Subgraph Matching for Resource Allocation in the Federated Cloud Environment

Atakan Aral, Tolga Ovatman

Istanbul Technical University - Department of Computer Engineering

June 27, 2015

Outline

3 TBM Algorithm

4 Evaluation

- Experimental Setup
- Results

Outline

- 2 Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling

3 TBM Algorithm

- 4 Evaluation
 - Experimental Setup
 - Results

Geo-Distributed Clusters

Opportunities:

- Available mechanisms and policies such as Federated Cloud;
- Very high speed inter-DC communication technologies such as optical fiber;
- Programming models that minimize size of data flow between nodes such as MapReduce

Advantages:

- fault tolerance
- vendor independence
- closer proximity to user base
- cost benefits

Geo-Distributed Clusters

- Risks (regarding VM placement):
 - Cooperating VMs on distant DCs;
 - Clusters far away from their user base;
 - VMs placed without considering different pricing strategies of vendors
- Our Objectives:
 - To decrease communication delay (by placing connected VMs to the neighbour data centers)
 - To decrease deployment delay (by placing VMs close to the broker)
 - To reduce resource costs (by balancing load and avoiding overload in any DC)

Topology Modeling Bandwidth Modeling Cost Modeling

Outline

3 TBM Algorithm

4 Evaluation

- Experimental Setup
- Results

Topology Modeling Bandwidth Modeling Cost Modeling

Topology Modeling

- Weighted, undirected, simple graphs
- Vertice represent cloud data centers / requested VMs.
 - CPU, Memory, Storage
- Edges represent the network connections between them.
 - Bandwidth, Latency
- Brokers represent the user base at each node

Topology Modeling Bandwidth Modeling Cost Modeling

Bandwidth Modeling

Topology Modeling Bandwidth Modeling Cost Modeling

- **I** Fixed pricing based on memory, bandwidth and duration.
- 2 Dynamic pricing via Yield management
 - Increase the price of the resource that is running low in a DC
 - Cost = minCost + (maxCost minCost) * Util

Outline

1 Introduction

- 2 Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling

3 TBM Algorithm

4 Evaluation

- Experimental Setup
- Results

Topology Based Matching

Experimental Setup Results

Outline

- 2 Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling

3 TBM Algorithm

- 4 Evaluation
 - Experimental Setup
 - Results

Experimental Setup Results

Experimental Setup

Number of Clusters Based on the population density around each location.

Number of VMs Based on Poisson distribution: $\lambda = 3$

Cluster Topologies Either linear or complete Arrival Times Uniform random in the range [0, 50)

Experimental Setup Results

Latencies

Experimental Setup Results

Duration and Throughput

Experimental Setup Results

Rejection Rate and Cost

Experimental Setup Results

Thank you for your attention.

Atakan Aral Istanbul Technical University Department of Computer Engineering aralat@itu.edu.tr

Subgraph Matchin Future Work More Results

5 Appendix

- Subgraph Matching
- Future Work
- More Results

Subgraph Matchi Future Work More Results

Subgraph Matching

- Search space is all possible injective matchings from the set of pattern nodes to the set of target nodes.
- Systematically explore the search space:
 - Start from an empty matching
 - Extend the partial matching by matching a non matched pattern node to a non matched target node
 - Backtrack if some edges are not matched
 - Repeat until all pattern nodes are matched (success) or all matchings are already explored (fail).
- Filters are necessary to reduce the search space by pruning branches that do not contain solutions.

Subgraph Matchin Future Work More Results

LAD Filtering

Algorithm 1. LAD-filtering

Input: A set *S* of couples of pattern/target nodes to be filtered **Output**: failure (if an inconsistency is detected) or success In case of success, domains are filtered so that $\forall u \in N_p, \forall v \in D_u$, there exists a matching of $G_{(u,v)}$ that covers adj(u). while $S \neq \emptyset$ do

Remove a couple of pattern/target nodes (u, v) from S

if there does not exist a matching of $G_{(u,v)}$ that covers adj(u) then

Remove v from D_u

if $D_u = \emptyset$ then return failure

$$S \leftarrow S \cup \{(u', v') \mid u' \in adj(u), v' \in adj(v) \cap D_{u'}\}$$

return success

Subgraph Matchi Future Work More Results

LAD Filtering

 $D_1 = D_3 = D_5 = D_6 = A, B, C, D, E, F, G$ $D_2 = D_4 = A, B, D$

Subgraph Matchin Future Work More Results

Future Work

Algorithm

- Additional constraints (jurisdiction, partially known topology)
- Vertical scaling support
- Hybrid cloud support
- Homeomorphism
- Connected components

Evaluation

- Significance study
- Evaluation with topology improvements
- Multi-objective optimization
- Dynamic heuristic selection, meta-heuristics

Huture Work

Link bandwidth request

Future Work More Results

Minimum number of requests

Future Work More Results

VM network intensity

Atakan Aral, Tolga Ovatman Subgraph Matching for Resource Allocation in the Federated Cloud Environme

B