DEVELOPMENT OF MOBILE SEARCH APPLICATIONS
OVER STRUCTURED WEB DATA THROUGH
DOMAIN-SPECIFIC MODELING LANGUAGES

Atakan ARAL 749327
Ilker Z. AKIN 749253

Supervisor:
Assist. Prof. Marco BRAMBILLA

Academic Year: 2010/2011
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
Introduction

• Usage of mobile applications is increasing.
 ▫ Devices are widespread.
 ▫ Connection speeds are high.

• Importance of searching is increasing as well.
 ▫ Users need answers to more complex queries.

• The aim of the project is to fulfill these needs by developing the mobile web application of The Search Computing (SeCo) project.
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
Multi-domain Search

• Multi-domain search applications handle data coming from different semantic fields of interest.
• Its result set may also contain different data types for each domain of interest.
 ▫ Q1: “Washington D.C.” (mono-domain)
 ▫ Q2: “rock concert Washington July 2010 good restaurant” (multi-domain: city, restaurant, concert)
Exploratory Search

- Exploratory search applications support following phases of information acquisition:
 - Formulating users’ interest
 - Exploring most relevant and credited information sources
 - Establishing of relationships among relevant information elements.
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
The Search Computing Project

- "Search Computing is a multi-disciplinary science which will provide the abstractions, foundations, methods, and tools required to answer multi-domain queries over heterogeneous data sources."

- "Its aim is finding answers to complex search queries such as “Where can I attend an interesting conference in my field close to a sunny beach?” by cooperating search services, user ranking and joining of results."
The Search Computing Project

• In our thesis project, two ReST APIs have been used:
 ▫ Mart Repository ReST API: It contains the structural data of the searching system.
 ▫ Query Processor ReST API: It manages operations which are needed to answer queries.
Mart Repository

- Four different elements of the repository have been used:
 - Service Marts: They are the conceptual type which the user is looking for.
 - Access Patterns: They express the road that can be used to access the Service Mart.
 - Service Interfaces: They map concrete data sources.
 - Connection Patterns: They introduce a pair-wise coupling of Service Marts.
Hierarchy of Mart Repository Elements
Query Processor Repository

- Following operations have been carried out using the Query Processor:
 - Session creation
 - Query submission
 - Result acquiring
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
mobl

- mobl is a free and open source language designed especially to speed up building mobile applications.
- Some principal features of the language are:
 - iOS, Android, WebOS, Safari and Chrome support the applications developed with mobl.
 - It allows to access existing JavaScript libraries and widgets easily.
 - It can access to web services through AJAX easily and import JSON data.
 - All aspects are integrated into a single language.
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
Analysis and Design
User Interface Elements

• Accordion List
 ▫ to see the main attributes at a glance
 ▫ to hide large amount of data

• Map View
 ▫ to visualize location data

• Table View
 ▫ to allow comparison between the attributes

• Tab Set
 ▫ to separate different states of the application
 ▫ to let user being able to access history without losing its state
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
search of Real Estate with Zillow b...

Type

Latitude
40.7

Longitude
-74
choose
tupleScore: 0.64

city: Brooklyn
street: 57 Montague St APT 2F
state: NY
longitude: -73.99723815917969
latitude: 40.69566345214844
zipcode: 11201
type: makeMeMove
hashCode: Cooperative
details:
http://www.zillow.com/homedetails/57-
This service searches jobs with California criteria.

- **Keywords**
- **Longitude**: -73.99723815917969
- **Latitude**: 40.69566345214844
<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help Desk - I.T. Support</td>
<td>VA</td>
</tr>
<tr>
<td>IT Manager</td>
<td>TX</td>
</tr>
<tr>
<td>IT Manager - Oracle R12</td>
<td>GA</td>
</tr>
<tr>
<td>Enterprise Services</td>
<td></td>
</tr>
</tbody>
</table>
Index

1. Introduction
2. Background Information
3. Background Information on SeCo
4. mobl
5. Analysis and Design
6. Mock-Up
7. Conclusion
Conclusion

- A lite version of Search Computing Project has been implemented by keeping the core functions.
- It is observed that mobile devices are very convenient for these type of search platforms.
 - Few number of interactions
 - Location data
- It is also observed that mobile web applications reduce the development time comparing to individual native applications on different operating systems.
THANK YOU FOR LISTENING