Subgraph Matching for Resource Allocation in the Federated Cloud Environment

Atakan Aral, Tolga Ovatman

Istanbul Technical University – Department of Computer Engineering

June 27, 2015
Outline

1. Introduction
2. Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling
3. TBM Algorithm
4. Evaluation
 - Experimental Setup
 - Results
Outline

1. Introduction
2. Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling
3. TBM Algorithm
4. Evaluation
 - Experimental Setup
 - Results
Geo-Distributed Clusters

- **Opportunities:**
 - Available mechanisms and policies such as *Federated Cloud*;
 - Very high speed inter-DC communication technologies such as *optical fiber*;
 - Programming models that minimize size of data flow between nodes such as *MapReduce*

- **Advantages:**
 - fault tolerance
 - vendor independence
 - closer proximity to user base
 - cost benefits
Geo-Distributed Clusters

- Risks (regarding VM placement):
 - Cooperating VMs on distant DCs;
 - Clusters far away from their user base;
 - VMs placed without considering different pricing strategies of vendors

- Our Objectives:
 - To decrease **communication delay** (by placing connected VMs to the neighbour data centers)
 - To decrease **deployment delay** (by placing VMs close to the broker)
 - To reduce **resource costs** (by balancing load and avoiding overload in any DC)
Outline

1 Introduction

2 Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling

3 TBM Algorithm

4 Evaluation
 - Experimental Setup
 - Results
Topology Modeling

- Weighted, undirected, simple graphs
- Vertices represent cloud data centers / requested VMs.
 - CPU, Memory, Storage
- Edges represent the network connections between them.
 - Bandwidth, Latency
- Brokers represent the user base at each node
Bandwidth Modeling

Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment
Cost Modeling

1. Fixed pricing based on memory, bandwidth and duration.
2. Dynamic pricing via Yield management
 - Increase the price of the resource that is running low in a DC
 - $\text{Cost} = \text{minCost} + (\text{maxCost} - \text{minCost}) \times \text{Util}$
Outline

1. Introduction
2. Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling
3. TBM Algorithm
4. Evaluation
 - Experimental Setup
 - Results
Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment

Topology Based Matching

1. Fetch VM Cluster
2. Find all isomorphic subgraphs
3. At least 1 subgraph exists
4. Select the subgraph with least latency
5. Submit VMs to matching DCs
6. Deploy VM
7. Terminate VMs
8. Submit Tasks
9. All VMs deployed
10. probe the next closest DC to VMs
11. probe the next closest DC to user
12. Fetch next VM
13. At least 1 VM is deployed
Outline

1. Introduction
2. Problem Modeling
 - Topology Modeling
 - Bandwidth Modeling
 - Cost Modeling
3. TBM Algorithm
4. Evaluation
 - Experimental Setup
 - Results
Experimental Setup

Number of Clusters Based on the population density around each location.

Number of VMs Based on Poisson distribution: $\lambda = 3$

Cluster Topologies Either linear or complete

Arrival Times Uniform random in the range [0, 50)
Latencies

Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment
Duration and Throughput

Graph 1: Task Completion Time (Hours) vs. VM RAM

Graph 2: Throughput (MIPS) vs. VM RAM

- ANF
- LBG
- RAN
- TBF
- LNF

Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment
Rejection Rate and Cost

Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment
Thank you for your attention.

Atakan Aral
Istanbul Technical University
Department of Computer Engineering
aralat@itu.edu.tr
Appendix

Subgraph Matching
Future Work
More Results

Appendix

- Subgraph Matching
- Future Work
- More Results
Subgraph Matching

- Search space is all possible injective matchings from the set of pattern nodes to the set of target nodes.
- Systematically explore the search space:
 - Start from an empty matching
 - Extend the partial matching by matching a non matched pattern node to a non matched target node
 - Backtrack if some edges are not matched
 - Repeat until all pattern nodes are matched (success) or all matchings are already explored (fail).
- Filters are necessary to reduce the search space by pruning branches that do not contain solutions.
Algorithm 1. LAD-filtering

Input: A set S of couples of pattern/target nodes to be filtered

Output: failure (if an inconsistency is detected) or success

In case of success, domains are filtered so that $\forall u \in N_p, \forall v \in D_u$, there exists a matching of $G_{(u,v)}$ that covers $\text{adj}(u)$.

while $S \neq \emptyset$ do
 Remove a couple of pattern/target nodes (u, v) from S
 if there does not exist a matching of $G_{(u,v)}$ that covers $\text{adj}(u)$ then
 Remove v from D_u
 if $D_u = \emptyset$ then return failure
 $S \leftarrow S \cup \{(u', v') \mid u' \in \text{adj}(u), v' \in \text{adj}(v) \cap D_u\}$

return success
LAD Filtering

Pattern graph G_p

Target graph G_t

\[
D_1 = D_3 = D_5 = D_6 = A, B, C, D, E, F, G
\]

\[
D_2 = D_4 = A, B, D
\]
Future Work

- **Algorithm**
 - Additional constraints (jurisdiction, partially known topology)
 - Vertical scaling support
 - Hybrid cloud support
 - Homeomorphism
 - Connected components

- **Evaluation**
 - Significance study
 - Evaluation with topology improvements
 - Multi-objective optimization
 - Dynamic heuristic selection, meta-heuristics
Link bandwidth request

<table>
<thead>
<tr>
<th>VM Communication Latency (Seconds)</th>
<th>Link BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANF</td>
<td>LBG</td>
</tr>
<tr>
<td>RAN</td>
<td>TBF</td>
</tr>
<tr>
<td>LNF</td>
<td></td>
</tr>
</tbody>
</table>

Cost ($)

<table>
<thead>
<tr>
<th>Cost ($)</th>
<th>Link BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANF</td>
<td>LBG</td>
</tr>
<tr>
<td>RAN</td>
<td>TBF</td>
</tr>
<tr>
<td>LNF</td>
<td></td>
</tr>
</tbody>
</table>

Atakan Aral, Tolga Ovatman

Subgraph Matching for Resource Allocation in the Federated Cloud Environment
Minimum number of requests

![Graph showing throughput vs. number of requests for different algorithms: ANF, LBG, RAN, TBF, LNF. The x-axis represents the number of requests ranging from 1 to 8, and the y-axis represents throughput in MIPS.]
VM network intensity

![Graph showing task completion time and network intensity](image)

![Graph showing cost and network intensity](image)

Appendix
Subgraph Matching
Future Work
More Results

Atakan Aral, Tolga Ovatman
Subgraph Matching for Resource Allocation in the Federated Cloud Environment