

DEVELOPMENT OF MOBILE SEARCH APPLICATIONS OVER STRUCTURED WEB DATA THROUGH DOMAIN-SPECIFIC MODELING LANGUAGES

Atakan ARAL 749327 Ilker Z. AKIN 749253

Supervisor: Assist. Prof. Marco BRAMBILLA

Academic Year: 2010/2011

- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

1. Introduction

- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

Introduction

- Usage of mobile applications is increasing.
 - Devices are widespread.
 - Connection speeds are high.
- Importance of searching is increasing as well.
 - Users need answers to more complex queries.
- The aim of the project is to fulfill these needs by developing the mobile web application of The Search Computing (SeCo) project.

1. Introduction

2. Background Information

- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

Multi-domain Search

- Multi-domain search applications handle data coming from different semantic fields of interest.
- Its result set may also contain different data types for each domain of interest.
 - Q1: "Washington D.C." (mono-domain)
 - Q2: "rock concert Washington July 2010 good restaurant" (multi-domain: city, restaurant, concert)

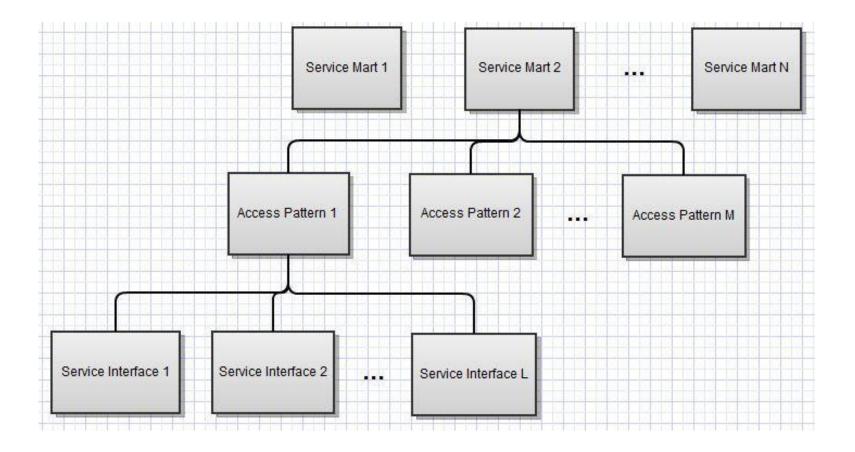
Exploratory Search

- Exploratory search applications support following phases of information acquisition:
 - Formulating users' interest
 - Exploring most relevant and credited information sources
 - Establishing of relationships among relevant information elements.

- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

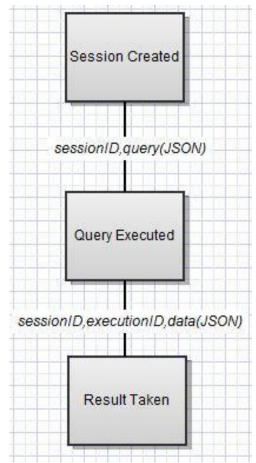
The Search Computing Project

- «Search Computing is a multi-disciplinary science which will provide the abstractions, foundations, methods, and tools required to answer multi-domain queries over heterogeneous data sources.»
- «Its aim is finding answers to complex search queries such as "Where can I attend an interesting conference in my field close to a sunny beach?" by cooperating search services, user ranking and joining of results.»


The Search Computing Project

- In our thesis project, two ReST APIs have been used:
 - Mart Repository ReST API: It contains the structural data of the searching system.
 - Query Processor ReST API: It manages operations which are needed to answer queries.

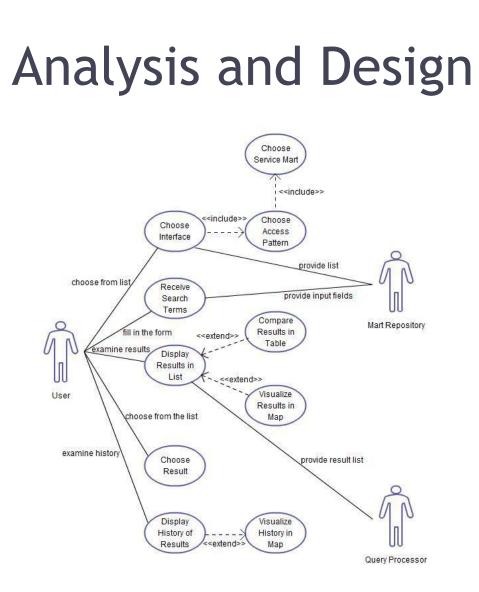
Mart Repository

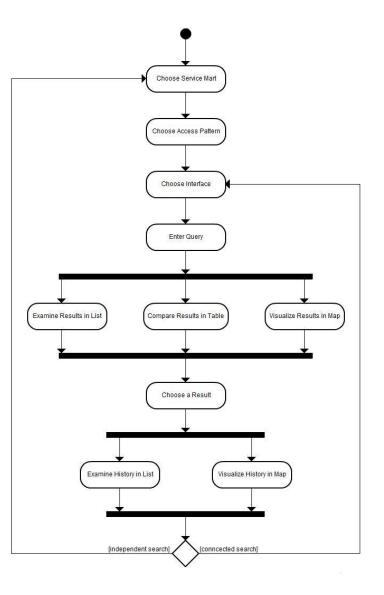

- Four different elements of the repository have been used:
 - Service Marts: They are the conceptual type which the user is looking for.
 - Access Patterns: They express the road that can be used to access the Service Mart.
 - Service Interfaces: They map concrete data sources.
 - Connection Patterns: They introduce a pair-wise coupling of Service Marts.

Hierarchy of Mart Repository Elements

Query Processor Repository

- Following operations have been carried out using the Query Processor:
 - Session creation
 - Query submission
 - Result acquiring

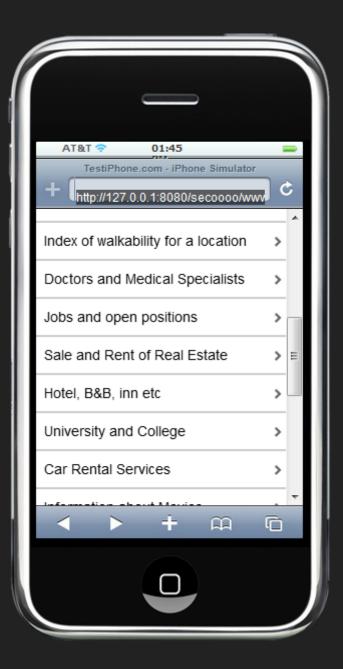



- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

mobl

- mobl is a free and open source language designed especially to speed up building mobile applications.
- Some principal features of the language are:
 - iOS, Android, WebOS, Safari and Chrome support the applications developed with mobl.
 - It allows to access existing JavaScript libraries and widgets easily.
 - It can access to web services through AJAX easily and import JSON data.
 - All aspects are integrated into a single language.

- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion




User Interface Elements

- Accordion List
 - to see the main attributes at a glance
 - to hide large amount of data
- Map View
 - to visualize location data
- Table View
 - to allow comparison between the attributes
- Tab Set
 - to seperate different states of the application
 - to let user being able to access history without losing its state

- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo
- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

I AT&T 😤	01:44		
11 (1923)	one.com - iPho	ne Simulato	
	no/www/seco		C
Search	History		
	service m	arts	
Sequence A	lignments		>
Statistics an	d Census <mark>i</mark> n	formatior	1 >
News article	s		>
Restaurants	and Diners		>
Conference	paper and p	oublicatio	ns >
Gene Expre	ssion Searc	h	>
	+	с С	C

.all AT&T 🛜	01:47	_
	ne.com - iPhone Sim	
Search	History	<u>^</u>
« Back	form	
search of Re	al Estate with Zill	ow b ≡
Туре		
Latitude		
40.7		
Longitude		
-74		*
	+ 🕮	

I AT&T 穼	01:53 Phone.com - iPhone Si	mulator	-
+ 1	27.0.0.1:8080/seco		5
Search	History		Â
« Back C	ompare sele		
jobTitle		>	III
employmer	ntType	>	
city		>	
locationLongitude		>	
locationLatitude		>	
company			-

- 1. Introduction
- 2. Background Information
- 3. Background Information on SeCo

40

- 4. mobl
- 5. Analysis and Design
- 6. Mock-Up
- 7. Conclusion

Conclusion

- A lite version of Search Computing Project has been implemented by keeping the core functions.
- It is observed that mobile devices are very convenient for these type of search platforms.
 - Few number of interactions
 - Location data
- It is also observed that mobile web applications reduce the development time comparing to individual native applications on different operating systems.

THANK YOU FOR LISTENING