img >> dummy;
return stream;

}
ostream& operator <<(ostream& stream, const TComplex & z){

stream << "(" << z.real << " , " << z.img << ") \n";
return stream;

};

Overloading for FilesOverloading for Files

558Object Oriented Programming

St
re

am
s

12
int main(){
char ch;
TComplex z1;
ofstream ofile; // create and open
ofile.open("complex.dat"); // output stream
do { std::cout << "\nEnter Complex Number:(real,img)";

cin >> z1; // get complex number from user
ofile << z1; // write it to output str
std::cout << "Do another (y/n)? "; std::cin >> ch;

} while(ch != 'n');
ofile.close(); // close output stream
std::ifstream ifile; // create and open
ifile.open("complex.dat"); // input stream
std:.cout << "\nContents of disk file is:";
while(!ifile.eof()){

ifile >> z1; // read complex number from stream
if (ifile)

std::cout << "\nComplex Number = " << z1; // display complex number
}

}

fileio.cpp

559Object Oriented Programming

St
re

am
s

12

So far, you’ve seen examples of overloading operator<<() and operator>>() for formatted
I/O. They also can be overloaded to perform binary I/O. This may be a more efficient way
to store information, especially if your object contains much numerical data.

#include <fstream.h> // for file streams
class person {// class of persons
protected:

char name[40]; // person's name
int age; // person's age

public:
void getData(){ // get data from keyboard

cout << "\n Enter name: "; cin.getline(name, 40);
cout << " Enter age: "; cin >> age;

}
void putData(){ // display data on screen

cout << "\n Name = " << name; cout << "\n Age = " << age;
}
friend istream& operator >> (istream& s, person& d);
friend ostream& operator << (ostream& s, person& d);

Overloading for Binary I/OOverloading for Binary I/O

560Object Oriented Programming

St
re

am
s

12

void persin(istream& s){
s.read((char*)this, sizeof(*this));

}
void persout(ostream& s) // write our data to file
{
s.write((char*)this, sizeof(*this));

}
}; // end of class definiton
istream& operator >> (istream& s, person& d) {

d.persin(s);
return s;

}
ostream& operator << (ostream& s, person& d){

d.persout(s);
return s;

}

561Object Oriented Programming

St
re

am
s

12

int main(){
person pers1, pers2, pers3, pers4;
cout << "\nPerson 1";
pers1.getData(); // get data for pers1
cout << "\nPerson 2";
pers2.getData(); // get data for pers2
outfile("PERSON.DAT", ios::binary);
outfile << pers1 << pers2; // write to file
outfile.close();
ifstream infile("PERSON.DAT", ios::binary);
infile >> pers3 >> pers4; // read from file into
cout << "\nPerson 3"; // pers3 and pers4
pers3.putData(); // display new objects
cout << "\nPerson 4";
pers4.putData();

}

