

ISTANBUL TECHNICAL UNIVERSITYF GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

PRIVACY PRESERVING SEARCH AND DATA RETRIEVAL
FROM DATA CLOUDS

Ph.D. THESIS

Mohanad DAWOUD

Department of Computer Engineering

Computer Engineering Programme

MONTH YEAR OF DEFENSE

ISTANBUL TECHNICAL UNIVERSITYF GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

PRIVACY PRESERVING SEARCH AND DATA RETRIEVAL
FROM DATA CLOUDS

Ph.D. THESIS

Mohanad DAWOUD
(504102503)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. D. Turgay ALTILAR

MONTH YEAR OF DEFENSE

İSTANBUL TEKNİK ÜNİVERSİTESİF FEN BİLİMLERİ ENSTİTÜSÜ

VERİ BULUTLARINDA MAHREMİYET KORUMALI ARAMA
VE VERİ GETİRME YONTEMİ

DOKTORA TEZİ

Mohanad DAWOUD
(504102503)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Assoc. Prof. Dr. D. Turgay ALTILAR

TEZİN SAVUNULDUĞU AY YIL

Mohanad DAWOUD, a Ph.D. student of ITU Graduate School of Science Engineer-
ing and Technology 504102503 successfully defended the thesis entitled “PRIVACY
PRESERVING SEARCH AND DATA RETRIEVAL
FROM DATA CLOUDS”, which he/she prepared after fulfilling the requirements
specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. D. Turgay ALTILAR
Istanbul Technical University

Jury Members : Prof. Dr. Bülent ÖRENCİK
Beykent University

Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN
Istanbul Technical University

Prof. Dr. Albert LEVİ
Sabancı University

Asst. Prof. Dr. Tolga OVATMAN
Istanbul Technical University

Date of Submission : 03 February 2017
Date of Defense : 15 June 2017

v

vi

To my parents,
To my spouse and children,

To the martyrs of honor, dignity, and democracy,

vii

viii

FOREWORD

I would like to express my gratitude to the staff of Computer Engineering department
in Istanbul Technical University.

The first days in the university were very easy with the help of Zuhal Yılmazer, the
dean’s secretary. Special thanks also to Ahmet Dinȩr from the registration office for
his assistant.

I would like also to thank all the faculty members, particularly whose I worked with;
Dr. D. Turgay Altılar, Prof. Muhittin Gökmen, Dr. S. Berna Ors Yalcin, Dr. Şule
Gündüz, and Dr. A. Cüneyd Tantuğ.

Special thanks again to my supervisor Dr. D. Turgay Altılar, I learned too much from
you. I am forever grateful for all the opportunities that have been provided for me.
And thank you for never giving up on me.

I would like to thank Türkiye Bursları and Yurtdışı Türkler ve Akraba Topluluklar
Başkanlığı for their financial support. I hope the best for these remarkable
organizations.

I would not have made it this far without the support of my dad, everything have started
by you. To my mother, whatever happens in this crazy world, your words always have
a magic effect that make me calm. Thanks also to my siblings for their reviews, and
special thanks to my wife and children for their patience.

Month year of defense Mohanad DAWOUD
Privacy-Preserving Search and Data Retrieval from Data Clouds

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1

1.1 Privacy Preserving Search on Data Clouds .. 2
1.2 Motivation of the Thesis... 3
1.3 Definitions of Privacy and Security Requirements in Data Cloud 4
1.4 Purpose of the Thesis.. 5
1.5 Literature Review ... 6
1.6 Thesis Organization.. 8

2. CLOUD COMPUTING ... 9
2.1 Definition of Cloud Computing.. 10
2.2 Cloud Computing Characteristics... 10
2.3 Service Models ... 12
2.4 Deployment Models ... 15
2.5 Data Cloud Systems in Practice ... 17
2.6 Summary... 17

3. HOMOMORPHIC ENCRYPTION IN CLOUD SYSTEMS 19
3.1 Categories of Homomorphic Encryption.. 19
3.2 Applications of Homomorphic Encryption in Cloud Systems 21
3.3 Summary... 22

4. TF-IDF NORMALIZATION... 23
4.1 Introduction .. 23

4.1.1 Frequency Analysis Attacks ... 26
4.1.2 Relations Between Documents... 26
4.1.3 Retrieval Efficiency .. 28

4.2 Normalization Technique ... 28
4.3 Simulations and Results ... 34
4.4 Analysis of the Normalization Technique .. 37

4.4.1 The effects of the normalization on retrieval efficiency 37
4.4.2 The effects of this technique on the time and memory costs.................. 37
4.4.3 The effects of the used normalization on privacy................................... 37

4.5 Summary... 37

xi

5. ANONYMOUS AUTHENTICATION.. 39
5.1 Introduction .. 39
5.2 Security and Privacy in RFID Systems .. 41

5.2.1 Security Requirements.. 41
5.2.2 Low Cost Operations .. 42
5.2.3 Related Works... 43

5.3 The HEADA Approach .. 45
5.3.1 Key Components of the HEADA ... 46
5.3.2 Key Generation... 50
5.3.3 Sub-keys Combination Selection.. 55
5.3.4 Authentication Protocol.. 57

5.4 Analysis of HEADA... 62
5.4.1 Number of Sub-keys (M), and Number and Sizes of the Groups (I

and G) ... 62
5.4.2 The Use of Verification Values (v1 and v2)... 63
5.4.3 Number of Temporary Keys (m)... 63
5.4.4 Number of Tags (W) ... 64
5.4.5 Security of the System Based on the 7 Security Requirements.............. 64

5.5 Summary... 66
6. HIGHLY SECURED DOCUMENT RETRIEVAL IN DATA CLOUDS 69

6.1 Introduction .. 69
6.2 The Technique .. 70

6.2.1 Data Outsourcing.. 72
6.2.2 Query Generation ... 72
6.2.3 Query Authentication ... 73
6.2.4 Similarity Vector Calculation ... 74
6.2.5 Similarity Vector Ranking .. 75
6.2.6 Documents Retrieval .. 76

6.3 Analysis of the Technique .. 76
6.4 Summary... 79

7. CONCLUSIONS AND FUTURE DIRECTIONS ... 83
REFERENCES.. 85
APPENDICES... 97

APPENDIX A.1 ... 99
APPENDIX A.2 ... 103

CURRICULUM VITAE... 105

xii

ABBREVIATIONS

AHEE : Algebra Homomorphic Encryption Scheme
APV : Average precision Value
BaaS : Backup as a Service
BPaaS : Business Process as a Service
CaaS : Communications as a Service
CRC : Cyclic Redundancy Check
DBaaS : Database as a Service
DMaaS : Data Mining as a Service
DoS : Denial of Service
DWaaS : Data Warehousing as a Service
GC : Green Cloud
GCC : Green Cloud Computing
HEADA : A Low Cost RFID Authentication Technique Using Homomorphic

Encryption for Key Generation
HTML : HyperText Markup Language
IaaS : Infrastructure as a Service
IT : Information Technology
IoT : Internet of Things
LSH : Locality Sensitive Hashes
NIST : National Institute of Standards and Technology
OPSE : Order-Preserving Symmetric Encryption
PaaS : Platform as a Service
PPSED : Privacy Preserving Search on Encrypted Data
PRNG : Pseudo-Random Number Generator
QAA : Query Anonymous Authentication
RFID : Radio-Frequency Identification
SaaS : Software as a Service
SOA : Service-Oriented Architecture
TF : Term-Frequency
TF-IDF : Term Frequency-Inverse Document Frequency
XaaS : Everything as a Service

xiii

xiv

LIST OF TABLES

Page

Table 4.1 : Statistics of the keywords in the “uw-can-data” dataset. 26
Table 4.2 : Example of a TF table. .. 27
Table 4.3 : Histogram of the example values in Table 4.2. 30
Table 4.4 : Ordered Histogram.. 30
Table 4.5 : Increasing value (eq) with k=2. ... 31
Table 4.6 : Normalized values (u”q for 1≤ q≤ Q). ... 32
Table 4.7 : Substitution of TF-IDF values with the normalized values table........ 33
Table 4.8 : Normalized TF-IDF table.. 33
Table 4.9 : Details of the three datasets (uw-can-data, mini-20newsgroups and

mini-classicdocs) used in the evaluation of the suggested technique. 36
Table 4.10 : Comparison between normalized and unnormalized TF-IDF tables

based on AV P and AV values... 36
Table 4.11 : Comparison between different techniques. ... 38
Table 5.1 : Comparison between passive, active and semi-passive tags. 41
Table 5.2 : Example of key values for 3 tags (1≤ n≤ 3). 50
Table 5.3 : Example values of K and KS and their D, S and ID values for

W = 3, M = 8, I = 2 and G = {4,4}. ... 51
Table 5.4 : Average correlation value for randomly selected sn values, where

W = 5, G = {4, . . . ,4}, and M = 12,16,20 and 40 65
Table 5.5 : Comparison between different tag authentication techniques............. 67
Table 6.1 : Average MQ values of different datasets. ... 77
Table 6.2 : Comparison between different privacy-preserving data retrieval

techniques ... 80
Table 6.3 : Execution time of different parts of the system (in milliseconds). 81
Table A.1 : uw-can-data dataset. .. 100
Table A.2 : Minimized 20_newsgroups dataset (mini-20newsgroups).................. 101
Table A.3 : Minimized classicdocs dataset (mini-classicdocs). 102

xv

xvi

LIST OF FIGURES

Page

Figure 1.1 : The simplest model of privacy preserving data retrieval system....... 3
Figure 2.1 : Cloud computing service models [1]... 14
Figure 2.2 : Evolving from Virtualization to the Cloud [1]. 15
Figure 2.3 : Leaks by channel 2016 [2]... 18
Figure 3.1 : Homomorphic property of the homomorphic encryption.................. 20
Figure 4.1 : Index generation stages of Gopal et al. [3] technique. 24
Figure 4.2 : Index generation stages of the proposed technique. 24
Figure 4.3 : Histogram of the TF-IDF table of uw-can-data dataset..................... 28
Figure 4.4 : Dataset preparation stages. .. 35
Figure 5.1 : Considered model of RFID system with the main entities and the

communications between them... 40
Figure 5.2 : Key preparations and details for the HEADA. 48
Figure 5.3 : Steps of key generation.. 52
Figure 5.4 : A recursion algorithm to generate the A1, . . . ,AI sets used in key

generation.. 54
Figure 5.5 : Sequence of operations and communications between the tag, the

reader and the server ... 57
Figure 6.1 : The architecture of the proposed technique....................................... 72

xvii

xviii

PRIVACY PRESERVING SEARCH AND DATA RETRIEVAL
FROM DATA CLOUDS

SUMMARY

Recently, cloud computing systems are considered as one of the most important
advances in the field of Information Technology (IT) applications. However, security
and privacy still form the main concern that slower the widespread use of these systems
in the sensitive applications that need high level of privacy and security on their data.

Outsourcing the data to unknown locations in the cloud needs securing these data
by encrypting them. On the other hand, retrieving these data (or part of them) may
need revealing sensitive data to unauthorized parties. Therefore, many techniques are
proposed to handle this problem, which is known as Privacy-Preserving Data Retrieval
(PPDR). These techniques tried to minimize the sensitive data that need to be revealed,
which negatively affects the security and privacy of the data and/or the quality (or
accuracy) of data retrieval.

In this thesis, 9 security requirements are defined to satisfy a high level of security and
privacy in a PPDR system based on the reported techniques in the literature. Together
with these 9 security requirements, a retrieval efficiency requirement is defined to
keep the retrieval efficiency high. Therefore, a new technique is proposed to satisfy
these 9 security and 1 efficiency requirements (which are noted as 9+1 requirements
in this thesis). The proposed technique utilizes Query Anonymous Authentication
-which is derived from another newly proposed Radio Frequency Identification (RFID)
anonymous authentication technique called HEADA- together with a multi-server
setting to satisfy these requirements. The technique provides an efficient ranking-based
data retrieval by using the cosine similarity of the TF-IDF vectors. The accuracy and
ranking of the data retrieval is tested on three different datasets and shown to be high
compared to other techniques as well as to the un-encrypted indexes and data. The
analysis of the proposed technique also shows that the technique is able to satisfy all the
9 security requirements, which are unsatisfied completely in the techniques reported in
the literature.

xix

xx

VERİ BULUTLARINDA MAHREMİYET KORUMALI ARAMA
VE VERİ GETİRME YONTEMİ

ÖZET

Son zamanlarda, bulut bilişim sistemleri, Bilgi Teknolojisi (BT) uygulamaları
alanındaki en önemli gelişmelerden biri olarak görülüyor. Bununla birlikte, güvenlik
ve mahremiyet endişeleri, veri üzerinde yüksek seviyede gizlilik ve güvenlik
gerektiren, özel kişisel bilgiler içeren veya güvenlik açıklarının maddi kayıplara yol
açabileceği hassas uygulamalarda bulut bilişim sistemlerinin daha yaygın şekilde
kullanılmasına engel olmaktadır.

Verileri bulut bilişim sistemleri üzerinde, fiziksel olarak bilinmeyen konumlarda veya
üçüncü taraf sağlayıcılar aracılığı ile saklamak , bu verilerin şifrelenerek güvence
altına alınmasını gerektirir. Öte yandan, bu verilerin veya bir bölümünün bulut systemi
üzerinden çağırılması, hassas verilerin, üçüncü partilere açıklanmasına, üçüncü taraflar
tarafından erişilebilir hale gelmesine neden olabilir. Bu da çeşitli mahremiyet ve
güvenlik sorunlarına yol açar.

Dolayısıyla, bu sorunun üstesinden gelmek için, Gizliliği Koruyarak Veri Çağırma
(PPDR – Privacy Preserving Data Retrieval) olarak bilinen birçok teknik halihazırda
önerilmektedir. Bu teknikler, üçüncü taraflarca okunur hale gelen verilerin güvenliği
ve mahremiyetini sağlamayı amaçlar. Ancak tüm Gizliliği Koruyarak Veri Çağırma
teknikleri, veri kalitesi ve veri çağırma işinin verimliliği, tutarlılığı ve doğruluğu
üzerinde bir takım negatif etkilere sahip. Bu teknikler veri çağırma işleminin
güvenliğini sağlarken, olumsuz etkileri de en aza indirmeyi amaçlar.

Bu tez çalışmasında, literatürde bildirilen teknikler temel alınarak, bir PPDR
sisteminde yüksek seviyede güvenlik ve gizliliği sağlamak için 9 güvenlik noktası
tanımlanmıştır. Bu 9 güvenlik noktası ile birlikte, çağırılan verilerin doğruluğunu ve
tutarlılığını yüksek tutmak için bir çağırma verimliliği kriteri tanımlanmaktadır. Bu
nedenle, bu 9 güvenlik ve 1 verimlilik gereksinimini karşılamak için yeni bir teknik
önerilmektedir (bu tezde 9 + 1 kriteri olarak belirtilmiştir).

Veri çağırma işleminin güvenlik ve mahremiyetini 9+1 kriterini sağlayarak
gerçekleştirmek için önerilen teknik, HEADA isimli henüz geliştirilen bir Radio
Frekansı ile Tanımlama (RFID) gizliliği sisteminden türetilmiş, çoklu sunucu yapısı
ile gerçekleştirilmiştir. Önerilen teknik, TF-IDF vektörlerinin kosinüs benzerliklerini
kullanarak verimliliği yüksek, etkin ve gizliliği koruyan bir sıralı veri çağırma işlemi
gerçekleştiriyor.

Tekniğin verimliliği ve veri cağırma işleminin derecesi, üç farklı veri kümesi ile
test edilmiştir. Bu testler, önerilen tekniğin diğer gizlilik hedefleyen şifrelenmiş
tekniklerden, hatta şifrelenmemiş tekniklerden daha yüksek sonuçlar aldığını
göstermektedir.

xxi

Önerilen tekniğin analizi, tekniğin literatürde bildirilen tekniklerden hiç birinin aynı
anda gerçekleştiremediği, 9 kriterin bir arada sağlandığını gösterir.

xxii

1. INTRODUCTION

Information Technology (IT) systems are used increasingly in all life aspects.

Therefore, the size of the data that need to be stored, processed, and transferred

through different public, private, or hybrid network systems is increasing rapidly.

The production of the enterprise systems as well as the need for competition with

highly supported and resource-allocated systems make the clouds essential in the IT

industry [4].

Cloud Computing System was defined by Foster in [5] as “A large-scale distributed

computing paradigm that is driven by economies of scale, in which a pool of abstracted,

virtualized, dynamically-scalable, managed computing power, storage, platforms, and

services are delivered on demand to external customers over the Internet.” Buyya

defined the cloud computing system in [6] as “a type of parallel and distributed

system consisting of a collection of interconnected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resources

based on service-level agreements established through negotiation between the service

provider and consumers.” According to these definitions, any new or small system can

have the same capabilities of the resources (computing, storage, etc) as the enterprise

systems with a reasonable cost and scalable resources. Moreover, the enterprise

systems can benefit from the clouds by increasing capacity or adding capabilities, by

pay-per-use service, according to their current needs.

Nowadays, there are many cloud systems that offer different services with high

potentials such as Amazon’s EC2 [7], IBM Cloud [8], Microsoft’s Azure [9], and

Google Cloud Platform [10]. Pastaki Rad et al. [11] showed that many requirements

should be satisfied to realize a reliable cloud. They surveyed many platforms by

comparing their arrangements, foundation and infrastructure services and their main

capabilities used in some leading software companies. Dikaiakos et al. [12] defined the

main requirements to be: suitable software/hardware architecture, data management,

1

cloud interoperability, security, privacy, service provisioning and cloud economics.

However, these requirements can be extended into many more specific requirements.

Despite the advantages of using clouds to reduce costs and to improve the productivity,

security issues should be handled carefully; they may inhibit wide adoption of the

cloud model [13]. Jansen and Grance [14] provided an overview of the security

and privacy challenges pertinent to public cloud computing. They pointed out

considerations that organizations should consider when they outsource their data,

applications and infrastructure to a public cloud environment [14].

1.1 Privacy Preserving Search on Data Clouds

The working mechanism of the cloud systems requires the transfer of users data to

unknown, and probably insecure, locations for storing, processing, or both. This may

cause a threat to the data’s security and privacy. The physical security systems which

have been used to secure the physical documents become the responsibility of the data

security management protocols which are used in these cloud systems. Therefore,

finding such security protocols is considered as a big challenge toward the efficient

usage of cloud computing in the critical and private systems.

Storing the data in the cloud systems can be secured by the traditional symmetric

or asymmetric encryption algorithms [15]. However, any data mining or retrieval

processes need the data, or part of them, to be revealed to the cloud system, which

may break the security and privacy rules proposed to keep/transfer data as well. Many

techniques have been proposed to enable the cloud to apply searching processes on the

data without revealing them, or, revealing as little as security and privacy rules, defined

by the system security administrator, allow. This is known as Privacy Preserving

Search on Encrypted Data (PPSED). Figure 1.1 shows the essential model of such

a typical data storage/retrieval system that is taken into consideration in this thesis.

The system mainly consists of three parts: data owner, a server in a cloud (cloud), and

client (user). Data owner has a large number of documents that need to be indexed,

searched, and partially retrieved by the user, but he does not have the processing and

storage capabilities. Cloud has the processing and storage capabilities needed to serve

the system, but it is assumed to be “honest-but-curious”. “Honest-but-curious” means

that the cloud follows the designated protocol honestly, but curious to infer useful

2

Data
Owner

Cloud Server
(Cloud)

Client (User)

Trapdoors

Encrypted Index

& Documents Query

Related Documents

Data outsourcing
Query communications

Figure 1.1: The simplest model of privacy preserving data retrieval system.

information by analysing the data flow during the protocol. User needs to retrieve

documents related to a queried document (or keywords). Data owner creates indexes

for the documents and store the indexes as well as the documents in the cloud in an

encrypted form. He also creates trapdoors, which may have different forms according

to the used technique, and sends them to the user. User uses these trapdoors together

with the index of the queried document to create a query. He sends the query to the

cloud which in turn is replied with the related documents.

1.2 Motivation of the Thesis

The wide adoption of cloud computing systems arose new privacy and security

requirements different than the traditional ones. For example, the traditional

encryption, which is used to satisfy the confidentiality property, may not be suitable

in the cloud systems, where the encrypted data need to be processed by untrusted

parties. Moreover, the storing server is not considered completely trusted anymore

where all kinds of cryptanalysis attacks are considered probably applicable by the

server. Another example is the authentication process in the cloud systems which

may require the anonymity of some parties in the system. Otherwise, some sensitive

information can be inferred. These examples and others show how the security and

privacy requirements are extended, and some times changed, in the cloud systems.

However, many commercial and business cloud systems still consider some of the

3

traditional definitions of security and privacy requirements toward the users. These

traditional definitions are used for many reasons, such as decreasing the processing

cost and keeping control over the data by the service providers. The lack of experience,

or in most cases the lack of required infrastructure and technology, may push the users

to use these cloud services and make their data threatened [4].

In this thesis, privacy and security essential requirements needed in the data clouds,

from the user perspective, are redefined. In data clouds, users outsource their data

(in documents format) and retrieve them later using search queries. Moreover, a new

practical model for secure data storage and retrieval in data clouds is proposed. The

foundation of such a model simplifies the adoption of secure and privacy-preserving

data clouds to the users.

1.3 Definitions of Privacy and Security Requirements in Data Cloud

Suppose that f eatures(γ) and index(γ) are the features and index of a document γ ,

respectively. query(θ ,τ) is the query generated from the query document θ and the

trapdoor τ . Any privacy-preserving data retrieval system should satisfy the following

requirements:

1. No Index Pattern: For any two different documents α and β where f eatures(α) =

f eatures(β), index(α) 6= index(β). Otherwise, the cloud can relate these

documents to each other.

2. No Query Pattern: For any two query documents δ and θ , query(δ ,τ) 6=

query(θ ,τ). Otherwise, the data owner and the cloud can relate the users who

are sending similar queries.

3. No Documents Pattern: For any party other than the user who generated a query

query(δ ,τ), it is not possible to know the retrieved documents or the rank of

the documents for the query query(δ ,τ). Otherwise, other parties can relate the

retrieved documents together, or, relate the query query(δ ,τ) to some documents

and disrelate it to others.

4. No Index Frequency: There is no pattern in the index that can be used to infer any

information about the distribution of the data in the documents .

4

5. No Query Frequency: There is no pattern in the query that can be used to infer

any information about the distribution of the data in the query.

6. No Replay Attack: For any valid query, it can not be used later by any party even

the retrieved data are encrypted.

7. Query Privacy: Neither the cloud nor the data owner is allowed to know or to be

able to infer anything about the contents of the user’s queries. Also, only authorized

users can make queries.

8. Index Privacy: For the cloud and the user, it is infeasible to know or to be able

to infer anything about the contents of the index. Also, in case cloud can add fake

indexes (even random ones), it can’t get any useful information.

9. Documents Privacy: It is infeasible for the cloud or the unauthorized users to know

or to infer anything about the contents of the encrypted documents.

These 9 security requirements together with the high efficiency of data retrieval are

called the 9+1 requirements in the rest of this thesis. The efficiency of data retrieval is

considered to be the accuracy of the retrieval based on a query, which is discussed in

details in Chapters 4, 5, and 6.

1.4 Purpose of the Thesis

To the best of our knowledge, there is no technique that satisfies the 9+1 requirements

efficiently in the current state of the art. Unsatisfying any of the 9 security requirements

poses a threat on the privacy of the data, which is not negotiable in most of the current

applications. On the other hand, high efficiency of data retrieval is needed to achieve

the main aim of the data retrieval system. Satisfying some of the security requirements

on cost of the retrieval efficiency decreases the reliability of the system.

The aim of this thesis is to design a complete data retrieval technique that satisfies the

9+1 requirements. The technique utilizes Query Anonymous Authentication (QAA)

together with a multi-server setting. The technique provides an efficient ranking-based

data retrieval by using the Cosine Similarity [16] of the Term Frequency-Inverse

Document Frequency (TF-IDF) [17] vectors. A normalization technique for the

Term-Frequency (TF) and the TF-IDF values is proposed to hide any frequency in

5

the indexes as well as the queries. Moreover, an anonymous authentication technique

is proposed using homomorphic encryption in key generation. The authentication

technique is applied on the Radio-Frequency Identification (RFID) systems to examine

its capabilities and features. However, the technique is shown more than suitable to be

utilized in the proposed PPSED technique.

1.5 Literature Review

One of the first techniques proposed to handle the privacy preserving search on

encrypted data was proposed by Song et al. [18]. Boneh et al. [19] proposed a

single user technique that uses public key encryption. It enables a gateway to test

whether a specific keywords are found in an email. Liu et al. [20] improved Boneh

et al. technique by simplifying its operations. However, both Boneh et al. and Liu

et al. techniques do not satisfy the requirements 1-7. Also, they are suitable only

for single user applications which is not the case in many popular applications. Li et

al. [21] proposed Authorized Private Keyword Search technique. The technique gives

different privileges to the users to search on the data. It uses specific keywords and

relations which is not suitable for many applications. Moreover, it does not satisfy

the requirements 1-6. ChinnaSamy and Sujatha [22] proposed two rounds search

technique. Although the technique insures the integrity of the retrieved documents,

it does not satisfy the requirements 1-8. Kuzu et al. [23] proposed a single keyword

technique that uses an encrypted Locality Sensitive Hashes (LSH) to prevent any

unauthorized party from creating a query. The technique still does not satisfy the

requirements 2,3, and 6. Tseng et al. [24] proposed a single keyword search technique

using authentication. The technique does not satisfy the requirements 1-4 and 6. The

techniques [19–24] are examples of binary keyword-based search techniques. This

kind of search uses binary checking to find whether the keywords in the query are found

in the document or not. Therefore, it misses a lot of similarity details and decreases

the efficiency of data retrieval.

The techniques in [25–27] provided the capability of fuzzy keyword search. However,

they may fail to satisfy the requirements 1-6. These techniques also share the same

weaknesses with the keyword-based search techniques regarding the efficiency of data

retrieval.

6

To overcome the weaknesses of binary keyword-based search, many techniques

provided results ranking. However, these techniques compromise some key data to

unauthorized parties in the system in order to provide this ranking. Wang et al. [28]

used inner product similarity together with an Order-Preserving Symmetric Encryption

(OPSE) to provide ranking. However, the technique leaks the order of the results, but

not the exact similarity values. Leaked information maybe used in frequency attacks.

Moreover, the technique provides only single keyword search queries. Therefore, the

technique may fail to satisfy the requirements 3,6, and 8 efficiently. Cao et al. [29]

proposed a multi-keyword ranked search technique that also uses the inner product

similarity. The technique may fail to satisfy the requirements 1-3 and 6 efficiently.

Both [28, 29] need the user to know the list of all valid keywords as well as their

exact position to be able to generate a query. This may affect the scalability of the

techniques. Wang et al. [30] utilized TF-IDF together with OPSE. The technique

still has the weaknesses found in [28] regarding the compromising of results order

to unauthorized parties and the single keyword search queries. Also, it may fail to

satisfy the requirements 1-6 and 8 efficiently. Sun et al. [31] tried to improve Cao

et al. [29] technique by creating a searchable index tree. Each leaf node in the tree

contains the documents that have the keywords found in the path from root node to

that leaf node. In case the query has only one keyword, the normalized TF distribution

of this keyword is exposed directly. Grouping the documents in the leaf nodes of

the index tree, together with some frequency analysis may compromise information

about the contents of the documents and the queries. Therefore, this technique may

fail to satisfy the requirements 1-9 efficiently. Orencik and Savas [32] improved some

security issues of Liu et al. [20] technique. They used dummy indexes and keywords to

handle index pattern and query pattern problems. These dummy indexes and keywords

can be known by the cloud since they are not queried as much as the actual indexes

and keywords. Authors suggested changing encryption keys periodically by the data

owner or asking trusted proxy server to query these dummy indexes and keywords.

The first solution is costly, while the second solution can be detected by the cloud by

access frequency analysis. On the other hand, the ranking technique proposed in the

technique requires adding extra index in the search cloud. This index compromises

some information about the relation between documents. Therefore the technique may

fail to satisfy the requirements 1 and 3 efficiently. Also, the used similarity measure

7

misses a lot of similarity information which affects the efficiency of data retrieval.

Chen et al. [33] proposed a multi-keyword ranked search scheme that supports latent

semantic search. Similar to [28, 29], any user needs to know the list of all valid

keywords as well as their exact position to be able to generate a query. Moreover,

the technique may fail to satisfy the requirements 1-3 and 6 efficiently.

Gopal and Singh [3] used homomorphic encryption of TF-IDF values to provide a

multi-keyword ranked search. The techniques uses the cosine similarity of TF-IDF

vectors. The technique may fail to satisfy the requirements 1-6.

1.6 Thesis Organization

This Thesis is composed of 7 chapters including this chapter (Chapter 1) which

introduces the problem considered in this thesis and the motivation for this work. It

also defined the 9+1 requirements for secure and efficient data retrieval and search in

data clouds. Chapter 2 discusses the cloud computing systems and their characteristics,

service models and deployment models. Chapter 3 reviews briefly the homomorphic

encryption and its characteristics which is used in both index & query generation and

anonymous key generation. Chapter 4 presents the normalization technique used to

hide the data frequencies, and therefore, to achieve 6+1 of the 9+1 requirements. To

achieve the “No Replay Attack” requirement, a lightweight anonymous authentication

technique is proposed in Chapter 5. The anonymous authentication technique needs

the operations complexity in the server and user sides, during the authentication

process, to be relatively low. Therefore, the proposed authentication technique

is verified by implementing it on the RFID systems which are good examples of

constrained resources systems. Chapter 6 discusses the integration of the normalization

technique, the lightweight anonymous authentication technique, and a multi-server

setting into one privacy-preserving document retrieval system that satisfies all the

9+1 requirements. Finally, Chapter 7 summarizes the contribution of this thesis and

discusses the future directions of research based on it.

8

2. CLOUD COMPUTING

Although the Cloud computing (or simply cloud) utilization is growing rapidly in

all life aspects, neither the concept nor the technology behind it is new. Cloud

computing can be considered as an advanced application of the grid computing. It

is generally defined as any system that provides hosted services over the internet.

These services are provided through standards-based interfaces [34]. The main concept

of cloud computing is the sharing of computing resources rather than depending on

local resources. These shared resources host and run the services and applications for

the users. Therefore, simple users or even enterprise companies are able to benefit

from these shared computers as a utility, such as electricity, water, etc. without the

need for establishing a computing infrastructure locally. Establishing local computing

infrastructure maybe costly or even unavailable for small or emerging businesses. The

efficient use of the shared resources within a cloud, which is known as Green Cloud

Computing (GCC) or simply Green Cloud (GC), has many advantages, such as:

• Reducing environmental damage by minimizing the power consumption, and

accordingly, the carbon emissions. It also minimizes the waste during infrastructure

updating processes [35, 36].

• Minimizing upfront infrastructure costs.

• Minimizing operational time and costs.

• Minimizing communications between cloud servers [37].

However, implementing such a cloud requires the utilization of the Virtualization

technology. Virtualization allows one physical device to be logically separated into

one or more logical devices (virtual devices). Each of these virtual devices can be

allocated to a different task. Therefore, resources of idle virtual devices can be used to

enhance the performance of other working virtual devices.

9

2.1 Definition of Cloud Computing

There are many detailed definitions for the cloud computing. However, the most

convincing ones share the following concepts:

1. The cloud consists of a network of remote servers.

2. These servers are hosted on the Internet.

3. The cloud provides an on-demand services.

For example, Foster [5] defined the cloud computing system as “A large-scale

distributed computing paradigm that is driven by economies of scale, in which a

pool of abstracted, virtualized, dynamically-scalable, managed computing power,

storage, platforms, and services are delivered on demand to external customers over

the Internet.” Similar concepts can also be found in Buyya [6] definition of the

cloud computing system, where he defined it as “a type of parallel and distributed

system consisting of a collection of interconnected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resources

based on service-level agreements established through negotiation between the service

provider and consumers.” National Institute of Standards and Technology (NIST) [38]

defined the cloud as “a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction. This cloud model

promotes availability and is composed of five essential characteristics, three service

models, and four deployment models.”

2.2 Cloud Computing Characteristics

NIST presented the cloud computing characteristics in five essential characteris-

tics [38]. These characteristics are:

1. “On-demand self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider.”

10

2. “Broad network access. Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick client

platforms (e.g., mobile phones, tablets, laptops, and workstations).”

3. “Resource pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

There is a sense of location independence in that the customer generally has no

control or knowledge over the exact location of the provided resources but may

be able to specify location at a higher level of abstraction (e.g., country, state,

or datacenter). Examples of resources include storage, processing, memory, and

network bandwidth.”

4. “Rapid elasticity: Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate with

demand. To the consumer, the capabilities available for provisioning often appear

to be unlimited and can be appropriated in any quantity at any time.”

5. “Measured service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate to

the type of service (e.g., storage, processing, bandwidth, and active user accounts).

Resource usage can be monitored, controlled, and reported, providing transparency

for both the provider and consumer of the utilized service.”

However, these five characteristics can be expanded into many detailed characteristics.

For example [38–40]:

1. Agility: The cloud provides reliable system deployment in a relatively short time

and easy steps. It supports tools and utilities that optimize the use of resources and

budget. Moreover, it is easy adaptable in responding to changing conditions.

2. Cost: As the cloud supports the Service-Oriented Architecture (SOA) as well as the

pay-per-use model, the user does not need to purchase the computing infrastructure

to start working. On the other hand, virtualization in the cloud servers improves the

utilization and the sharing of the resources which reflects on the cost of the services.

11

3. Device and location independence: Users may use the standard protocols

implemented in web browsers. However, some cloud systems may require

special softwares or platforms to run their services, these softwares and platforms

can be implemented on the current devices starting from mobile phones up to

supercomputers. Therefore, users are able to run the services, which are hosted

and provided by a third off-site party, regardless of their locations if they have

connection to the Internet.

4. Maintenance: To maintain or update a service in a cloud, only the copy installed

in the cloud will be affected. There is no need to re-install or update individual

installations for each user.

5. Multitenancy: Resources and costs are shared across different users. These

resources are located in centralized locations with lower costs. The centralization

of resources improves their utilization and efficient usage.

6. Reliability: Distribution of the resources in different locations as well as the backup

and recovery systems improves the business continuity of the systems. The device

and location independency helps the cloud to efficiently recover the systems after

disasters.

7. Scalability and elasticity: The cloud systems can provision the resources to the

users on demand. Therefore, users can scale up and down based on their usage.

8. Security and privacy: One of the main concerns regarding outsourcing data to

cloud computing service providers is security and privacy. Although Cloud systems

may have the capabilities to apply security and privacy requirements on the data

of their users, users still unable to completely rely on the honesty of these cloud

systems. Therefore, users have to apply their own security and privacy requirements

on their data before outsourcing them to the cloud systems. This property is

discussed in details in Chapters 5, 4 and 6.

2.3 Service Models

Agility in cloud computing services plays an important role in the selection of

service providers in the small and medium-sized enterprises, as well any the other

12

organizations. The ease of on-demand service deployment decreases the set-up time

and cost of the services. There are different cloud service models that offer a number of

different options. Three general service models, which are deployed over the internet

as a pay-per-use policy or using a subscription fee, are used by the providers to deliver

these services [38]. These service models are:

1. Infrastructure as a Service (IaaS): In this service model, service provider provides

processing, storage, networks, and other fundamental computing resources to the

user. The user in his turn can deploy and run arbitrary software, which can

include operating systems and applications through the Internet or dedicated virtual

private networks. The service provider is responsible of managing the physical

resources under the provisioned virtual machines. The user is unaware of the actual

computing resources, location, data partitioning, scaling and backup details of the

provisioned resources.

2. Platform as a Service (PaaS): In this service model, the service provider gives

development environments and tools to the users, who are application developers,

to implement and run their own systems. The services include providing the

needed infrastructure as well as the operating systems, database systems, web

servers, and programming language execution environments as a toolkit for the

users. The service provider is also responsible of the installing, run, management

and maintenance of the tools as well as their hardware and software infrastructures

in the toolkit. The users customize these tools to meet their requirements with a

low cost and in a short time. The users also may not need to buy their own licenses

for these tools since they can be part of the provided services, which also decreases

the set-up cost. However, in the PaaS model, users do not have the control over the

underlying cloud infrastructure.

3. Software as a Service (SaaS): In this service model, the service provider is

responsible of providing the software applications as well as managing the

infrastructure and platforms that run the applications. The users access and run

the software applications in the cloud servers through the Internet without the need

to install these applications in their own machines. The software applications

are generally pre-built and consumed using the provided functionality without

13

Infrastructure as a Service (IaaS)

Platform as a Service
(PaaS)

Software
as a

Service
(SaaS)

Figure 2.1: Cloud computing service models [1]
.

significant customization. This model simplifies (or even remove) the burden of

the installing, run, and maintenance of these software applications as well as their

infrastructure and platforms on the users side and puts the most (or all) of it on the

cloud provider side. The number of cloud computing providers decreases rapidly

as the level of user control over customization, configuration, and management of

cloud resources increases.

Figure 2.1 [1] summarizes the relation between the three models. It can be seen that

the SaaS service model includes both the PaaS and the IaaS services. PaaS service

model also includes the IaaS services. Note that as we move from the bottom of the

pyramid to the top, the user control over the resources decreases, which means less

set-up cost and time but also less flexibility of use. For more flexibility, users have to

go down in the pyramid for the lower service models which means higher set-up cost

and time.

Beside the three general service models shown above, there are many derived service

models such as Database as a Service (DBaaS), Communications as a Service (CaaS),

Business Process as a Service (BPaaS), Data Mining as a Service (DMaaS), Data

Warehousing as a Service (DWaaS), Backup as a Service (BaaS), or even Everything as

14

Increased Virtualization

Traditional
Data Center

Server
Virtualization

Distributed
Virtualization

Private
Clouds

Hybrid
Clouds

Public
Clouds

Capital Expenses Operational Expenses

Figure 2.2: Evolving from Virtualization to the Cloud [1].

a Service (XaaS). However, these service models still being able to categorized under

the IaaS, PaaS, or SaaS service models. They are defined for commercial purposes or

for specialized service provisioning.

2.4 Deployment Models

More than a marketing term, Cloud Computing refers to flexible self-service

network-accessible computing resource pools that can be allocated to meet demand.

The high need for flexible computing resources produced a high demand for the

automation of managing these resources. The current deployment models of cloud

systems have evolved from the traditional data centres. However, the different

requirements produced different deployment models. The most general deployment

models are Private, Public, and Hybrid models as shown in Figure 2.2 [1] which also

shows the evolution of the cloud systems.

1. Private Cloud: The private cloud consists of centrally accessed computing resources

owned by an organization that gives its members the authority to access these

resources from different locations with different authorities. The private cloud is

implemented over the organization resources. The aim of implementing a private

cloud is to utilize the local resources and provide the same characteristics as public

clouds, which means less recurring costs. On the other side, the owner of the

private cloud still has the control of the cloud resources as well as the usage of these

resources by the users, which means more security. For example, the governmental

organizations that have private data of their citizens use a private cloud to process

these data to keep its security and privacy, and at the same time benefit from the

cloud computing properties.

15

Although the use of private clouds may provide features such as easy scalability,

flexible resource management, maximum hardware utilization, data center

automation, chargeback metering, identity-based security, etc., it has an economical

downside for the organization since it is still responsible for running and managing

the resources instead of passing that responsibility to a cloud provider.

2. Public Cloud: The public cloud consists of a pool of computing resources managed,

but not necessarily owned, by the cloud provider. These resources are organized

to deliver services to the users over the Internet in different service models, such

as SaaS, PaaS, and IaaS. These services are provided to the organizations in

pay-per-usage model. The organizations benefit from this model to pay only for

the used services and decrease the setup and management cost and time. They use

the public clouds when they are less likely to need the level of infrastructure and

security offered by private clouds. The public cloud provides on-demand scalability

to the users where they can easily scale up/down by purchasing/freeing more

resources from/to the cloud provider. Users don’t need to purchase and implement

hardware. Moreover, they can use Internet to access these services from anywhere

which make it location independent. For example, Google, Amazon, Microsoft

(Windows Azure), Apple (iCloud) etc. provide cloud services to the public users

over the Internet.

3. Hybrid Cloud: The hybrid cloud is a composition of two or more private and public

clouds to perform distinct functions within the same organization. They are mostly

used by the organizations that need to apply security requirements on part of their

data but still need scalable computing resources. The sensitive and confidential data

are handled internally in the private clouds while the less sensitive and confidential

data are outsourced to the public clouds. Some organizations may have their own

private clouds that meet their requirements in the ideal situations, but still need to

scale across the public clouds in the workload peaks using what is called “cloud

bursting”. In this way the organization does not have to purchase or setup any

hardware which also decrease the costs and setup time.

However, there is another less known deployment model called “Community Cloud”,

where the infrastructure is shared between different organizations with the same

16

concerns. The cost of the hardware and management of the cloud can also be shared

between these organizations.

2.5 Data Cloud Systems in Practice

Recently, IT systems witnessed a significant growth in cloud adoption. The huge

sizes of transfered and processed data have emerged the importance of adopting data

cloud systems. These data cloud systems can be implemented using any of the

common three cloud service models (Saas, PaaS, IaaS). There are many examples

of data cloud systems in our life, starting from simple web-pages hosting systems

to enterprise storage systems. According to the State of the Cloud Report published

by RightScale Universal Cloud Management in 2016, the optimizations in the access

speed, scalability, availability and many other characteristics of the cloud systems in

the year 2016 cause a high demand on the data cloud systems [4]. On the other side,

according to the “Global Data Leakage Report 2016” [2], most of the data leakages

in the year 2016 are coming from the networking and cloud systems as shown in

Figure 2.3. Storing data in the cloud systems means trusting unknown parties, however,

according to the same report [2], 61.8% of the leakages in the year 2016 are coming

from internal offenders. This means that the cloud systems, which we are considered

to be trusted, can be the main source of data leakages.

In this thesis, the focus is on the data storage and retrieval cloud systems where users

data (in documents format) are outsourced to the clouds to be retrieved completely or

partially later using search queries. The final model proposed in this thesis is a hybrid

cloud model that combines both private and public cloud systems which is compatible

with the current and future tends of cloud adoption [4].

2.6 Summary

In this chapter, different cloud definitions are discussed to show the evolving stages of

the cloud systems from traditional data centers to the current form of cloud systems

with their characteristics. These characteristics as well as the service models and

deployment models are presented in this chapter to show the focus of this thesis and

gives more details over the previous chapter. As homomorphic encryption is used in

the proposed model, next chapter discusses the homomorphic encryption algorithms

17

Figure 2.3: Leaks by channel 2016 [2].

as well as their categories and applications in the cloud systems, especially the data

cloud systems.

18

3. HOMOMORPHIC ENCRYPTION IN CLOUD SYSTEMS

Homomorphic encryption is a form of encryption that allows computations to be

applied on the encrypted data. The result is the ciphertext of the value resulting from

applying the same operations (or other) on the unencrypted values. Figure 3.1 shows

the homomorphic property of homomorphic encryption. Suppose that x and y are

two plaintexts, and, a and b are the ciphertexts resulting form encrypting x and y,

respectively, using the same homomorphic key KH . z is resulting from applying the

� operation on x and y, while c is resulting from applying � operation on a and b.

� and � severally can be addition, subtraction, multiplication or division operations.

The homomorphic property ensures that decrypting c using the key KH results to z.

3.1 Categories of Homomorphic Encryption

The homomorphic encryption algorithms are categorized according to their capabil-

ities, and therefore their implementations in the applications. The homomorphic

encryption algorithms are categorized as follows:

1. Partially homomorphic algorithms: support only multiplication or addition. The

most known partially homomorphic encryption algorithms are:

• Unpadded RSA

The RSA was proposed by R. Rivest et al. [41] as the first practical public key

(asymmetric) cryptosystem. The cryptosystem uses two different keys, called

public and private keys. Data encryption using one of them requires the other

key to decrypt these data. Therefore, it is widely used for encryption as well

as authentication and digital signature. RSA uses high exponents of large

numbers which make it hard to be implemented in the low end processing

units. It was mostly used to share the session symmetric keys between parties

at the begining of communications.

19

x � y = z

E E D

a � b = c

KH KH KH

Figure 3.1: Homomorphic property of the homomorphic encryption.

Given that m is the modulus of the public key and e is the exponent, the

encryption of a message x is E[x], where:

E[x] = xe mod m

Then the multiplication homomorphic property of the RSA can be shown as

follows:

E[x1] ·E[x2] = (xe
1 · xe

2) mod m = (x1 · x2)
e mod m = E[x1 · x2]

• ElGamal

ElGamal [42] is another public key cryptosystem that satisfies the

multiplication homomorphic property. Given that (G,q,g,h) is a public key in

ElGamal cryptosystem where q is the order of a cyclic group G with generator

g, if a is the secret key then h = ga, and the encryption of a message x is E[x],

where:

E[x] = (gr,x ·hr)

for random r ∈ {0, . . . ,q−1}. Then, the homomorphic property can be shown

as follows:

E[x1] ·E[x2] = (gr1,x1 ·hr1) ·(gr2,x2 ·hr2) = (gr1+r2,(x1 ·x2) ·hr1+r2) =E[x1 ·x2]

• Other partially homomorphic cryptosystems

RSA and ElGamal are two examples of partially homomorphic cryp-

tosystems. However, there are many other cryptosystems such as Gold-

wasser–Micali [43], Benaloh [44], Paillier [45], Okamoto–Uchiyama [46],

and Naccache–Stern [47].

2. Fully homomorphic algorithms: support both multiplication and addition. The

most known fully homomorphic encryption algorithms are:

20

• Gentry cryptosystem

Gentry fully homomorphic cryptosystem was firstly proposed by Craig

Gentry in 2009 [48]. It has been shown that the cryptosystem supports

addition and multiplication. A key concept in the development of the

Gentry cryptosystem is Gentry’s bootstrapping technique. Schemes based

on Gentry’s blueprint are noise-based, which means that the plaintext is

hidden by noise which can be removed by decryption. However, this noise

increases with each homomorphic evaluation, and once it exceeds a certain

threshold, decryption will fail. To overcome this problem, Gentry introduced

the notion of recryption which works by encrypting a ciphertext anew (so

that it becomes doubly encrypted) and then removing the inner encryption by

homomorphically evaluating the doubly encrypted plaintext and the encrypted

decryption key using the decryption circuit. The complexity of decryption

increases in the Gentry cryptosystem as the operation on the encrypted data

are increased, which make it inefficient in some applications.

• Algebra Homomorphic Encryption Scheme (AHEE)

The AHEE is proposed by G. Xiang et al. [49] as an update to ElGamal [42]

algorithm. The security of AHEE algorithm depends on problems

from calculating discrete logarithm in finite field and decomposition of

large numbers. Examples in [49] shows the additive and multiplicative

homomorphism of AHEE. The computational cost of the encryption and

decryption operations can be considered constant if the key is known, which

make it efficient in many applications.

• Other fully homomorphic cryptosystems

There are many other fully homomorphic cryptosystems which vary in their

efficiency, security and complexity, such as Smart and Vercauteren [50], Dijk

et al. [51], Brakerski and Vaikuntanathan [52] and Coron et al. [53].

3.2 Applications of Homomorphic Encryption in Cloud Systems

The homomorphic property of the homomorphic encryption make it a very practical

and effective tool in the cloud systems. The need for making privacy-preserving

calculations in untrusted or unsecured servers on the Internet become possible. There

21

have been many applications of applying the homomorphic encryption to satisfy

the privacy and security of the data stored and processed in the cloud systems.

For example, privacy-preserving advertising [54, 55], medical applications [56, 57],

forensic image recognition [58,59], data mining [60], financial privacy [57], protection

of mobile agents [61], privacy preserving search in data [62, 63] and Watermarking

& finger printing schemes [64, 65]. In this thesis, homomorphic encryption is used

in two different methods to satisfy privacy-preserving data storage and retrieval

based on queries. The first method is to encrypt the data that need to be stored

in the cloud as shown in details in Chapter 4 using fully homomorphic encryption

algorithm. The second method is to generate anonymous authentication keys for each

query as shown in details in Chapter 5. Although partially (addition) homomorphic

encryption algorithm can be used in the anonymous authentication keys generation,

fully homomorphic encryption algorithm is considered more than enough to be used

in the keys generation process.

3.3 Summary

In this chapter, homomorphic encryption algorithms, as well as their properties,

categories, and applications are introduced. In this thesis, homomorphic

encryption algorithm is used in two different, and separated, methods in the final

privacy-preserving data retrieval model. More details about using the homomorphic

encryption algorithms in the cloud systems is presented in the next two chapters.

22

4. TF-IDF NORMALIZATION

Chapter 1 introduced 9 security requirements as well as an efficiency requirement (9+1

requirements) for a privacy-preserving data storage and retrieval on data clouds. There

have been many proposed techniques to satisfy some of these requirements, however,

encrypting the data using deterministic encryption algorithms, which is the case in the

most convenient encryption algorithms, cannot hide these frequencies and patterns.

For example, Figure 4.1 shows the main stages of generating the index in Gopal et

al. [3] technique. Note that frequencies and patterns should be removed from the data

in all the system parts, otherwise, attackers can infer many important information about

the data using frequency and pattern analysis attacks. In this chapter, a two-rounds

technique that uses the model shown in Figure 1.1 is proposed. A normalization stage

is added, as shown in Figure 4.2, to remove any frequency in the TF-IDF table before

encrypting its values using the homomorphic encryption to generate the index. The

technique also uses the cosine similarity between the TF-IDF vectors to find a ranked

similarity vector of the documents according to a query. It satisfies the conditions

1,4-5, and 7-9 efficiently. The other requirements are satisfied in Chapter 6 using a

multi-server setting as well as an anonymous authentication technique that is presented

in Chapter 5.

4.1 Introduction

In data mining, TF table is used to get feature vectors of the documents (especially text

documents). In this chapter, we consider a dataset D consists of N documents where

D = (d1,d2, · · · ,dN)

the set of the ID’s of these documents is

ID = (id1, id2, · · · , idN)

23

Dataset
(Documents)

Generating TF table

Generating TF-IDF table

Encrypting TF-IDF values
using

homomorphic encryption

Figure 4.1: Index generation stages of Gopal et al. [3] technique.

Dataset
(Documents)

Generating TF table

Generating TF-IDF table

TF-IDF normalization

Encrypting normalized TF-IDF
values using

homomorphic encryption

Figure 4.2: Index generation stages of the proposed technique.

24

The total number of the unique keywords in the entire documents is M, therefore, the

set of all unique keywords is W , where

W = (w1,w2, · · · ,wM)

For a TF table, the rows represent the documents while the columns represent the

keywords, so

T F = [xn,m | 1≤ n≤ N and 1≤ m≤M]

The value of xn,m represents how many times the m’th keyword is found in the n’th

document. If the value of an entity xn,m is zero, this means that the n’th document

doesn’t include the m’th keyword, also, any equal values in one column means that the

corresponding documents has the same keyword with equal number of occurrences.

Creating TF table generates a lot of entities with zero value; this is because the table

does not include units only for the found unique keywords, but also for the non-found

unique keywords in each document. To show that, stop-words are removed from the

documents of the “uw-can-data” dataset [66] using three lists of stopwords (for more

details about the stopwords list, see APPENDIX A.2). Table 4.1 shows that the ratio

of the non-zero entities to the zero entities in the TF table is 1.41%, which means large

number of zeros in the table.

For efficient retrieval, TF-IDF [67] is used. However, the entities of the TF-IDF table

need to be encrypted to hide their actual values, which is needed for the security and

privacy in the retrieval system. In most efficient Privacy-Preserving Search techniques,

the entities of the comparable parts of the index need to be encrypted individually,

otherwise, the index need to be decrypted in each search process. Moreover, using

homomorphic encryption make it possible to process the individually encrypted

values without the need for decrypting them. Therefore, if the encryption has to be

deterministic, the values in the TF-IDF table will be mapped to new values in the

encrypted TF-IDF table. Therefore, a new table with the same statistics but different

values is generated. This makes the dataset vulnerable to frequency analysis attacks.

Whatever the value that appears with largest number of times in the encrypted TF-IDF

table, it will be considered to represent the zeros in the TF table with a high probability.

25

Table 4.1: Statistics of the keywords in the “uw-can-data” dataset.

The total number
of keywords in
the documents

The total number
of different keywords

in the documents

The total number
of non-zeros in

the TF table

The total number
of zeros in

the TF table

The ratio of the
non-zeros to the

zeros in the TF table
(non-zeros/ zeros)

91923 21014 91923 6506473 1.413

4.1.1 Frequency Analysis Attacks

The frequency attack problem is handled partially in [29, 31, 33] by using the matrix

multiplication for index generation. Each element in a TF-IDF vector is affected by all

the other elements in the same vector as well as the corresponding vector in the key

matrix. Therefore, elements with zero or high frequently occurred values will have

different values after encryption according to the randomness of the key. However,

this is not the case with the techniques similar to Gopal et al. [3] technique since

the entities of the features table are encrypted separately using the same key. Other

techniques, such as [19, 20, 25], compare the encrypted keywords to find the matches.

This means that similar keywords before encryption are still similar after encryption.

These techniques are vulnerable to frequency analysis attacks. Therefore, a proposed

technique has to be developed to prevent this frequency analysis attacks keeping in

mind not to affect the retrieval efficiency.

4.1.2 Relations Between Documents

Including only the keywords with values greater than zero [3, 25] gives an idea about

which keywords are found in specific documents and which keywords are not. This can

be considered as threat where the documents can be related to each other. For example,

assume that a dataset consists of 10 documents (N = 10), and the total number of

unique keywords is 4 (M = 4), and the details of the documents are as follows:

1. Keyword1 found in documents 1, 3, 6, 8 and 9 for 86, 86, 90, 58 and 46 times

respectively.

2. Keyword2 found in documents 1, 3, 4, 7 and 9 for 94, 54, 58, 64 and 80 times

respectively.

3. Keyword3 found in documents 5, 8 and 10 for 64, 46 and 64 times respectively.

26

Table 4.2: Example of a TF table.

Document ID w1 w2 w3 w4
id1 86 94 0 0
id2 0 0 0 56
id3 86 54 0 0
id4 0 58 0 0
id5 0 0 64 0
id6 90 0 0 58
id7 0 64 0 90
id8 58 0 46 0
id9 46 80 0 64
id10 0 0 64 0

4. Keyword4 found in documents 2, 6, 7 and 9 for 56, 58, 90 and 64 times respectively.

Then, the TF table of this example is shown in Table 4.2. Note that these values are

not actual values, they are selected to simplify the example.

It can be seen that even if the keywords, document ID’s, and frequencies are encrypted,

one can end up with many deductions, such as:

• Zero is repeated 23 times, which can be detected even after encryption.

• Documents 1 and 3 are related: they include two common keywords with

exact frequencies and another two common keywords with different frequencies.

Moreover, based on the first induction, both of them do not have the keywords

Keyword3 and Keyword4.

• Documents 4 and 8 are unrelated (have no common keywords).

• Based on the first induction, document 10 does not contain Keyword2 and

Keyword4.

• Documents 5 and 10 are exactly the same.

Even though such a simple example, it is seen that including zeros is necessary to

prevent such deductions. Including only non-zero values allows anyone to know

which keywords are found in exact documents and which are not. On the other

hand, including zeros need to hide their frequency. Fig. 4.3 shows the histogram for

27

Figure 4.3: Histogram of the TF-IDF table of uw-can-data dataset.

the TF-IDF table of uw-can-data dataset [66], some TF-IDF values have frequencies

more than others, which can be considered as indicators to them in the frequency

analysis attacks even after encryption. So, the goal is to normalize these values before

encrypting them.

4.1.3 Retrieval Efficiency

Data retrieval quality depends on many different factors; one of these factors is the

way of choosing feature vectors for the documents. According to [68], binary term

vectors give lower efficiency than weighted term vectors. Note that [29, 31] use the

binary vectors while [3] uses the weighted vectors in their techniques.

4.2 Normalization Technique

As mentioned in Section 4.1, the techniques in [29, 31] can hide zeros and high

frequently occurred values. However, because of using the binary vectors as well as

dummy keywords, the retrieval efficiency becomes lower than weighted term vector

algorithms. Therefore, Gopal technique [3] has to be improved to be able to handle the

three issues mentioned in Section 4.1. With reference to Fig. 1.1, the suggested model

is working as follows:

1. Data owner creates the TF table; the keywords in this table are hashed.

28

2. The names of the documents and the documents themselves are encrypted

separately using symmetric or asymmetric key (Ks).

3. TF-IDF is created from the TF table.

4. TF-IDF table is normalized using the technique which will be explained later in this

section.

5. The entities of the normalized TF-IDF table are encrypted individually using

homomorphic encryption with the same key (Kh). The encrypted TF-IDF table is

the index that will be outsourced to the cloud (encrypted data & querying services).

6. Kh and Ks are sent from the data owner to the client (the trapdoors).

7. The client applies the same operations on the TF vector generated from the query

document using Kh before sending it to the cloud.

8. The cloud calculates the similarity between the query and the documents using

operations on the encrypted data without revealing them.

9. The similarity vector is sent to the client to decrypt it using Kh and find the best

matches to be retrieved.

10. The client send the ID’s of the selected documents to the cloud. The cloud replies

by the encrypted documents which are decrypted by the client using the secret key

Ks.

Assume that the number of the unique values in the TF-IDF table is Q, then

U = (u1,u2, · · · ,uQ)

where U is the set of unique values in the TF-IDF table, in this case, the histogram of

the TF-IDF table is

H = (h1,h2, · · · ,hQ)

where hq represents the number of times that uq appears in the TF-IDF table for 1 ≤

q≤ Q. To normalize these values, we will start by the values in Table 4.2 as a TF-IDF

29

Table 4.3: Histogram of the example values in Table 4.2.

TF-IDF values (U) Histogram (H)
86 2
94 1
0 23
56 1
54 1
58 3
64 4
90 2
46 2
80 1

Table 4.4: Ordered Histogram.

U ′ H ′

0 23
46 2
54 1
56 1
58 3
64 4
80 1
86 2
90 2
94 1

values of the example given in Subsection 4.1.1. The actual TF-IDF values are not

calculated to simplify the example. Therefore, both U and H are shown in Table 4.3.

The normalization process goes as follows:

1. Order U increasingly in U ′. Therefore,

U ′ = (u′1,u
′
2, · · · ,u′Q)

Values of H are ordered corresponding to U ′ in H ′ as shown in Table 4.4. Therefore,

H ′ = (h′1,h
′
2, · · · ,h′Q)

30

Table 4.5: Increasing value (eq) with k=2.

U ′ H ′ eq
0 23 (46-0)/(23× 2)=1

46 2 (54-46)/(2× 2)=2
54 1 (56-54)/(1× 2)=1
56 1 (58-56)/(1× 2)=1
58 3 (64-58)/(3× 2)=1
64 4 (80-64)/(4× 2)=2
80 1 (86-80)/(1× 2)=3
86 2 (90-86)/(2× 2)=1
90 2 (94-90)/(2× 2)=1
94 1 Minimum(eq)=1

2. For each u′q ∈U ′, calculate eq, where

eq =
u′q+1−u′q

h′q× k
(4.1)

k is a scaling factor that determines the size of difference between the original value

and the normalized values (will be discussed later in Section 4.3). For eQ, minimum

eq value is taken to be its value as shown in Table 4.5 where k is used as 2.

3. For each u′q ∈U ′:

(a) Define Sq = h′q−1

(b) Generate a new set u”q = (u”q0,u”q1,u”q2, · · · ,u”qSq) as follows:

• For s = 0 to Sq

– u”qs = u′q +(s× eq)

Table 4.6 shows u”q for 1≤ q≤ Q.

4. Replace all the entities in the TF-IDF table that have the u′q value by the elements

of the u”q randomly without repetition as shown in Table 4.7 and Table 4.8.

In this case all the TF-IDF values will be different. Also, even in small difference

between the values will be hidden by the encryption process. For Example, documents

5 and 10 which are exactly the same in the TF-IDF table are different after the

normalization.

31

Table 4.6: Normalized values (u”q for 1≤ q≤ Q).

U ′ u”q Frequency

0

0+(0×1)=0 1
0+(1×1)=1 1
0+(2×1)=2 1
0+(3×1)=3 1
0+(4×1)=4 1
0+(5×1)=5 1
0+(6×1)=6 1
0+(7×1)=7 1
0+(8×1)=8 1
0+(9×1)=9 1

0+(10×1)=10 1
0+(11×1)=11 1
0+(12×1)=12 1
0+(13×1)=13 1
0+(14×1)=14 1
0+(15×1)=15 1
0+(16×1)=16 1
0+(17×1)=17 1
0+(18×1)=18 1
0+(19×1)=19 1
0+(20×1)=20 1
0+(21×1)=21 1
0+(22×1)=22 1

46
46+(0×2)=46 1
46+(1×2)=48 1

54 54+(0×1)=54 1
56 56+(0×1)=56 1

58
58+(0×1)=58 1
58+(1×1)=59 1
58+(2×1)=60 1

64

64+(0×2)=64 1
64+(1×2)=66 1
64+(2×2)=68 1
64+(3×2)=70 1

80 80+(0×3)=80 1

86
86+(0×1)=86 1
86+(1×1)=87 1

90
90+(0×1)=90 1
90+(1×1)=91 1

94 94+(0×1)=94 1

32

Table 4.7: Substitution of TF-IDF values with the normalized values table.

Document ID w1 w2 w3 w4
id1 86→87 94→94 0→17 0→8
id2 0→10 0→4 0→15 56→56
id3 86→86 54→54 0→19 0→0
id4 0→7 58→59 0→18 0→22
id5 0→3 0→14 64→68 0→13
id6 90→91 0→1 0→20 58→60
id7 0→12 64→66 0→6 90→90
id8 58→58 0→21 46→48 0→9
id9 46→46 80→80 0→11 64→64
id10 0→16 0→5 64→70 0→2

Table 4.8: Normalized TF-IDF table.

Document ID w1 w2 w3 w4
id1 87 94 17 8
id2 10 4 15 56
id3 86 54 19 0
id4 7 59 18 22
id5 3 14 68 13
id6 91 1 20 60
id7 12 66 6 90
id8 58 21 48 9
id9 46 80 11 64
id10 16 5 70 2

33

The final step in creating the index for the cloud is to encrypt the entities of the

normalized TF-IDF table using Homomorphic encryption as in [3]; this hides the actual

values, but operations on these values are still applicable.

To discuss the effect of applying this technique on the retrieval efficiency, the retrieval

efficiency of the normalized TF-IDF table is compared with the original TF-IDF table.

Average Precision Value (APV) is used to calculate the retrieval efficiency of the

techniques as follows:

1. For each document dn ∈ D, calculate the precision value prn as follows:

prn =
Retrieved Documents ∩ Related Documents

Retrieved Documents
(4.2)

Where the number of retrieved documents is equal to the size of the cluster

containing the document dn in the original dataset.

2. Calculate the APV as follows:

APV =
∑
n

prn

Number of Documents
(4.3)

4.3 Simulations and Results

In order to test the suggested technique, three different datasets are used: uw-can-data

[66], mini-classicdocs [69] and mini-20newsgroups [70]. Table 4.9 shows some details

of these three datasets (for more details, see APPENDIX A.1). The datasets are

prepared before being used as shown in Figure 4.4. The steps are as follows:

1. HyperText Markup Language (html) documents are parsed using htmlparser-1.6 to

extract the data from them.

2. Stopwords are removed using three different lists of stopwords: Long list, Short list

and Google list.

3. Porter stemmer is used to stem the keywords.

4. The datasets are classified using k-means classification with cosine similarity

distance.

34

Dataset
(HTML files)

Parsing

Removing
Stopwords

Stemming

Classifying

Figure 4.4: Dataset preparation stages.

Using the normalization technique will make all the histogram values of the normalized

TF-IDF table equal to one. The number of different numbers of the TF-IDF table will

be equal to: number of unique keywords × number of documents.

To know the effect of normalization on the retrieval efficiency, different values of

the factor k are used. As mentioned before, the factor k determines the size of

the difference between the original value (u′q) and the expanded set of values (u”q)

in the normalization process. The technique was applied on the uw-can-data, and

mini-classicdocs datasets separately as follows:

• For z=1 to 10000 increasing by 5:

– Calculate APVz= the APV where k = z.

– Calculate AV = Average of APVz over all z values.

Table 4.10 shows the APV ’s using the original TF-IDF tables (without normalization)

for the three datasets in the first column, which is the case in [3] technique. The second

column represents the APV ’s for the binary term tables also for the three datasets,

which is the case in [29, 31]. Finally, the third column represents the average APV ’s

(AV ’s) for the normalized TF-IDF tables with k = 1 to 10000 increased by 5 for the

three datasets, which is the case in the suggested technique in this chapter.

35

Table 4.9: Details of the three datasets (uw-can-data, mini-20newsgroups and
mini-classicdocs) used in the evaluation of the suggested technique.

Dataset Number of Documents Number of Classes Description
uw-can-data 314 10 Web pages from various web

sites at the University of
Waterloo, and some Canadian
websites

mini-20newsgroups 400 20 A collection of approximately
20,000 newsgroup
documents, partitioned
(nearly) evenly across 20
different newsgroups, the
number of documents is
minimized to 400 documents
with the same number of
classes

mini-classicdocs 800 10 Four different document
collections: CACM, CISI,
CRAN, and MED. the
number of documents is
minimized from 7095
documents to 800 clustered
in 10 classes

Table 4.10: Comparison between normalized and unnormalized TF-IDF tables based
on AV P and AV values.

Dataset APV without normalization APV With binary TF table AV of the normalized TF-IDF table
uw-can-data 0.175935689 0.150279841 0.183681939

mini-20newsgroups 0.110836309 0.101195467 0.114799958
mini-classicdocs 0.110236005 0.107274797 0.111710287

36

4.4 Analysis of the Normalization Technique

The effectiveness of normalization technique is discussed in this section with regard to

the results given in Section 4.3.

4.4.1 The effects of the normalization on retrieval efficiency

Results show that the retrieval efficiency does not decrease after normalization of

the TF-IDF tables. As shown in Table 4.10, the average of the APV ’s (AV) after

normalization are higher than the precision values before normalization, which in turn

higher than the APV ’s of the binary features, for the three datasets. Although the

similarity values can be affected by the normalization, precision values are shown to

be unaffected in the same degree, which satisfies the retrieval efficiency requirement.

4.4.2 The effects of this technique on the time and memory costs

Time cost: The normalization technique will be done once in the setup of the system

(which is offline process), all the steps can be done using parallel processors, ordering

the histogram increasingly according to the TF-IDF values is O(n logn) for n unique

keywords. Memory cost: Storing the different values after normalization needs:

(number of unique keywords × number of documents × size of each unit).

4.4.3 The effects of the used normalization on privacy

Using normalization gives unique values for all the normalized TF-IDF elements. This

prevents any kind of frequency attacks (discussed in 4.1.1 and 4.1.2 subsections).

Although the difference between the values may be small before encryption, the

Homomorphic encryption maps them to different values.

Table 4.11 summarizes the comparison between [3], [29, 31] and the proposed

technique with regard to the first three problems have been introduced in Section 4.1

which are frequency analysis attacks, relations between documents, and retrieval

efficiency.

4.5 Summary

37

Table 4.11: Comparison between different techniques.

Problem Gopal [3] Sun & Cao [29, 31] Proposed technique
1- Frequency analysis attacks Vulnerable Invulnerable Invulnerable
2- Relations between documents Can be deduced Hard to deduce Hard to deduce
3- Retrieval efficiency Higher than Sun & Cao Lower than Gopal Higher than both

Data frequencies and patterns in the index or the queries can be used to infer important

private and secure information about users, index, or queries. Using deterministic

encryption algorithms, even the homomorphic ones, to encrypt the index or the query

values does not solve the problem. It has been shown that the index and the queries

in the data retrieval systems are vulnerable to frequency attacks. Therefore, a new

normalization technique is proposed in this chapter to hide any frequencies in the index

or the queries. The first step is to normalize the values to make them all unique, then to

encrypt these values using homomorphic encryption to allow calculations over them.

Although the normalization technique is shown efficient in satisfying seven of the nine

security requirements as well as keeping the retrieval and ranking efficiency high, it is

still unable to satisfy two of the security requirements. One of these two requirements

is the prevention of Replay Attacks, which requires an anonymous authentication for

each query. In the next chapter, a lightweight anonymous authentication technique

is proposed and verified on the RFID systems as an example of limited resources

units. This authentication technique is integrated with the normalization technique

presented in this chapter to find the complete model of privacy-preserving data storage

and retrieval on data clouds shown in Chapter 6.

38

5. ANONYMOUS AUTHENTICATION

The wide use of cloud systems, which have different ownerships, arose new types

of authentication processes. Although authentication is considered as a necessity in

most of the applications to grant different levels of privileges and authorities, still

there are some requirements to be met, such as the privacy of users. Revealing any

information about the user, such as identity, location, ect. is considered as a break of

the privacy of that user. For example, revealing the identity of a user in a mobile

system allows the attacker to track that user by tracking the authentication points.

Therefore, anonymous authentication techniques became a must in IT systems. Note

that in any authentication system, and for generality, the user should be considered

having constrained resources. On the other side the authentication server is considered

to have enough resources to apply complex operations. The networks between the user

and the authentication server are considered insecure. Anonymous authentication in

RFID systems is considered as a good example to verify the proposed anonymous

authentication technique. Therefore, a new anonymous authentication technique

(Called HEADA) is explained in this chapter. Although the HEADA is designed and

verified on the RFID systems, it is efficiently used, with some modifications, in the

final model of privacy-preserving data retrieval as shown in Chapter 6.

5.1 Introduction

By the rapid integration of the IT in all life aspects, RFID technology started to play

an important rule in the automatic identification of objects such as people, cargos,

vehicles, goods, and many different assets [71–73]. There are many advantages of

using RFID technology compared to other technologies that are being used for similar

purposes such as magnetic strips and bar code [74]. The main advantage is the ability

to store the identification data in the objects, then reading these data automatically

without the need for direct contact between the object and the reader. RFID technology

utilises radio signals generated by a network of readers distributed over a distance of

39

Figure 5.1: Considered model of RFID system with the main entities and the
communications between them.

several meters to detect, sort, identify and track the objects. An RFID system consists

of three essential entities: servers, readers and tags. The servers in the system process

data received from readers using stored databases for authentication or any further

processes. The servers also can be responsible of any key generations or data storage

in the deployment course of readers or tags. Readers are devices which are connected

to the servers with fast and secure networks. They are used to transfer data between

servers and tags. Tags are devices that store a unique ID as well as different data that

may vary for each application [75]. The RFID system that is considered in this chapter

is depicted in Figure 5.1. For simplicity, the system consists of a server, a reader and

a tag. The reader sends a low-level radio frequency magnetic field that energizes the

tag in its range. The tag responds by its identification data via radio waves. The reader

sends data to a server to check them through fast and secure communication channel.

Server grants different access levels to a tag based on the received identities and the

data stored in the database [76]. Figure 5.1 also shows the behaviour of an expected

attacker. An attacker can: listen to the communications between the reader and the

tag, communicate with the reader as a tag, and communicate with the tag as a reader

regardless of being the tag in the range of the reader or not.

The variation of RFID applications led to the foundation of different types of tags

with different properties and capabilities. Tags can be classified into three categories:

passive, semi-passive and active tags. Table 5.1 compares these three categories based

on the power source, maximum distance range, type of communications and cost [77].

The advantages of RFID technology over other technologies, such as non-contact and

non-line-of-sight automatic way of communication, made it a good replacement to

40

Table 5.1: Comparison between passive, active and semi-passive tags.

Property Passive Semi-Passive Active
1- Power source RF energy Battery Battery
2- Maximum distance 10 M 100 M 1000 M
3- Communications Only response Only response Initiation or response
4- Tag’s signal Very low Moderate High
5- Cost The lowest Higher than passive The highest

them in their applications and a very useful tool in many other new applications. The

growing tendency to benefit from these advantages arose new requirements, such as

security and privacy, which should be suitable to the limited resources in some parts of

the system.

5.2 Security and Privacy in RFID Systems

RFID tags are considered as a good example of the low storage and computing

capabilities units in Internet of Things (IoT) systems. Therefore, they can be

considered as the weakest point in such IoT security systems. To discuss any RFID

security system, a complete set of security requirements should be defined and verified

on that system.

5.2.1 Security Requirements

The main advantage of the RFID technology is the non-contact and non-line-of-sight

automatic way of communication which is not the case with the other technologies.

In spite of being the communication way in RFID systems an advantage in the

usability side, it may exacerbate privacy threats or pose new security risks. The

security achieved physically in the contact or line-of-sight technologies became the

responsibility of the communication protocol [78]. Therefore, based on the literature

review, following security requirements are considered as the common and minimum

requirements to satisfy a high level of privacy and security in any RFID authentication

protocol:

1. Untraceability: Only the authorized parties are allowed to identify or trace a tag at

any time.

41

2. Resistance to replay attack: The messages of any previous valid or invalid

authentication processes cannot be used to gain a valid authentication for

unauthorized party.

3. Resistance to Denial-of-Service (DoS) attack: Modification, forging, blocking, or

delaying of message from/to any party of the system are unable to make the tag or

the server unreachable later under proper conditions.

4. Mutual authentication: Both the server and the tag verify the proper identity of

each other in the authentication process.

5. Tag forgery resistance: Generating, predicting, or reusing a valid authentication

key is infeasible without a valid authentication data.

6. Server forgery resistance: Generating, predicting, or reusing a valid server

verification key is infeasible without a valid authentication data.

7. Data recovery: Any flaw in the synchronization or the status of any of the parties

at a moment is recoverable.

5.2.2 Low Cost Operations

RFID tags are renowned for being cheap, small, and made of sustainable materials

with limited storage and processing capabilities. Chien [82] suggested categorizing

the RFID tags into four categories according to the operations in the tag during the

authentication process. The four categories are as follows:

• Ultralight tags: Passive tags which are implemented using only simple operation

such as OR, AND, or/and XOR.

• Lightweight tags: Beside the operations in the ultralight tags, lightweight tags

use Cyclic Redundancy Check (CRC), or/and PseudoRandom Number Generator

(PRNG).

• Simple tags: Beside the operations in the lightweight tags, simple tags use

cryptographic one-way hashing functions (HASH).

42

• High cost: Beside the operations in the simple tags, High cost tags use

conventional cryptographic algorithms, such as symmetric or/and asymmetric

encryption algorithms.

Therefore, efficiency requirements in this chapter are defined as follows:

1. Low cost operations in the tag: Tags belong to one of the first two categories,

i.e. ultralight or lightweight, which means including only OR, AND, XOR, CRC,

or/and PRNG functions.

2. Low cost operations in the server: No brute-force operations on the tags data

(or part of it) during the authentication protocol. Otherwise, each authentication

process takes unexpected amount of time and iterations.

Along with the seven security requirements, these two efficiency requirements for low

cost operations are noted as the 7+2 requirements in the rest of this chapter. Any

authentication protocol should satisfy at least these 7+2 requirements to be eligible for

such a system.

5.2.3 Related Works

There have been a number of techniques proposed to address some of these security

problems. The techniques available in the literature can be grouped under three

headings:

(a) Hash-based.

(b) Matrix multiplication-based.

(c) Public key-based.

However, to the best of our knowledge, none of them provide solutions to the complete

set of 7+2 requirements. Weis et al. [83] proposed two different hash-based techniques

for authentication in RFID systems. Despite of using pseudo-random numbers in

one of the techniques to prevent traceability, the server cannot verify the tags. Both

techniques detect DoS attacks, but suffer from eavesdropping, spoofing and replay

attacks. Yeo and Kim [84] proposed another hash chain-based technique which updates

43

the key of the tag after each query to prevent traceability. However, it does not handle

the eavesdropping, spoofing and replay attacks since the attacker can authenticate itself

in the server by extracting information from previous tag responses. Dixit et al. [85]

modified Yeo and Kim [84] technique to prevent eavesdropping, spoofing and replay

attacks by including a random number that is received from the reader in the hashed

values. However, the server still needs to hash a group of the keys according to the

size of tags grouping and search in the hashed values to identify the communicating

tag. Bringer et al. [86] proposed an extension and improvement of Juels and Weis [87]

technique. Both techniques use binary inner product to simplify the processes in the

tag. However, they do not consider the server authentication and they suffer from the

tracking attacks as well.

Karthikeyan and Nesterenko [88] use matrix multiplication to generate the

authentication messages between the server and the tag. The key of the tag is updated

after each completed authentication process. The attacker can spoof the tag by sending

a request to the tag when it is not in the range of any reader. The tag will reply by an

authentication message as if the request came from a legitimate reader. If no response

is received by the tag, it will return back to listening stage without updating the key.

The attacker may either use the authentication message which is not used yet in the

server to authenticate himself in the server, or it may send another request to trace the

tag since the tag will reply by the same authentication message. If the value sent by

the reader to update the key is changed during the transmission, then, the tag become

unreachable.

Yi et al. [81] proposed an improved technique which is based on EPC Class-1

Generation-2 standard for tags and uses CRC and PRNG circuits. The technique

requires multiple shift and XOR operations to compute CRC which is a costly

operation in terms of computation. Moreover, the technique still needs to go through

the records of all the tags in the server to identify the communicated tag in each query

which can be exhausting process in case of large number of tags.

Public key encryption algorithms are used for authentication in many techniques

[89–91]. In spite of the security capabilities of the encryption algorithms, they are

inefficient on tags having limited computational resources.

44

5.3 The HEADA Approach

The aim of the authentication process in the HEADA is to identify and authenticate the

tag in the server through insecure channels. Although, the authentication process can

be considered as an initial stage for a server to proceed with further communications

to trace, read from, or write to the tag, our focus within the scope of this chapter is

only the authentication process of the tag in the server. The authentication protocol

works as follows: As soon as a tag arrives at a proximity of a reader, it receives a query

from that reader and responds with an authentication request. The reader forwards the

request to the server to check it through fast and secure communication channel. Server

authenticates the tag and sends a verification code to the tag through the reader. The

tag verifies the server and sends a verification code to the server. Once the verification

code from the tag to the server is received, the server verifies the tag and the protocol

terminates. However, it is required to show that no attacker can identify or trace the

tag at any time. An attacker is considered to be able to mimic a tag or a reader. It can

also simply eavesdrop the communications between a legitimate tag and reader. The

attacker could be either a single entity consisting of a fake tag, a fake reader and an

eavesdropping module, or multiple entities encapsulating one or more modules.

The HEADA is based on finding a set of sub-keys for each tag; these sub-keys are

partitioned into groups and stored in the tag in the deployment course. The tag selects

a number of combinations (a combination, from now on, refers to a set of sub-keys

composed of a single sub-key from each group) from these groups and adds them to

generate a different authentication key in each authentication process. The server uses

a reversibility property found in the sub-keys to reconstruct the used combinations

from the authentication key to identify and authenticate the tag. Based on these

assumptions, to achieve the 7 security requirements defined in Sub-Section 5.2.1,

following conditions need to be achieved:

1. Uniqueness of sub-keys: For all the tags, sub-keys are unique.

2. Uniqueness of authentication keys: The summation of any combination of

sub-keys should be unique.

3. Irreversibility: Reversibility property should be restricted only to the server using

constant time complexity algorithm and key data.

45

4. Randomness of the authentication key: Authentication keys need to be selected

randomly without duplication based on a key, known only to the tag and the server,

and a simple algorithm.

Therefore, the mentioned four features will be provided through new proposed

methodology and an algorithm which are:

(a) A new methodology for finding a huge series of unique numbers using a relatively

very small set of integers and a constant time algorithm (by utilizing integer

addition). Moreover, only the parties that have a specific key data have to be

able to identify the generator of each number using a constant time algorithm

and simple binary search. Note that such numbers can be efficiently utilized in

many applications such as privacy-preserving identification, temporary password

generation, etc.

(b) A constant time algorithm for random selection without duplication from a set of

elements.

Then, given methodology and algorithm are applied to derive an RFID anonymous

authentication technique that satisfies all the 7+2 requirements.

5.3.1 Key Components of the HEADA

Suppose that there are W different tags, then, the set of all tags will be T , where

T = {tn : n ∈ Z, 1≤ n≤W}

For each tag tn, there exist a unique ID (idn) and an authentication key (kn), (for

simplicity, it will be named as key for the rest of this chapter). The sets of all IDs

and keys are ID and K (which is shown in column 1 in Figure 5.2), respectively, where

ID = {idn : n ∈ Z, 1≤ n≤W}

and

K = {kn : n ∈ Z, 1≤ n≤W}

46

Each key kn consists of M numbers (or, sub-keys). These M sub-keys are partitioned

into I groups as shown in column 2 in Figure 5.2. The number of groups should be

≥ 2. The set of groups is G, where

G = {gi : i ∈ Z, 1≤ i≤ I}

and

M =
I
∑

i=1
gi

gi is the number of sub-keys in the i’th group (or, the size of the i’th group). G is

supposed to be the same for all the keys. Therefore, sub-keys can be referred by the

key number (n), the group number (i), and the order of the sub-key in that group as

shown in column 3 in Figure 5.2. Thus, kn can be considered as

kn = {xn,i, j : i, j ∈ Z, (1≤ i≤ I)∧ (1≤ j ≤ gi)}

where xn,i, j is the j’th sub-key of the i’th group of the key kn.

Suppose that dn,i is the set of sub-keys of the i’th group of the key kn, then dn is the

set of all combinations resulting from selecting one key from each group. This can

be shown in the relation between columns 3 and 4 in Figure 5.2. D is the set of all

combinations of all the tags sub-keys as shown in column 4 in Figure 5.2, where

dn = dn,1×dn,2×· · ·×dn,I

where “×” indicates the Cartesian product, and

D =
W⋃

n=1
dn

Suppose that sn is the set of the sums of the sub-keys for each combination of dn, then

the set of the sums of the sub-keys of each combination for all the tags sub-keys is S,

which is shown in column 5 in Figure 5.2, where

S =
W⋃

n=1
sn

47

k1
ks1

used
1

d
1,1

d
1,2

d
1,I

x1,1,1
x1,1,2

x1
,1,g

1

d1,1

x1,2,1
x1,2,2

x1
,2,g

2

d1,2

x1,I,1
x1,I,2

x1,I,g
I

d1,I

k2
ks2

used
2

d
2
,1

d
2,I

x2,1,1

x2,1,g
1

d2,1

x2,I,1

x2,I,g
I

d2,I

kW
ksW

used
W

d
W
,1

d
W
,I

xW
,1
,1

xW
,1,g

1

dW,1

xW
,I,1

xW
,I,g

I

dW,I

x1,1,1 ,x1,2,1 ,...,x1
,I,1

x1,1,1 ,x1,2,2 ,...,x1
,I,1

x1,1,g
1 ,x1,2

,g
2 ,...,x1,I,g

I

x2,1,1 ,x2,2,1 ,...,x2
,I,1

x2,1,1 ,x2,2,2 ,...,x2
,I,1

x2,1,g
1 ,x2,2

,g
2 ,...,x2,I,g

I

xW
,1,1 ,xW

,2,1 ,...,xW
,I,1

xW
,1,1 ,xW

,2,2 ,...,xW
,I,1

xW
,1
,g

1 ,xW
,2,g

2 ,...,xW
,I,g

I

d1 =×I

i=1
d1,id2 =×I

i=1
d2,idW =×I

i=1
dW,i

x1
,1,1

+
x1,2,1

+
...+

x1,I,1
x1

,1,1
+

x1,2,2
+
...+

x1,I,1

x1,1,g
1
+

x1,2,g
2
+
...+

x1,I,g
I

x2
,1,1

+
x2,2,1

+
...+

x2,I,1
x2

,1,1
+

x2,2,2
+
...+

x2,I,1

x2,1,g
1
+

x2,2,g
2
+
...+

x2,I,g
I

xW
,1,1

+
xW

,2,1
+
...+

xW
,I,1

xW
,1,1

+
xW

,2,2
+
...+

xW
,I,1

xW
,1
,g

1
+

xW
,2,g

2
+
...+

xW
,I,g

I
s1s2sW

S
D

K
K

S
U

SE
D

C
olum

n
1

C
olum

n
2

C
olum

n
3

C
olum

n
4

C
olum

n
5

Figure
5.2:K

ey
preparations

and
details

forthe
H

E
A

D
A

.

48

In order to achieve anonymous authentication processes using the HEADA, all the

numbers in the set S should be unique. The M sub-keys are generated and distributed

by the server in a way that guarantees the uniqueness of S values as will be shown in the

keys generation process. The server stores the sub-keys in the tag in the deployment

stage. The number and sizes of the groups (I and G) are stored in the tag. There is no

need for any encryption or hashing circuits to be deployed in tags. Instead of that, an

integer addition circuit is implemented in the tag, which is simpler and cheaper than

encryption and hashing circuits. This reduces the processing cost as well as the chip

cost.

The server also generates a selection key (ksn) for each tag tn, where

KS = {ksn : n ∈ Z, 1≤ n≤W}

ksn is used to determine the order of combination selection in the tag tn. It is kept

secret in both tag and server sides. Generation of the key as well as the selection

process using the key will be discussed in Sub-Section 5.3.3.

For each tag, the server also stores a list of used session keys (usedn). Therefore,

USED = {usedn : n ∈ Z, 1≤ n≤W}

where USED is the set of used combinations lists for the tags in T.

As an example, assume that W = 3, M = 8, I = 2 and G = {4,4}, then the keys of tags

t1, t2 and t3 are k1, k2 and k3 respectively, where

k1 = {x1,1,1, x1,1,2, x1,1,3, x1,1,4; x1,2,1, x1,2,2,x1,2,3,x1,2,4},

k2 = {x2,1,1, x2,1,2, x2,1,3, x2,1,4; x2,2,1, x2,2,2,x2,2,3,x2,2,4},

k3 = {x3,1,1, x3,1,2, x3,1,3, x3,1,4; x3,2,1, x3,2,2,x3,2,3,x3,2,4},

Table 5.2 shows example values of K for W = 3, M = 8, I = 2 and G= {4,4}. Table 5.3

shows K as well as example values of KS and their D, S, ID values. In order to

run the HEADA properly, the server keeps K, KS, ID, and a selected homomorphic

encryption key (KH) secret. Each tag tn keeps kn, ksn, and ϕ (which is discussed in

Sub-Section 5.3.3) secret. M, I, G= {g1, . . . ,gI}, m (is discussed in Sub-Section 5.3.4),

and W are kept in both the server and the tags, they are also considered as public

information, available even to attackers.

49

Table 5.2: Example of key values for 3 tags (1≤ n≤ 3).

Key xn,1,1 xn,1,2 xn,1,3 xn,1,4 xn,2,1 xn,2,2 xn,2,3 xn,2,4
k0 88 69 92 4 236 118 98 221
k1 111 176 222 134 226 231 108 216
k2 157 199 23 46 93 113 211 103

5.3.2 Key Generation

Each key kn ∈ K consists of M sub-keys partitioned into I groups. The generation of

these sub-keys is done in four steps as shown in Figure 5.3. The details of these steps

are as follows:

• Step 1: Selecting Parameters: Parameters are selected to satisfy the needed level

of security and efficiency as shown in Section 5.4.

• Step 2: Raw Sub-Keys Generation: An algorithm that uses the concept of

Segment:Offset is used to generate non-overlapped segments. Once segments

are produced, each segment is re-partitioned into non-overlapped sub-segments

recursively until sufficient number of groups of integers, i.e. A1, . . . ,AI , can

be produced. Given that in (A:B), A indicates the segment and B the offset.

Therefore the range of the summations is partitioned into non-overlapped segments

as A1:(A2:(A3:(. . . :AI))), where Ai is the set of raw integers that can be used in the

ith group. Therefore, A1, . . . ,AI can be generated in a recursive way as shown in the

algorithm in Figure 5.4. Note that Q1, . . . ,QI are common divisors for the values

in A1, . . . ,AI , respectively, which means that any value ∈ Ai is a multiplication

of Qi. Moreover, all the values ∈ Ai+1, . . . ,AI as well as the summations of any

combination composed of one number from each set are less than Qi. For example,

applying the algorithm in Figure 5.4 using the example in Sub-Section 5.3.1, where

W = 3, I = 2, and G = {4,4}, gives A1 and A2 as follows:

A1 = {13,26,39,52,65,78,91,104,117,130,143,156}

A2 = {1,2,3,4,5,6,7,8,9,10,11,12}

Given W , M, and the set G = {g1, . . . ,gI}, then, for any summation value of raw

sub-keys combination s = x1 + x2 + . . .+ xI , it can be reversed to get the raw

50

Table 5.3: Example values of K and KS and their D, S and ID values for W = 3, M = 8,
I = 2 and G = {4,4}.

K D S ID KS

k1

d1,1

x1,1,1 = 88
x1,1,2 = 69
x1,1,3 = 92
x1,1,4 = 4

d1,2

x1,2,1 = 236
x1,2,2 = 118
x1,2,3 = 98
x1,2,4 = 221

{88,236} 324

1 13

{88,118} 206
{88,98} 186
{88,221} 309
{69,236} 305
{69,118} 187
{69,98} 167
{69,221} 290
{92,236} 328
{92,118} 210
{92,98} 190
{92,221} 313
{4,236} 240
{4,118} 122
{4,98} 102
{4,221} 225

k2

d2,1

x2,1,1 = 111
x2,1,2 = 176
x2,1,3 = 222
x2,1,4 = 134

d2,2

x2,2,1 = 226
x2,2,2 = 231
x2,2,3 = 108
x2,2,4 = 216

{111,226} 337

2 4

{111,231} 342
{111,108} 209
{111,216} 327
{176,226} 402
{176,231} 407
{176,108} 284
{176,216} 392
{222,226} 448
{222,231} 453
{222,108} 330
{222,216} 438
{134,226} 360
{134,231} 365
{134,108} 242
{134,216} 350

k3

d3,1

x3,1,1 = 157
x3,1,2 = 199
x3,1,3 = 23
x3,1,4 = 46

d3,2

x3,2,1 = 93
x3,2,2 = 113
x3,2,3 = 211
x3,2,4 = 103

{157,93} 250

3 7

{157,113} 270
{157,211} 368
{157,103} 260
{199,93} 292
{199,113} 312
{199,211} 410
{199,103} 302
{23,93} 116
{23,113} 136
{23,211} 234
{23,103} 126
{46,93} 139
{46,113} 159
{46,211} 257
{46,103} 149

51

Step 1: Selecting parameters

M,W,G = {g1,g2, . . . ,gI}

Step 2: Raw sub-keys generation

Unique sub-keys
Unique summations
Reversible keys

Step 3: Homomorphic encryption
for irreversibility

Unique sub-keys
Unique summations
Irreversibility

Step 4: Keys assignment to the
tags

K = {k1,k2, . . . ,kW}

Figure 5.3: Steps of key generation

52

sub-keys in two steps: Initially, the values of Q1, . . . ,QI are computed as follows:

Qi =

{
Qi+1

(
1+(W ∗gi+1)

)
for 1≤ i < I

1 for i = I
(5.1)

Then x1, . . . ,xI are computed as follows:

xi =

⌊ s

Qi

⌋
∗Qi for i = 1⌊s mod Q1 . . . mod Qi−1

Qi

⌋
∗Qi for 1 < i≤ I

(5.2)

For example, knowing that W = 3, M = 8, G = {4,4}, suppose that the two raw

sub-keys 117 and 2 are used, which means s = 117+2 = 119, then, Q1, Q2, x1, and

x2 are calculated as follows:

Q2 = 1

Q1 = 1∗ (1+(3∗4)) = 13

x1 =
⌊119

13

⌋
∗13 = 117

x2 =
⌊119 mod 13

1

⌋
∗1 = 2

Therefore, raw sub-keys satisfy the uniqueness of sub-keys and summations but do

not satisfy irreversibility.

• Step 3: Homomorphic Encryption for Irreversibility: To make the reversibility

property restricted only to the server, raw sub-keys are encrypted using

homomorphic encryption with a key KH . According to the homomorphic property,

the summations of the combinations after encryption give a set of unique values if

the original values do the same; this uniqueness is not guaranteed if the encryption

algorithm does not have the addition homomorphic property. This can be shown as

follws:

Conclusion 1: Suppose that the function f (x1,x2, · · · ,xI) is a summation function

for combination elements that are generated as shown in the algorithms shown in

Figure 5.4, then, y is a unique solution of f (x1,x2, · · · ,xI).

Conclusion 2: As deterministic encryption algorithm is used to encrypt the values,

then x′1 = g(x1), x′2 = g(x2), · · · , x′I = g(xI) and y′ = g(y) are one to one functions,

where g() is the encryption function.

Conclusion 3: If homomorphic encryption is used, then, y′ = f (x′1,x
′
2, · · · ,x′I).

Conclusion 4: From conclusions 1, 2, and 3, y′ is a unique solution of

53

Input: W , I, and G = {g1, . . . ,gI}
Output: A1, . . . ,AI

i← 1
{Q1,Q2, . . . ,QI}← {null,null, . . . ,null}
{A1,A2, . . . ,AI}← {null,null, . . . ,null}
GETA(i)
return A1, . . . ,AI

function GETA(i)
if i = I then

Ai← GET LIST (1,(W ×gi),1)
Qi← (W ×gi)+1
return Qi

else
Qi← GETA(i+1)
Ai← GET LIST (1,(W ×gi×Qi),Qi)
return (W ×gi×Qi)+Qi

end if
end function

function GETLIST(a,b,c)
return all integers i, where (a≤ i≤ b∧ i is multiple of c)

end function

Figure 5.4: A recursion algorithm to generate the A1, . . . ,AI sets used in key generation

54

f (x′1,x
′
2, · · · ,x′I).

Note that traditional encryption algorithms do not necessarily satisfy the third

conclusion. Therefore, the homomorphic property keeps the first two conditions

satisfied. It also nonlinearly maps the raw sub-keys into an irreversible ones.

For example, encrypting the values in A1 and A2 shown above using the Algebra

Homomorphic Encryption Scheme (AHEE) [49] and the AHEE homomorphic key

set {p = 241, q = 197, x = 23, g = 13, r = 54, k = 68} gives

A′1 = {88,176,23,111,199,46,134,222,69,157,4,92}

A′2 = {118,236,113,231,108,226,103,221,98,216,93,211}

Suppose that the encrypted values are used, instead of the raw sub-keys in the same

reversibility example shown above. Note that the encryptions of 117 and 2 are 69

and 236, respectively, and s = 69+ 236 = 305. Applying the same reversibility

process gives:

x1 =
⌊305

13

⌋
∗13 = 299

x2 =
⌊305 mod 13

1

⌋
∗1 = 6

Decrypting 299 and 6 using the same key KH gives 25 and 94 which are not found

in any set of raw sub-keys. Therefore, Encrypting the raw sub-keys satisfies the

third condition: Irreversibility.

• Step 4: Keys Assignment to the Tags: For each key kn, the server selects

randomly, without duplication, numbers from A′1, . . . ,A
′
I sets and place them in the

related groups of kn until all the sub-keys are selected.

5.3.3 Sub-keys Combination Selection

Sub-keys combination selection technique should satisfy the following conditions:

1. Each combination is selected only once.

2. It has to be easy for the parties that have the selection key to find the order of the

combinations.

3. It has to be infeasible, if not impossible, for the parties that do not have the selection

key to find or predict the order of the combinations.

55

Note that for any two natural numbers α and β where 1 < α < β and gcd(α,β) = 1,

the function

θ(i) = (i+α) mod β for 0≤ i≤ β

is one-to-one function and θ(i) 6= i. The selection algorithm uses the function θ(i) to

select the combinations in different order based on a selection key (ksn) and maximum

(max) values which are α and β , respectively, in the function θ(i). Given W , I and G=

{g1, . . . ,gI}, to find the max value, the minimum number of binary bits that represent

all the elements in each group are added in ω . Then,

max = (2ω)−1 (5.3)

To select a selection key for a tag tn, the server selects randomly ksn where 0 < ksn <

max and gcd(ksn,max) = 1. Each tag also stores a number that indicates the last

selected combination, which is denoted as ϕ . In each selection process, ϕ is updated

as

ϕ = (ϕ + ksn) mod max (5.4)

then, it is used to select the next combination. The selection of the sub-keys of the

next combination is done by initially splitting the binary bits of ϕ into I binary groups

where the length of ith group is equal to the minimum number of bits that represent

gi. The selection operation is completed by using the divided bits as indexes for the

sub-keys in the groups g1, . . . ,gI . Note that ϕ has to be set to zero in the deployment

stage.

The sizes of the groups are selected to be an exponential of 2 in the HEADA, such as

4 where 3 is the optimum value as shown in Sub-Section 5.4.1. In this case, the mod

operation can be done by simple integer addition with ignoring any overflow that may

result from this addition process, which simplifies the implementation of the algorithm

in the tags. Therefore, based on Table 5.3, the first combination that is selected in tag

t1 is {4,118}. It is selected as follows:

Current state : ϕ = 0

New state : ϕ = (0+13) mod 15 = 13

Splitting the binary bits : 13→ 1101→{11,01}

Indexing : x1,1,4 = 4, x1,2,2 = 118

56

Figure 5.5: Sequence of operations and communications between the tag, the reader
and the server

The server checks the successiveness of the received combinations by creating an

m-length linked list that contains all the received combinations. The next pointer of

each node (except the last node) points to the node that has the combination expected

next to the one in the current node based on the same selection algorithm and key ksn of

the identified tag tn. If the linked list is defined without disconnections or loops for m

different combinations, they are considered successive, otherwise, they are considered

disconnected.

5.3.4 Authentication Protocol

Figure 5.5 shows the authentication processes with an example values based on the

values in Table 5.3 with n = 1 and m = 2. Following are the details of the processes to

authenticate a tag tn in the server:

1. The reader starts by a query to the tag tn.

2. The tag tn selects a set of m + 2 sequential combinations of sub-keys (F) from

dn using its selection key ksn, so, F = { f1, . . . , fm+2} where fi indicates a single

sequential combination.

57

3. tn calculates the summations of the sub-keys for the first m selected combinations

and store them in U , therefore, U = {u1, . . . ,um} where ui is the sum of the related

combination, i.e. fi.

4. tn sends U to the reader.

5. The reader forwards U to the server.

6. The server: a) Decrypts the numbers in U using KH , b) Reverses the decrypted

values to retrieve the selected combinations, c) Searches the keys list (K) for the

retrieved combinations and returns the related IDs.

7. The server checks whether: a) There is no ID′ that appears m times, or b) The

combinations which are used to generate U are not sequential, or c) At least one of

the combinations which are used to generate U is used before.

If any of the above checks is correct, the server generates a random number for

(v1). Otherwise, the server considers ID′ as an ID of a candidate tag subject to

verification. The server: a) Selects two combinations next to the ones used in U

and calculate their summations (v1 then v2), b) Add the combinations selected for

U as well as the ones selected for v1 and v2 to the related used list, i.e. usedn.

8. The server sends v1 to the reader.

9. The reader forwards v1 to tn.

10. tn calculates v′1 in the same way as in the server using the m + 1th selected

combination and compares it to v1 value received from the reader. If v′1 = v1,

then the tag authenticates the server and generates v′2 using the m+ 2th selected

combination. Otherwise, a random number is stored in v′2.

11. tn sends v′2 to the reader.

12. The reader forwards v′2 to the server.

13. The server compares v2 to v′2. If v2 = v′2, then the tag is authenticated in the server.

Otherwise, the server considers the process as an attack and takes an action.

Therefore, the authentication is done and both the server and the tag verified each other.

To explain these steps formally, suppose the following notations [92]:

58

• P |= X : P believes X , or P would be entitled to believe X . In particular, P may act

as though X is true.

• PC X : P sees X . Someone has sent a message containing X to P, who can read and

repeat X (possibly after doing some decryption).

• P ∼ X : P once said X . P at some time sent a message including the statement X .

It is not known whether the message was sent long ago or during the current run of

the protocol, but it is known that P believed X when he sent the message.

• P⇒ X : P has jurisdiction over X . P is an authority on X and should be trusted on

this matter. This construct is used when a party has delegated authority over some

statement. For example, encryption keys need to be generated with some care,

and in some protocols certain servers are trusted to do this properly. This may be

expressed by the assumption that the parties believe that the server has jurisdiction

over statements about the quality of keys.

•](X):The formula X is fresh, that is, X has not been sent in a message at any time

before the current run of the protocol.

• P K←−−→Q: P and Q may use the shared key K to communicate. The key K is good,

in that it will never be discovered by any party except P or Q, or a party trusted by

either P or Q.

• {X}K: This represents the formula X is encrypted under the key K using fully

homomorphic encryption algorithm.

• Γ1(X ,Y): This represents a function of X an Y . In our protocol, X represents the

user key and Y represents a session key. The result of the function is a new unique

session key.

• Γ
−1

1 (X ,Y): This represents the inverse of the function Γ1(X ,Y).

• Γ2(X ,Y): This represents a function of X an Y . In our protocol, X represents the

user key and Y represents a session key. The result of the function is a new unique

nonce.

59

• Γ3(X ,Y): This represents a function of X an Y . In our protocol, X represents the

user key and Y represents a session key. The result of the function is a new unique

nonce.

Suppose that the server and the user are noted as S and Ai, respectively, therefore, the

used assumptions are listed below:

• S |= S
KAi←−−→ Ai

• Ai |= S
KAi←−−→ Ai

• SCUsedList

• SC KS

• S |= (Ai⇒ (Ai ∼ {Γ1(KAi,USAi)}KS))

• S⇒ Γ
−1

1 (KAi,USAi)

• Ai |= S⇒ Γ
−1

1 (KAi,USAi)

• S⇒{Γ2(KAi,USAi)}KS

• Ai⇒{Γ2(KAi,USAi)}KS

• S |= Ai⇒{Γ2(KAi,USAi)}KS

• Ai |= S⇒{Γ2(KAi,USAi)}KS

• S⇒{Γ3(KAi,USAi)}KS

• Ai⇒{Γ3(KAi,USAi)}KS

• S |= Ai⇒{Γ3(KAi,USAi)}KS

• Ai |= S⇒{Γ3(KAi,USAi)}KS

Then the protocol steps are formalized as follows:

Steps 1, 2, and 3:

Ai |= {Γ1(KAi,USAi)}KS

60

Steps 4, 5, 6, and 7:

SC {Γ1(KAi,USAi)}KS

SC {Γ1(KAi,USAi)}KS , SC KS

SC Γ1(KAi,USAi)

SC Γ1(KAi,USAi) , S⇒ Γ
−1

1 (KAi,USAi)

SC KAi

SC Γ1(KAi,USAi) , S⇒ Γ
−1

1 (KAi,USAi)

SCUSAi

SC KAi , S |= S
KAi←−−→ Ai

S |= (Ai ∼USAi)

S |= (Ai ∼USAi) , SCUsedList
S |=](USAi)

Steps 8 and 9:

S⇒{Γ2(KAi,USAi)}KS

Ai C {Γ2(KAi,USAi)}KS

Steps 10, 11 and 12:

Ai C {Γ2(KAi,USAi)}KS , Ai |= S⇒{Γ2(KAi,USAi)}KS

Ai |= (S∼ {Γ2(KAi,USAi)}KS)

Ai⇒ (S∼ {Γ2(KAi,USAi)}KS) , Ai⇒{Γ2(KAi,USAi)}KS

Ai |=]({Γ2(KAi,USAi)}KS)

Ai⇒{Γ3(KAi,USAi)}KS

SC {Γ3(KAi,USAi)}KS

Step 13:

SC {Γ3(KAi,USAi)}KS , S |= Ai⇒{Γ3(KAi,USAi)}KS

S |= (Ai ∼ {Γ3(KAi,USAi)}KS)

S⇒ (Ai ∼ {Γ3(KAi,USAi)}KS) , S⇒{Γ3(KAi,USAi)}KS

S |=]({Γ3(KAi,USAi)}KS)

5.4 Analysis of HEADA

61

There are many variables that affect security, time complexity and memory complexity

of the HEADA, such as number of sub-keys (M), number of groups (I), sizes of the

groups (G), number of temporary keys (m), number of tags (W) and verification values

(v1 and v2). This section will discuss these variables as well as the operations in both

server and tag sides.

5.4.1 Number of Sub-keys (M), and Number and Sizes of the Groups (I and G)

M, I and G determine the number of different combinations that can be generated

from a key kn. Since G is the same for all the keys, then, the number of different

combinations that can be generated from a key kn (size(sn)) will be the same for all the

tags. This number will be referred as s in the rest of this chapter, where

s =
I

∏
i=1

gi

For any M value, the minimum value of I that maximizes s should be selected to

minimize the number of addition operations in each query in the tag side. Therefore,

the optimum value of I, i.e. I′, with respect to M has to be computed.

Suppose that gi = g for 1≤ i≤ I, the maximum number of different combinations that

can be generated from a key kn, i.e. s, becomes:

s = g
M
g

To maximize s, the first derivative of the above equation is taken and made equal to

zero to find the optimum value of g, so

ds
dg = (g

M
g × −M

g2 × ln(g))+(g
M
g −1× M

g ×1)

=−(Mg
M
g −2)(ln(g)−1) = 0

Solving the equation for g gives us g2 = e where e is the Euler’s number which equals

to 2.718281828. Therefore, the optimum value of g would be the nearest integer value

to e which is 3.

5.4.2 The Use of Verification Values (v1 and v2)

62

Suppose that an attacker sent a fake query to a tag tn, and tn replied with a valid session

key U . The attacker will not be able to generate the verification code v1 because he

does not have kn and ksn. Therefore, tag will not authenticate him. On the other side,

if he send this session key to the server, the server will identify the tag, and reply with

v1. Again, the attacker will not be authenticated in the server because he does not have

kn and ksn to generate v2.

When a query comes to the tag, it directly selects m combinations as well as two

combinations used for v1 and v2. These extra two combinations should be selected

regardless of being the query is completed or not. Suppose that the combinations are

not selected unless the query is completed, then the attacker can do the following steps

to authenticate himself in the server:

1. Send a first query to a tag, the tag will reply with U .

2. Send a second query to the same tag, the tag will reply with U ′.

3. Send U to the server.

4. Reply with the second number in U ′ as v2.

By this way, the attacker will impersonate the identity of the tag and the server will

authenticate him. This is not the case if the combinations are not used again as in the

HEADA.

5.4.3 Number of Temporary Keys (m)

The security of the system depends mainly on the hardness of finding many unknown

variables with lower number of equations. If an attacker has the U set of a query on

tag tn, then, he will need to solve the problem of finding I× (m+ 2) unknowns using

only m+ 2 equations (considering v1 and v2) to find the I× (m+ 2) sub-keys used to

generate U , v1 and v2. Therefore, increasing m will increase the security of the system.

On the other hand, if each combination of sub-keys will be used only one time in the

session keys, then, increasing m will decrease the total number of different session

keys of tag tn. The total number of different session keys of tag tn is s
m+2 .

Supposing that m is 1, an attacker can impersonate a reader identity and send a random

number to the server. The server finds a match for that number with an actual record

63

for a tag and authenticates the tag, which should not happen. This is why m should

be ≥ 2. In this case it is hard for an attacker to find two (or more according to m)

successive numbers that belongs to the same tag.

5.4.4 Number of Tags (W)

The server can generate pools of sub-keys for a number of keys greater than the actual

number of tags. When a new tag is generated, the sub-keys of each group of the key

of that tag are selected randomly from the related pools of sub-keys. When a tag is

destroyed, the set of sub-keys can be returned to the pools to be used later in different

sets.

5.4.5 Security of the System Based on the 7 Security Requirements

The HEADA is verified to meet the 7+2 requirements as follows:

Tag forgery resistance: Without knowing the security and selection keys, it is

infeasible for an attacker to find m+ 2 sequential summations (u1, . . . ,um, v′1, and v′2)

related to the same tag. The probability of being m+ 2 randomly selected numbers

sequential summations related to the same tag is Pf orge, where

Pf orge =
(m+2)!

(W ∗ s)m+1 (5.5)

For example, suppose that W = 108, M = 160, I = 40, gi = 4 for 1≤ i≤ I, and m = 5,

then Pf orge < 1.62× 10−189, which is considered negligible. On the other hand,

without the selection key, an attacker is unable to predict the selected combinations

since the selection is nonlinear. To show that, the correlation between linearly selected

combinations and the combinations selected using the selection algorithm and the

selection keys are compared. For a key kn, the average correlation value is calculated

by partitioning the selected combinations into four equal parts. The correlation

between each two parts is calculated separately and the average of absolute correlation

values is taken as the average correlation value of kn. Note that sn is partitioned into

four parts according to the size of the sub-key groups which cause the patterns to be

repeated recursively number of times equal to this size if they are selected in linear

order. The correlation value for the linear ordered sn values is always 1. Table 5.4

shows the average correlation values of 5 tags for M = 12,16,20, and 40, where

gi = 4 for 1 ≤ i ≤ I. It shows that the selection algorithm removes any patterns in sn

64

Table 5.4: Average correlation value for randomly selected sn values, where W = 5,
G = {4, . . . ,4}, and M = 12,16,20 and 40

Key M = 12 M = 16 M = 20 M = 40
k1 0.174 0.081 0.029 0.006
k2 0.117 0.068 0.031 0.005
k3 0.241 0.084 0.011 0.001
k4 0.096 0.032 0.008 0.008
k5 0.204 0.065 0.022 0.003

where the average correlation values are getting close to zero as M increases, which

prevents any patterns detection attacks.

Untraceability: The tag uses different authentications key in each query. It was shown

in the discussion of the Tag forgery resistance requirement that there is no detectable

relation between any two or more authentication keys, or authentication keys and

specific tags, that can be used to trace or identify a tag.

Resistance to DoS attack: The tag does not use any transmitted data to update its key

in each session. Also, it does not need to be synchronized with the server. Therefore,

the attacker cannot make the tag unreachable by changing any transmitted data or

by desynchronizing the tag and the server. Moreover, it is infeasible to use all the

authentication keys that can be generated by a tag to make it exhausted. For example,

suppose that M = 160, m = 5, I = 40 and gi = 4 for 1 ≤ i ≤ I, then the number of

authentication keys that can be generated by a tag is 440/(5+2)' 1.7×1023. Knowing

that a century consists of 3.1536×109 seconds, an attacker needs to make more than

(1.7×1023)/(3.1536×109)' 5.3×1013 queries per second for one century to use all

the possible authentication keys, which is infeasible.

Server forgery resistance: v1 is used to authenticate the server. It is shared only

between the server and the related tag by sharing the authentication and selection keys.

However, v1 should be sequential to the related numbers in U . It was shown in the

discussion of the tag forgery resistance requirement that it is infeasible for an attacker

to find v1 for U without the security and the selection keys.

Resistance to replay attack: Any used session key cannot be used again since the

server marks the used temporary keys. In case the attacker has got a session key using

65

a fake query on the tag, he will not be able to authenticate himself in the server because

he does not have the tag-to-server verification code (v2). Moreover, any attempt to

reuse a valid authentication will be detected by the server.

Data recovery: If an authentication process did not complete, the server and tag

continue in the next authentication process without any problem since there is no need

for synchronization between them.

Mutual authentication: v1 is used to authenticate the server. U and v2 are used to

authenticate the tag. Therefore, both the server and the tag are authenticated.

Low cost operations in the tag: In each authentication process, the tag executes

a constant number of integer addition operations for combinations selection and

temporary key calculation which has O(1) complexity. Moreover, comparing the

execution time of one SHA-250 hash function to 5× 40 integer additions (which is

the case in the HEADA example) shows that the execution time of the HEADA in the

tag is approximately 8% of the SHA-250 hash function execution time in the same

processor and under the same conditions. Moreover, the tag in the HEADA needs

small memory to store the key. For example, if M = 160, m = 5, W = 108, I = 40, and

gi = 4 for 1 ≤ i ≤ I, then, the memory size required to store the key in the tag in the

HEADA is 64 Bits×160 Sub-keys = 1.25 KB which is more than feasible compared

to the memory size required to store the same number of the generated authentication

keys which is more than 104 Bits×
(
440/(5+2)

)
Authentication keys' 2×1012 TB.

Low cost operations in the server: The server decrypts the values received from

the reader (U) and uses reversing algorithm to obtain the sub-keys. Both of these

operations use constant cost algorithms. The server uses simple search for the sub-keys

which in O
(
log (W ∗M)

)
which is more efficient than brute-force operations.

Table 5.5 compares the HEADA to some similar tag anonymous authentication

techniques according to the 7+2 requirements.

5.5 Summary

In this chapter, a new lightweight anonymous authentication technique (HEADA) is

proposed. An unconventional use of homomorphic encryption is proposed to provide

low-cost security and privacy in the HEADA. The homomorphic encryption is used

solely in the generation of keys during deployment stage. The methodology is verified

66

Ta
bl

e
5.

5:
C

om
pa

ri
so

n
be

tw
ee

n
di

ff
er

en
tt

ag
au

th
en

tic
at

io
n

te
ch

ni
qu

es

Requirements

Chien [93]

P.Lopez [94]

Karthikeyan [95]

Chen [96]

Qingling [97]

Choi [98]

Sun [99]

Yi [100]

Weis [101]

Yeo [102]

Dixit [103]

Bringer [104]

Juels [105]

Akgun [50]

HEADA

1-
U

nt
ra

ce
ab

ili
ty

·
√

√
√

√
·

√
√

∇
√

√
·

·
∇

√

2-
R

es
is

ta
nc

e
to

re
pl

ay
at

ta
ck

√
√

·
·

√
√

·
√

·
·

√
∇

∇
√

√

3-
R

es
is

ta
nc

e
to

D
oS

at
ta

ck
∇

·
·

√
√

√
√

∇
√

·
·

·
·

∇
√

4-
M

ut
ua

lA
ut

he
nt

ic
at

io
n

√
√

√
√

√
√

√
√

·
·

√
·

·
√

√

5-
Ta

g
Fo

rg
er

y
R

es
is

ta
nc

e
·

√
√

√
·

√
√

√
·

·
√

·
·

√
√

6-
Se

rv
er

Fo
rg

er
y

R
es

is
ta

nc
e

·
√

√
√

√
·

·
√

·
∇

∇
√

√
√

√

7-
D

at
a

R
ec

ov
er

y
√

·
·

√
√

√
√

√
√

·
·

√
√

·
√

8-
O

pe
ra

tio
ns

in
th

e
Se

rv
er

·
√

√
·

·
√

·
·

·
·

·
√

√
·

√

9-
O

pe
ra

tio
ns

in
th

e
Ta

g
√

√
√

√
√

√
√

√
·

·
·

√
√

·
√

√
=

pr
ov

id
ed

∇
=

pa
rt

ia
lly

pr
ov

id
ed

·=
no

tp
ro

vi
de

d

67

on the RFID systems which composed of thre parties: an authentication server, readers,

and tags (or users). Users in the HEADA are shown able to generate a huge number

of anonymous authentication keys which are identifiable and verifiable only by the

authentication server. These authentication keys can be generated by the users using a

small number of sub-keys. These sub-keys can be stored easily in the users units. In

the next chapter, HEADA is modified and applied on the users quires to prevent any

replay attacks. It is an essential part of the complete privacy preserving data retrieval

system.

68

6. HIGHLY SECURED DOCUMENT RETRIEVAL IN DATA CLOUDS

The retrieval technique proposed in Chapter 4 was shown more efficient compared to

binary keyword-based search systems. However, it is still unable to hide the query and

documents patterns. It is also vulnerable to replay attacks. In this chapter, anonymous

authentication as well as multi-server setting is used to extend the technique to satisfy

the 9+1 requirements defined in Chapter 1.

6.1 Introduction

The technique in Chapter 4 starts by encrypting the documents and their IDs,

separately, using a symmetric or asymmetric encryption algorithm and a key Ks by

the data owner. He also creates the TF-IDF table and normalize the values to hide any

frequency in the data. Finally, he encrypts the normalized values separately using a

homomorphic encryption algorithm and a key Kh to generate the searchable index S.

The index S is sent to the cloud, while Kh and Ks are sent to the user (the trapdoors).

To generate a query, the user creates the TF vector of the query document. Then,

it normalizes the values and encrypts them separately using the same homomorphic

encryption algorithm and the key Kh used by the data owner. In the first round, the

user sends this query to the cloud which in turn calculates the similarity between the

query and each document in the dataset using S. The cloud sends the similarity vector

to the user which decrypts its values and orders them. In the second round, the user

sends the IDs of the documents that have the highest similarity values to the cloud.

The cloud sends back the encrypted documents. The user decrypts them using Ks. The

conditions 2,3, and 6 are broken as follows:

Query pattern: The normalization and encryption of the values of a TF-IDF vector

hide any data frequency in that vector. However, the same document generates the

same query if it is queried different times. Moreover, if two documents have a similar

TF values but different distributions of these values, they will give two queries that

have the same values in different distributions.

69

Documents pattern: The documents are requested in a clear format from the cloud in

the second round. Therefore, the cloud can relate the documents requested by a user in

the second round to the query sent by the same user in the first round. It can also relate

the requested documents to each other.

Replay attacks: Any valid query can be reused by any party. Although unauthorized

parties can’t compromise the contents of the query, similarity vector, and retrieved

documents, they still able to use these valid queries in denial-of-service attacks.

Therefore, finding a technique that satisfies the 9+1 conditions is the contribution in

this chapter. The technique benefits the achievements of the technique proposed in

Chapter4 [106]. It is extended to overcome its deficiencies to reach a complete ranked

multi-keyword secure data retrieval system over cloud system.

6.2 The Technique

Beside the data owner, cloud (which called searching server in this chapter), and user,

which are similar to the ones shown in Figure 1.1, the proposed technique model

includes an authentication server, ranking server, private server, and L document

servers. Searching server, authentication server, ranking server, private server, and

document servers are assumed to be “honest-but-curious” and do not collaborate

with each other, which is consistent with previous works. The same assumptions

regarding the data owner, cloud, and user reported in Section 6.1 for the model in

Figure 1.1 are used here. Also, the needed authorizations and communication security

between the system parties are assumed to be appropriately done. Moreover, hiding

the communications paths maybe essential in such systems, however, it is considered

out of the scope of this thesis. Following notations are used in the explanation and

discussion of the proposed technique:

• N: The number of documents owned by the data owner.

• M: The number of unique keywords in the entire documents.

• L: The number of data servers.

• Kh: Homomorphic encryption key.

• Ks: Key for documents and IDs encryption.

70

• Ka: Key for authentication keys generation.

• ka: Single authentication key.

• Kc: Key for combination selection.

• D = d1,d2, . . . ,dN : The set of documents.

• ID = id1, id2, . . . , idN : The set of IDs of the documents.

• E[D] = E[d1],E[d2], . . . ,E[dN]: The set of encrypted documents using Ks.

• E[ID] = E[id1],E[id2], . . . ,E[idN]: The set of encrypted IDs using Ks.

• T F− IDF = [xn,m|1≤ n≤ N and 1≤ m≤M]: TF-IDF table.

• Γ (T F− IDF) = [x′n,m|1≤ n≤ N and 1≤ m≤M]: Normalized TF-IDF table.

• S = [sn,m|1≤ n≤ N and 1≤ m≤M]: The encrypted searchable index.

• QT F : Term Frequency vector of the query document.

• Γ (QT F) = [f1, f2, . . . , fM]: Normalized TF vector of the query document.

• ρ: Random number ≥ 1.

• Q = [q1,q2, . . . ,qM]: Query vector.

• r: The number of documents to be retrieved.

• CS = [cs1,cs2, . . . ,csN]: Cosine similarity vector between Q and S.

• κ: Randomization factor ≥ 0.

Figure 6.1 shows the model of the proposed technique. It can be divided into six

processes: data outsourcing, query generation, query authentication, similarity vector

calculation, similarity vector ranking, and documents retrieval. The rest of this

section discusses the implementation of these processes. The security of the proposed

technique is discussed in Section 6.3.

6.2.1 Data Outsourcing

71

Data Owner

Authentication
Server

Searching
Server

Ranking
Server

Client (User) Private
Server Data Server L

Data Server 2

Data Server 1

E[D],E[ID]

E[ID]

K
h S

Kh,Ks

K
a ,K

c

(1
)Q

,r
,k

a

(2) ka

(3) Check(ka)
(4a) [col1,col3],r

(4b) [col1 ,col2]

(5)R
ank(r)

(6
a)

E[
id 1]

(7
a)

E[
d 1]

(6b) E[id
2]

(7b) E[d2]

(6c) E[idr]

(7c) E[dr]

(8) E[d1],E[d2], . . . ,E[dr]

Data outsourcing
Query communications

Figure 6.1: The architecture of the proposed technique.

The data owner generates the TF-IDF (T F − IDF) table of the set of documents D.

The searchable index S is generated by normalizing T F− IDF values and encrypting

them by a homomorphic encryption algorithm and key Kh as described in Chapter 4.

Moreover, the documents (D) and their IDs (ID) are encrypted separately by symmetric

or an asymmetric encryption algorithm and key Ks to generate E[D] and E[ID],

respectively. Thereafter, S is sent to the searching server, Kh and Ks are sent to the

user, Kh is sent to the ranking server, E[ID] is sent to the private server, while E[D] and

E[ID] are sent to the document servers.

6.2.2 Query Generation

The user calculates QT F of the query document. The values of QT F are normalized

as described in Chapter 4 to generate Γ (QT F). An extra step before encrypting

these normalized values is to multiply each normalized value by a number ρ , which

is a random number greater than zero generated for each single query, to generate

Γρ(QT F). Therefore,

Γρ(QT F) = [(f1×ρ),(f2×ρ), . . . ,(fM×ρ)]

Multiplication by ρ is used to hide any query pattern as will be shown in Section 6.3.

Finally, the values of Γρ(QT F) are encrypted by the same homomorphic encryption

algorithm used by the data owner and the key Kh to generate Q.

72

The user sends the query which consists of Q, the number of documents to be

retrieved (r), and the authentication key ka (will be discussed in subsection 6.2.3) to

the searching server.

6.2.3 Query Authentication

Utilizing the anonymous query authentication in the proposed technique may provide

many properties such as prevention of replay attack, allowing only authorized users to

create a valid query, services pricing and billing, privileges granting, etc. However,

only the added security properties are discussed in this thesis, where the others are out

of its scope.

In Chapter 5, an anonymous RFID authentication technique called HEADA is

proposed. The RFID system consists of three parties: servers, readers, and tags.

The servers have the data needed for authentication. The readers are responsible of

transferring data between the tags and the servers. The tags are entities, with very

limited resources, attached to objects to get information about them. Each tag has a

different key Ka which is composed of grouped sub-keys. These sub-key groups are

used to generate authentication keys. Each authentication key is composed of ∆ + 2

integer numbers. Each of these integer numbers is calculated by adding one sub-key

from each group of the sub-key groups. Combinations of sub-keys are selected in an

order which is known only for the tag and the server based on a key Kc. The first

∆ integer numbers (ka) are used for tag identification and authentication. The other

two integer numbers (Θ1 and Θ2) are used for server verification. Therefore, only

the authorized RFID tags can generate valid authentication keys which are identifiable

and acceptable by the server. Moreover, the keys are changing in each authentication

process to prevent any unauthorized party (including the readers) from tracking a tag.

Although the technique was originally designed to authenticate RFID tags, it is more

than suitable to be applied in the proposed technique based on the following properties:

1. The technique was shown secure against key forgery and key exposure attacks.

2. The technique was shown secure against replay attacks.

3. Generation of an authentication key in the tag is very simple.

4. Identification of a tag in the server is done by a simple search in the tag list.

73

5. Only the authentication server is able to identify the user.

6. No need for key synchronization between the tag and the server.

7. After key deployment, the tag does not need any data to start an authentication

process.

8. Users in cloud systems have relatively huge resources compared to tags in RFID

systems, which gives them higher capabilities for security.

In the proposed technique, the user plays the tag rule, the authentication server plays

the server rule, while the searching server plays the reader rule. Moreover, Θ1 and Θ2

are not needed in the technique proposed in this chapter, which means that the user

generates only ka. Therefore, ka is called the authentication key from now on.

The authentication server generates Ka and Kc and sends them to the user. In each

query, the user generates ka (which is different for each query) and sends it to the

searching server as part of the query. The searching server forwards only ka to the

authentication server. The authentication server checks the validity of ka. If ka is valid,

the authentication server sends Random_number‖Accept_Msg to the searching server,

else, it sends Random_number‖Re ject_Msg. The searching server checks whether

the message coming from the authentication server ends with Accept_Msg to proceed,

else, the query is ignored.

6.2.4 Similarity Vector Calculation

In order to find the similarity vector between the query and the documents, the

searching server uses the cosine similarity measure. Cosine similarity measure

calculates the cosine value between two vectors [107]. Therefore, CS is calculated

as follows:

CS = [csn|1≤ n≤ N]

where,

csn =

M
∑

m=1
(qm× sn,m)√

M
∑

m=1
(qm)2×

√
M
∑

m=1
(sn,m)2

(6.1)

74

However, the multiplication of normalized T F values by ρ in query generation (shown

in subsection 6.2.2) has no effect on the final similarity value. This can be shown for

any n|1≤ n≤ N as follows:

csn =

M
∑

m=1
(ρ× qm

ρ
× sn,m)√

M
∑

m=1
(ρ× qm

ρ
)2×

√
M
∑

m=1
(sn,m)2

=

ρ×
M
∑

m=1
(qm

ρ
× sn,m)√

ρ2
M
∑

m=1
(qm

ρ
)2×

√
M
∑

m=1
(sn,m)2

(6.2)

=

ρ×
M
∑

m=1
(qm

ρ
× sn,m)

√
ρ2×

√
M
∑

m=1
(qm

ρ
)2×

√
M
∑

m=1
(sn,m)2

=

M
∑

m=1
(qm

ρ
× sn,m)√

M
∑

m=1
(qm

ρ
)2×

√
M
∑

m=1
(sn,m)2

(6.3)

=

M
∑

m=1
(fm× sn,m)√

M
∑

m=1
(fm)2×

√
M
∑

m=1
(sn,m)2

(6.4)

The searching server creates a three N-length columns. The first column (col1) consists

of the numbers between 1 and N distributed randomly in the rows. The second column

(col2) consists of the encrypted IDs (E[ID]). The third column (col3) consists of the

cosine similarity values (CS) in the same order of E[ID]. The searching server orders

the table [col1, col2, col3] according to col1. Finally, it sends the table [col1, col3] and

r to the ranking server, while the table [col1, col2] is sent to the private server.

6.2.5 Similarity Vector Ranking

The ranking server uses Kh to decrypt the values of col3 received from the searching

server in col′3. The table [col1, col′3] is ordered in descending order according to col′3.

The highest r rows of the ordered [col1, col′3] table are stored in a new table called

Rank(r). The ranking servers sends Rank(r) to the private server. The private server

matches the values of col1 column of table Rank(r) to the values of col1 column of

the [col1, col2] table received from the searching server and retrieves the encrypted

IDs of the documents from the column col2. The retrieved encrypted IDs (ε) are the

encrypted IDs of the documents selected to be retrieved for the query Q.

6.2.6 Documents Retrieval

75

Considering that there are L data servers, assume that the private server received υ

sets of documents ε1,ε2, . . . ,ευ to be retrieved for υ different queries Q1,Q2, . . . ,Qυ ,

respectively. The private server selects randomly κ×∑
υ
i=1 |εi| documents from E[ID].

These random documents together with the υ sets of documents are inserted randomly

in a queue. For each document in the queue, the private server selects a data server

randomly to retrieve that document. Once a requested document is retrieved from a

data server, it is forwarded to the user who was sent the query related to that document,

else, it is ignored. The value of κ can be changed according to υ as will be discussed

in Section 6.3.

6.3 Analysis of the Technique

This section discusses the achievement of the 9 security conditions listed in Section

6.1 by the proposed technique. The tenth condition (high efficiency of data retrieval)

was discussed in the beginning of this chapter as a part of the advantages of using the

technique proposed in Chapter 4 [106] as a base of the proposed technique.

1. No Index Pattern: Whatever the values of T F− IDF are, normalization described

in Chapter 4 guarantees that all the values of Γ (T F − IDF), and therefore all the

values of S, are unique as shown in the example in Section 6.2. Uniqueness of S

values means that for any two documents α and β where α 6= β and f eatures(α) =

f eatures(β), index(α) 6= index(β), which achieves the first condition.

2. No Query Pattern: As shown in Section 6.2, for each set of similar values in QT F ,

a new set of unique values is generated by the normalization technique, these values

are distributed randomly in place of the original values. Therefore, the similarity

values of different generated queries of a single document are different. However,

these queries can be recognized since they have the same values but in different

distributions. For this reason, multiplication by ρ , mentioned in subsection 6.2.2, is

used. Multiplying the values of Γ (QT F) by ρ hides the distribution of the values.

Suppose that Hm = h1,h2, . . . ,hs is the histogram of the TF values of a document

dm, then the number of different queries that can be generated from the document

dm is MQ, where

MQ =
s

∏
i=1

hi! for hi > 1

76

Table 6.1: Average MQ values of different datasets.

Dataset Number of Documents Number of Unique Keywords Average MQ
1- webdata [66] 314 15756 2033×1059270

2- mini_newsgroups [70] 400 16360 1115×1061691

3- classic [69] 800 6291 3143×1021158

Table 6.1 shows the average MQ values for three different datasets. It can

be seen that the probability of generating two similar queries for the same

document is less than 1
1020000 , which is negligible. Therefore, random distribution

of the normalized values together with hiding this distribution achieve the

second condition. Moreover, using anonymous authentication technique shown in

Chapter 5 makes the searching server unable to identify the user, which is another

advantage of using it among the other authentication techniques.

3. No Documents Pattern: In [106], the similarity vector is sent to the user to decrypt

it and select the documents with the highest similarity values. This may cause an

extra overhead to the user. It also reveals the IDs of the documents related to the

query as well as to each other. Then, the ranking server is used to decrypt and order

the values, which means that it has the key Kh. To prevent the ranking server from

generating queries, query authentication is used as explained in subsection 6.2.3.

As the ranking server does not have the key Ka, it is unable to generate queries that

are acceptable by the authentication server. Accordingly they are also ignored by

the searching server.

The searching server calculates the similarity values of the encrypted indexes

without revealing their actual values. However, sending the encrypted similarity

vector together with the related document IDs to the ranking server makes it able to

reveal the similarity between the query and the exact documents. So, the searching

server sends a temporary random IDs (col1), instead of the original IDs, to the

ranking server. In this way, the ranking server is simply decrypting and ordering

random numbers before sending them to the private server. On the other hand, the

private server uses the information received from both the searching server and the

ranking server to find the related documents.

77

Referring to subsection 6.2.6, to retrieve υ sets of documents ε1,ε2, . . . ,ευ

coming from υ different queries, the private server selects randomly κ ×∑
υ
i=1 |εi|

documents from E[ID]. These random documents together with the υ sets of

documents are inserted randomly in a queue. For each document in the queue,

the private server selects a data server randomly from L data servers to retrieve that

document. Assume that the queue is static, which means that no online insertion

into the queue. Then, for a data server l, the probability of being two requested

documents related to the same query is ≤ Pr, where:

Pr =
1

υ(max2−max)
× 1(

(κ +1)∑
υ
i=1 εi

) × 1(
(κ +1)∑

υ
i=1 εi

)
−1
× 1

L
(6.5)

According to Equation 6.5, increasing L decreases Pr. However, finding large

number of data servers which are “honest-but-curious”and do not collaborate with

each other is not easy. Therefore, for specific values of L and υ , increasing κ

decreases Pr. The private server can dynamically change κ to keep a maximum

value of Pr.

4. No Index Frequency: Normalization of T F− IDF values removes any frequency

of them. It was shown by example in Chapter 4 that even if the documents are

exactly similar they will have different feature vectors after normalization.

5. No Query Frequency: Similar to index normalization, normalization of QT F

values removes any frequency of them.

6. No Replay Attack: Each single authentication key ka is used only once until the

authentication keys are updated [108]. Therefore, if a valid query is resent, it will

be rejected by the authentication server and ignored by the searching server.

7. Query Privacy: The query values are encrypted using Kh. Although the ranking

server has the key Kh, it is unable to create query since it does not have an

authentication key. Therefore, any fake query generated by the ranking server is

rejected by the authentication server and ignored by the searching server. which

achieves the seventh property.

8. Index Privacy: The index values are encrypted using Kh. Although the searching

server has the encrypted index, it is unable to disclose its values since it does not

have the key Kh. Although the ranking server has the key Kh, it also unable to

78

disclose the index contents since it receives only the similarity vector in a random

order. Moreover, if the cloud added a fake index, it is unable to get any important

information since the similarity vector is encrypted. Therefore, the eighth condition

is achieved.

9. Documents Privacy: The documents are encrypted using Ks which is known only

to the data owner and users. Therefore, unauthorized parties are unable to disclose

the contents of the documents. which achieves the ninth property.

Table 6.2 compares the proposed technique to the techniques reported in the literature

regarding the 9 security conditions as well as the ranking property. Among the

discussed techniques, it can be seen that the only technique that achieves the 9 security

is the proposed technique. Moreover Table 6.3 shows the execution time of the new

proposed stages in the technique. The experiments are applied on Intel(R) Core(TM)

i5-3337U CPU @ 1.80GHz (4 CPUs) with 4GB RAM and Windows 7 64 bit. Note

that the index generation and query generation processes include the generation of the

TF-IDF of the index and the TF of the query, respectively as well as their normalization

processes. These results showed that the technique is practical and applicable on the

current data retrieval systems. The proposed technique provides also a multi-keyword

ranked search based on the similarity of the normalized TF-IDF values.

6.4 Summary

In this chapter, a technique that utilizes anonymous query authentication together with

a multi-server setting is proposed. The technique provides an efficient ranking-based

data retrieval by using the Cosine Similarity of the TF-IDF vectors. It also satisfies

all the 9 security requirements, which are unsatisfied completely in the techniques

reported in the literature. The given results in this chapter shows that the technique

is able to satisfy all the 9+1 requirements defined at the beginning of this thesis. In

other words, the technique is able to provide a complete ranked privacy-preserving

data storage and retrieval on data clouds based on users queries, which is the aim of

this thesis.

79

Table
6.2:C

om
parison

betw
een

differentprivacy-preserving
data

retrievaltechniques

Condition

Bonehetal.[19]

Liuetal.[20]

Lietal.[21]

ChinnaSamyandSujatha[22]

Kuzuetal.[23]

Tsengetal.[24]

Lietal.[25]

Wangetal.[26]

ChuahandHu[27]

Wangetal.[28]

Caoetal.[29]

Wangetal.[30]

Sunetal.[31]

OrencikandSavas[32]

Chenetal.[33]

DawoudandAltilar[106]

TheproposedTechnique

1-N
o

Index
Pattern

×
×

×
×

√
×

×
×

×
√

×
×

×
×

×
√

√

2-N
o

Q
uery

Pattern
×

×
×

×
×

×
×

×
×

√
×

×
×

√
×

×
√

3-N
o

D
ocum

ents
Pattern

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

√

4-N
o

Index
Frequency

×
×

×
×

√
×

×
×

×
√

√
×

×
√

√
√

√

5-N
o

Q
uery

Frequency
×

×
×

×
√

√
×

×
×

√
√

×
×

√
√

√
√

6-N
o

R
eplay

A
ttack

×
×

×
×

×
×

×
×

×
×

×
×

×
√

×
×

√

7-Q
uery

Privacy
×

×
√

×
√

√
√

√
√

√
√

√
×

√
√

√
√

8-Index
Privacy

√
√

√
×

√
√

√
√

√
×

√
×

×
√

√
√

√

9-D
ocum

ents
Privacy

√
√

√
√

√
√

√
√

√
√

√
√

×
√

√
√

√

10-R
anked

×
×

×
×

√
×

×
×

×
√

√
√

√
√

√
√

√
√

=
A

chieved,×
=

N
otachieved.

80

Table 6.3: Execution time of different parts of the system (in milliseconds).

Dataset uw-can-data mini-20newsgroups mini-classicdocs
Index Generation 71643 68675 22412
Index Encryption 26214 34663 26863
Query Generation 204 163 31
Query Encryption 156 108 132

81

82

7. CONCLUSIONS AND FUTURE DIRECTIONS

The thesis started by defining the security and implementation (9+1) requirements for a

highly secure model of privacy-preserving search on data clouds. These requirements

are defined based on encrypting both the index and the queries; however, it was shown

that these requirements cannot be satisfied by only encrypting them. The diversity of

cloud models as well as the different ownerships of them makes the encrypted data

retrieval systems vulnerable to many privacy revealing attacks.

The explanation of the proposed model is divided into three stages: normalizing the

index and query, a lightweight anonymous authentication, and using the anonymous

authentication technique together with a multi-server setting to satisfy all the 9+1

requirements. The first stage considers the frequency analysis attacks keeping in mind

conserving the data retrieval efficiency. Therefore, a technique that normalizes the

TF-IDF tables as well as the TF vector of the queries is proposed. This technique

hides any highly frequented values in the tables as well as any other relation between

documents. The technique was applied on three different datasets. Results show that

the technique improves the retrieval efficiency even with small values. However, the

second stage is still unable to hide the query and documents patterns. The technique

also is vulnerable to replay attacks.

In the second stage, another 7 security and 2 implementation requirements are defined

for a convenient anonymous authentication technique. Moreover, a new lightweight

anonymous authentication technique (HEADA) is proposed. The technique was

applied and tested on the RFID systems. These requirements are noted as the

7+2 requirements. It was shown that some of the techniques in the literature used

simple operations in the tag or the server or both, but they did not achieve all the

security requirements. On the other hand, some techniques achieved many security

requirements using high complexity operations in the tag and the server. None of the

discussed techniques achieved all the 7+2 security and efficiency requirements which

gives the proposed technique the advantage over them. It was shown that the HEADA

83

not only achieves the 7 security requirements, but also improves the way of working

in both the server and the tag by using simple search, instead of brute-force search,

in the server as well as using integer addition operation in both the server and the

tag in the authentication process. These properties of the HEADA make it suitable

to be applied efficiently in the mobile and cloud computing systems. Therefore, the

third stage shows how anonymous authentication and multi-server setting is used to

extend the technique to satisfy the 9+1. It was shown that none of the techniques

reported in the literature is able to satisfy all of these 9 conditions. Moreover, some

of them use similarity measures which lose important information of the features. The

proposed technique is shown able to satisfy these 9 security conditions. It utilizes a

multi-server setting to separate the leaked information. However, it is shown that none

of the servers is able to infer any information from the data that pass through it. The

technique uses anonymous authentication of the queries to prevent any unauthorized

party from generating a query as well as preventing the replay attacks. It also uses

the cosine similarity measure to calculate the similarity between the TF of the query

and the TF-IDF vectors of the documents to rank them according to their similarity to

the query. This similarity measure is shown effective and applicable in the proposed

technique.

It was shown that the model is built on three stages, however, each stage can be used,

adapted, or improved separately. One of the current researches is applying the HEADA

in the biosensor systems for the health monitoring. Another open research, is adapting

the model to support fuzzy-keywords retrieval property.

84

REFERENCES

[1] Hausman, K., S.Cook and Sampaio, T. (2013). Cloud Essentials: CompTIA
Authorized Courseware for Exam CLO-001, 978-1-118-40873-5, Willy.

[2] InfoWatch Analytical Center (2017). GLOBAL DATA LEAKAGE REPORT
2016, Technical Report.

[3] Gopal, G. and Singh, M. (2012). Secure similarity based document retrieval
system in cloud, Data Science Engineering (ICDSE), 2012 International
Conference on, pp.154–159.

[4] RightScale (2016). State of the Cloud Report, Technical
Report, Santa Barbara, CA 93101 USA, http:
//assets.rightscale.com/uploads/pdfs/
RightScale-2016-State-of-the-Cloud-Report.pdf?
mkt_tok=3RkMMJWWfF9wsRonuqvAd%2B%2FhmjTEU5z17%
2BokW662gIkz2EFye%2BLIHETpodcMRMFgN6%
2BTFAwTG5toziV8R7fBL81u3c8QXRjq.

[5] Foster, I.T., Zhao, Y., Raicu, I. and Lu, S. (2009). Cloud Computing and
Grid Computing 360-Degree Compared, CoRR, abs/0901.0131, http:
//arxiv.org/abs/0901.0131.

[6] Buyya, R. (2009). Market-Oriented Cloud Computing: Vision, Hype, and Reality
of Delivering Computing as the 5th Utility, Cluster Computing and the
Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Symposium on,
pp.1–1.

[7] Amazon, (2015), Amazon Elastic Compute Cloud (Amazon EC2), http://
aws.amazon.com/ec2/, accessed: 2015-01-07.

[8] IBM, (2015), IBM Cloud Computing, http://www.ibm.com/
cloud-computing, accessed: 2015-01-07.

[9] Microsoft, (2015), Azure Services Platform, http://azure.microsoft.
com, accessed: 2015-01-07.

[10] Google, (2015), Google Cloud Platform, https://cloud.google.com/,
accessed: 2015-01-07.

[11] Pastaki Rad, M., Sajedi Badashian, A., Meydanipour, G., Ashurzad Delcheh,
M., Alipour, M. and Afzali, H., (2009). A Survey of Cloud Platforms and
Their Future, O. Gervasi, D. Taniar, B. Murgante, A. Laganà, Y. Mun
and M. Gavrilova, editors, Computational Science and Its Applications
– ICCSA 2009, volume5592 of Lecture Notes in Computer Science,

85

Springer Berlin Heidelberg, pp.788–796, http://dx.doi.org/10.
1007/978-3-642-02454-2_61.

[12] Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G. and Vakali, A. (2009).
Cloud Computing: Distributed Internet Computing for IT and Scientific
Research, IEEE Internet Computing, 13(5), 10–13.

[13] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski,
A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I. and Zaharia,
M., (2009). Above the Clouds: A Berkeley View of Cloud Com-
puting, http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-28.html.

[14] Jansen, W. and Grance, T. (2011). SP 800-144. Guidelines on Security and
Privacy in Public Cloud Computing, Technical Report, Gaithersburg,
MD, United States.

[15] Shimbre, N. and Deshpande, P. (2015). Enhancing Distributed Data Storage
Security for Cloud Computing Using TPA and AES Algorithm, 2015
International Conference on Computing Communication Control and
Automation, pp.35–39.

[16] Tan, P., Steinbach, M. and Kumar, V. Introduction to Data Mining.

[17] El-Khair, I.A., (2009). TF*IDF, Springer US, Boston, MA, pp.3085–3086,
https://doi.org/10.1007/978-0-387-39940-9_956.

[18] Song, D.X., Wagner, D. and Perrig, A. (2000). Practical techniques for searches
on encrypted data, Security and Privacy, 2000. S P 2000. Proceedings.
2000 IEEE Symposium on, pp.44–55.

[19] Boneh, D., Di Crescenzo, G., Ostrovsky, R. and Persiano, G., (2004). Public Key
Encryption with Keyword Search, C. Cachin and J. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume3027 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp.506–522,
http://dx.doi.org/10.1007/978-3-540-24676-3_30.

[20] Liu, Q., Wang, G. and Wu, J. (2009). An Efficient Privacy Preserving
Keyword Search Scheme in Cloud Computing, Computational Science
and Engineering, 2009. CSE ’09. International Conference on, volume 2,
pp.715–720.

[21] Li, M., Yu, S., Cao, N. and Lou, W. (2011). Authorized Private Keyword Search
over Encrypted Data in Cloud Computing, Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pp.383–392.

[22] ChinnaSamy, R. and Sujatha, S. (2012). An efficient semantic secure keyword
based search scheme in cloud storage services, Recent Trends In
Information Technology (ICRTIT), 2012 International Conference on,
pp.488–491.

86

[23] Kuzu, M., Islam, M.S. and Kantarcioglu, M. (2012). Efficient Similarity Search
over Encrypted Data, Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, IEEE Computer Society,
Washington, DC, USA, pp.1156–1167, http://dx.doi.org/10.
1109/ICDE.2012.23.

[24] Tseng, F.K., Liu, Y.H. and Chen, R.J. (2012). Toward Authenticated and
Complete Query Results from Cloud Storages, Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th
International Conference on, pp.1204–1209.

[25] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K. and Lou, W. (2010). Fuzzy
Keyword Search over Encrypted Data in Cloud Computing, INFOCOM,
2010 Proceedings IEEE, pp.1–5.

[26] Wang, C., Ren, K., Yu, S. and Urs, K. (2012). Achieving usable and
privacy-assured similarity search over outsourced cloud data, INFOCOM,
2012 Proceedings IEEE, pp.451–459.

[27] Chuah, M. and Hu, W. (2011). Privacy-Aware BedTree Based Solution for
Fuzzy Multi-keyword Search over Encrypted Data, Distributed Computing
Systems Workshops (ICDCSW), 2011 31st International Conference on,
pp.273–281.

[28] Wang, C., Cao, N., Li, J., Ren, K. and Lou, W. (2010). Secure Ranked Keyword
Search over Encrypted Cloud Data, Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on, pp.253–262.

[29] Cao, N., Wang, C., Li, M., Ren, K. and Lou, W. (2011). Privacy-Preserving
Multi-Keyword Ranked Search over Encrypted Cloud Data, INFOCOM,
2011 Proceedings IEEE, pp.829–837.

[30] Wang, C., Cao, N., Ren, K. and Lou, W. (2012). Enabling Secure and Efficient
Ranked Keyword Search over Outsourced Cloud Data, IEEE Transactions
on Parallel and Distributed Systems, 23(8), 1467–1479.

[31] Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T. and Li, H.
(2013). Privacy-preserving Multi-keyword Text Search in the Cloud
Supporting Similarity-based Ranking, Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, ACM, New York, NY, USA, pp.71–82, http:
//doi.acm.org/10.1145/2484313.2484322.

[32] Orencik, C. and Savas, E. (2014). An efficient privacy-preserving multi-keyword
search over encrypted cloud data with ranking, Distributed and
Parallel Databases, 32(1), 119–160, http://dx.doi.org/10.
1007/s10619-013-7123-9.

[33] Chen, L., Sun, X., Xia, Z. and Liu, Q. (2014). An Efficient and
Privacy-Preserving Semantic Multi-Keyword Ranked Search over En-
crypted Cloud Data, International Journal of Security and Its Applica-
tions, 8(2), 323–332.

87

[34] Wei, Y. and Blake, M. (2010). Service-Oriented Computing and Cloud
Computing: Challenges and Opportunities, Internet Computing, IEEE,
14(6), 72–75.

[35] Garg, S.K., Yeo, C.S. and Buyya, R., (2011). Green cloud framework for
improving carbon efficiency of clouds, Euro-Par 2011 Parallel Processing,
Springer Berlin Heidelberg, pp.491–502.

[36] Takouna, I., Dawoud, W. and Meinel, C. (2011). Dynamic configuration of
virtual machine for power-proportional resource provisioning, Proc. of the
ACM Int. Workshop on Green Comp. Middleware, 1–6.

[37] Cho, H., Park, J., Gil, J.M., Jeong, Y.S. and Park, J.H. (2015). An Optimal Path
Computation Architecture for the Cloud-Network on Software-Defined
Networking, Sustainability, 7(5), 5413, http://www.mdpi.com/
2071-1050/7/5/5413.

[38] Mell, P. and Grance, T. (2011). SP 800-145. The NIST Definition of Cloud
Computing, Technical Report, Gaithersburg, MD, United States.

[39] He, S., Guo, L., Ghanem, M. and Guo, Y. (2012). Improving Resource Utilisation
in the Cloud Environment Using Multivariate Probabilistic Models, 2012
IEEE Fifth International Conference on Cloud Computing, pp.574–581.

[40] Mao, M. and Humphrey, M. (2012). A Performance Study on the VM Startup
Time in the Cloud, 2012 IEEE Fifth International Conference on Cloud
Computing, pp.423–430.

[41] Rivest, R.L., Shamir, A. and Adleman, L. (1978). A Method for Obtaining
Digital Signatures and Public-key Cryptosystems, Commun. ACM, 21(2),
120–126, http://doi.acm.org/10.1145/359340.359342.

[42] Gamal, T.E. (1985). A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms, Proceedings of CRYPTO 84 on
Advances in Cryptology, Springer-Verlag New York, Inc., New York,
NY, USA, pp.10–18, http://dl.acm.org/citation.cfm?id=
19478.19480.

[43] Goldwasser, S. and Micali, S. (1982). Probabilistic Encryption &Amp; How to
Play Mental Poker Keeping Secret All Partial Information, Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, ACM, New York, NY, USA, pp.365–377, http://doi.acm.
org/10.1145/800070.802212.

[44] Clarkson, J.B. (1994). Dense Probabilistic Encryption, In Proceedings of the
Workshop on Selected Areas of Cryptography, pp.120–128.

[45] Paillier, P. and Pointcheval, D., (1999). Efficient Public-Key Cryptosys-
tems Provably Secure Against Active Adversaries, K.Y. Lam,
E. Okamoto and C. Xing, editors, Advances in Cryptology -
ASIACRYPT?99, volume1716 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp.165–179, http://dx.doi.org/10.
1007/978-3-540-48000-6_14.

88

[46] Okamoto, T. and Uchiyama, S., (1998). A new public-key cryptosystem as secure
as factoring, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.308–318,
http://dx.doi.org/10.1007/BFb0054135.

[47] Naccache, D. and Stern, J. (1998). A New Public Key Cryptosystem Based on
Higher Residues, Proceedings of the 5th ACM Conference on Computer
and Communications Security, CCS ’98, ACM, New York, NY, USA,
pp.59–66, http://doi.acm.org/10.1145/288090.288106.

[48] Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices,
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, STOC ’09, ACM, New York, NY, USA, pp.169–178, http:
//doi.acm.org/10.1145/1536414.1536440.

[49] Xiang, G., Yu, B. and Zhu, P. (2012). A algorithm of fully homomorphic
encryption, Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th
International Conference on, pp.2030–2033.

[50] Smart, N. and Vercauteren, F., (2010). Fully Homomorphic Encryption with Rel-
atively Small Key and Ciphertext Sizes, P. Nguyen and D. Pointcheval,
editors, Public Key Cryptography ? PKC 2010, volume6056 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp.420–443,
http://dx.doi.org/10.1007/978-3-642-13013-7_25.

[51] van Dijk, M., Gentry, C., Halevi, S. and Vaikuntanathan, V., (2010). Fully
Homomorphic Encryption over the Integers, H. Gilbert, editor, Advances
in Cryptology ? EUROCRYPT 2010, volume6110 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp.24–43, http://dx.
doi.org/10.1007/978-3-642-13190-5_2.

[52] Brakerski, Z. and Vaikuntanathan, V., (2011). Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages, P. Rogaway,
editor, Advances in Cryptology ? CRYPTO 2011, volume6841 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp.505–524,
http://dx.doi.org/10.1007/978-3-642-22792-9_29.

[53] Coron, J.S., Mandal, A., Naccache, D. and Tibouchi, M., (2011).
Fully Homomorphic Encryption over the Integers with Shorter Public
Keys, P. Rogaway, editor, Advances in Cryptology ? CRYPTO
2011, volume6841 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp.487–504, http://dx.doi.org/10.1007/
978-3-642-22792-9_28.

[54] Armknecht, F. and Strufe, T. (2011). An efficient distributed privacy-preserving
recommendation system, The 10th IFIP Annual Mediterranean Ad Hoc
Networking Workshop, Med-Hoc-Net 2011, Favignana Island, Sicily,
Italy, 12-15 June, 2011, pp.65–70, http://dx.doi.org/10.1109/
Med-Hoc-Net.2011.5970495.

[55] Jeckmans, A., Peter, A. and Hartel, P., (2013). Efficient Privacy-Enhanced
Familiarity-Based Recommender System, Springer Berlin Heidelberg,

89

Berlin, Heidelberg, pp.400–417, http://dx.doi.org/10.1007/
978-3-642-40203-6_23.

[56] Lauter, K.E. (2012). Practical Applications of Homomorphic Encryption,
Proceedings of the 2012 ACM Workshop on Cloud Computing Security
Workshop, CCSW ’12, ACM, New York, NY, USA, pp.57–58, http:
//doi.acm.org/10.1145/2381913.2381924.

[57] Naehrig, M., Lauter, K. and Vaikuntanathan, V. (2011). Can Homomorphic
Encryption Be Practical?, Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop, CCSW ’11, ACM, New York, NY,
USA, pp.113–124, http://doi.acm.org/10.1145/2046660.
2046682.

[58] Bösch, C., Peter, A., Hartel, P. and Jonker, W. (2014). SOFIR: Securely
Outsourced Forensic Image Recognition, 39th IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP
2014, IEEE, Los Alamitos, CA, USA, http://doc.utwente.nl/
90722/.

[59] Brakerski, Z. and Vaikuntanathan, V. (2011). Efficient Fully Homomorphic
Encryption from (Standard) LWE, Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science, FOCS ’11, IEEE
Computer Society, Washington, DC, USA, pp.97–106, http://dx.
doi.org/10.1109/FOCS.2011.12.

[60] Yang, Z., Zhong, S. and Wright, R.N. (2005). Privacy-Preserving Clas-
sification of Customer Data without Loss of Accuracy, In SIAM
SDM, pp.21–23, http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.58.9978.

[61] Sander, T. and Tschudin, C.F. (1998). Protecting Mobile Agents Against
Malicious Hosts, Mobile Agents and Security, Springer-Verlag, London,
UK, UK, pp.44–60, http://dl.acm.org/citation.cfm?id=
648051.746191.

[62] Dawoud, M. and Altilar, D., (2014). Privacy-Preserving Search in Data Clouds
Using Normalized Homomorphic Encryption, Euro-Par 2014: Parallel
Processing Workshops, volume8806 of Lecture Notes in Computer
Science, Springer International Publishing, pp.62–72, http://dx.
doi.org/10.1007/978-3-319-14313-2_6.

[63] Gopal, G. and Singh, M. (2012). Secure similarity based document retrieval
system in cloud, Data Science Engineering (ICDSE), 2012 International
Conference on, pp.154–159.

[64] Pfitzmann, B. and Waidner, M., (1997). Anonymous Fingerprinting, W. Fumy,
editor, Advances in Cryptology ? EUROCRYPT ?97, volume1233
of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp.88–102, http://dx.doi.org/10.1007/3-540-69053-0_
8.

90

[65] Adelsbach, A., Katzenbeisser, S. and Ahmad-Reza (2002). Cryptography
Meets Watermarking: Detecting Watermarks with Minimal or Zero
Knowledge Disclosure, In: Proceedings of the European Signal Process-
ing Conference (EUSIPCO 2002). 2002. http://www.dbai. tuwien.ac.at/
staff/katzenb/download/eusipco02.ps.gz.

[66] Hammouda, K. and Kamel, M., (2013), Web Mining Data -
UW-CAN-DATASET, http://pami.uwaterloo.ca/
~hammouda/webdata.

[67] Rajaraman, A. and Ullman, J.D. (2011). Data Mining: Mining of Massive
Datasets, 978-1107015357, Cambridge University Press.

[68] Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval, Information Processing and Management, pp.513–523.

[69] Volkan, T., (2012), Data Mining Research - Classic3 and Classic4 DataSets,
http://www.dataminingresearch.com/index.php/2010/
09/classic3-classic4-datasets.

[70] Lang, K. (1995). Newsweeder: Learning to filter netnews, Proceedings of the
Twelfth International Conference on Machine Learning, pp.331–339.

[71] Fukuda, I., Morishita, S. and Asama, H. (2008). Personal identification in
dynamic images using UHF band RFID system for service provision, 2008
IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems, pp.492–497.

[72] Wisanmongkol, J., Sanpechuda, T. and Ketprom, U. (2008). Automatic vehicle
identification with sensor-integrated RFID system, 2008 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecommu-
nications and Information Technology, volume 2, pp.757–760.

[73] Qinghua, Z., Guoquan, C., Zhuan, W., Jun, W. and Dawei, Y. (2009).
Development of RFID application system in cargo inbound and outbound,
TENCON 2009 - 2009 IEEE Region 10 Conference, pp.1–6.

[74] Ahuja, S. and Potti, P. (2010). An Introduction to RFID Technology,
Communications and Network, 2(3), 183–186.

[75] Shih, D.H., Chin-Yi, L. and Lin, B. (2005). RFID Tags: Privacy and Security
Aspects, Int. J. Mob. Commun., 3(3), 214–230, http://dx.doi.org/
10.1504/IJMC.2005.006581.

[76] Want, R. (2006). An Introduction to RFID Technology, IEEE Pervasive
Computing, 5(1), 25–33.

[77] Weis, S.A., (2007). RFID (Radio-Frequency Identification), John Wi-
ley & Sons, Inc., pp.974–984, http://dx.doi.org/10.1002/
9781118256107.ch63.

91

[78] Sarma, S.E., Weis, S.A. and Engels, D.W., (2003). RFID Systems and Security
and Privacy Implications, Cryptographic Hardware and Embedded
Systems - CHES 2002, volume2523 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp.454–469, http://dx.doi.
org/10.1007/3-540-36400-5_33.

[79] Sun, H.M. and Ting, W.C. (2009). A Gen2-Based RFID Authentication Protocol
for Security and Privacy, IEEE Transactions on Mobile Computing, 8(8),
1052–1062.

[80] Lee, H. and Kim, J. (2006). Privacy threats and issues in mobile RFID,
Availability, Reliability and Security, 2006. ARES 2006. The First
International Conference on, pp.5 pp.–.

[81] Yi, X., Wang, L., Mao, D. and Zhan, Y. (2012). An Gen2 Based Security Au-
thentication Protocol for RFID System, Physics Procedia, 24, Part B(0),
1385 – 1391, http://www.sciencedirect.com/science/
article/pii/S1875389212002490, international Conference on
Applied Physics and Industrial Engineering 2012.

[82] Chien, H.Y. (2007). SASI: A New Ultralightweight RFID Authentication Protocol
Providing Strong Authentication and Strong Integrity, Dependable and
Secure Computing, IEEE Transactions on, 4(4), 337–340.

[83] Weis, S.A., Sarma, S.E., Rivest, R.L. and Engels, D.W., (2004). Security and
Privacy Aspects of Low-Cost Radio Frequency Identification Systems,
D. Hutter, G. Müller, W. Stephan and M. Ullmann, editors, Security in
Pervasive Computing, volume2802 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp.201–212, http://dx.doi.org/10.
1007/978-3-540-39881-3_18.

[84] Yeo, S.S. and Kim, S., (2005). Scalable and Flexible Privacy Protection Scheme
for RFID Systems, R. Molva, G. Tsudik and D. Westhoff, editors,
Security and Privacy in Ad-hoc and Sensor Networks, volume3813
of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp.153–163, http://dx.doi.org/10.1007/11601494_13.

[85] Dixit, V., Verma, H.K. and Singh, A.K., (2011), Enhanced Hash chain based
scheme for security and privacy in RFID systems.

[86] Bringer, J., Chabanne, H. and Dottax, E. (2006). HB++: a Lightweight
Authentication Protocol Secure against Some Attacks, Security, Privacy
and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006.
Second International Workshop on, pp.28–33.

[87] Juels, A. and Weis, S.A., (2005). Authenticating Pervasive Devices with Human
Protocols, V. Shoup, editor, Advances in Cryptology ? CRYPTO
2005, volume3621 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp.293–308, http://dx.doi.org/10.1007/
11535218_18.

92

[88] Karthikeyan, S. and Nesterenko, M. (2005). RFID Security Without Extensive
Cryptography, Proceedings of the 3rd ACM Workshop on Security
of Ad Hoc and Sensor Networks, SASN ’05, ACM, New York,
NY, USA, pp.63–67, http://doi.acm.org/10.1145/1102219.
1102229.

[89] Arbit, A., Livne, Y., Oren, Y. and Wool, A. (2015). Implementing public-key
cryptography on passive RFID tags is practical, International Journal
of Information Security, 14(1), 85–99, http://dx.doi.org/10.
1007/s10207-014-0236-y.

[90] Canard, S., Ferreira, L. and Robshaw, M., (2013). Improved (and Practical)
Public-Key Authentication for UHF RFID Tags, S. Mangard, editor,
Smart Card Research and Advanced Applications, volume7771 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp.46–61,
http://dx.doi.org/10.1007/978-3-642-37288-9_4.

[91] Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P. and Verbauwhede,
I. (2007). Public-Key Cryptography for RFID-Tags, Pervasive Computing
and Communications Workshops, 2007. PerCom Workshops ’07. Fifth
Annual IEEE International Conference on, pp.217–222.

[92] Burrows, M., Abadi, M. and Needham, R.M. (1989). A Logic of Authentication,
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 426(1871), 233–271, http://rspa.
royalsocietypublishing.org/content/426/1871/233,
http://rspa.royalsocietypublishing.org/content/
426/1871/233.full.pdf.

[93] Chien, H.Y. and Chen, C.H. (2007). Mutual authentication protocol for RFID
conforming to EPC Class 1 Generation 2 standards, Computer Standards
& Interfaces, 29(2), 254–259, ttp://www.sciencedirect.com/
science/article/pii/S092054890600064X".

[94] Peris-Lopez, P., Castro, J.C.H., Estevez-Tapiador, J.M. and Ribagorda, A.
(2009). An Ultra Light Authentication Protocol Resistant to Passive
Attacks under the Gen-2 Specification, J. Inf. Sci. Eng., 25(1),
33–57, http://www.iis.sinica.edu.tw/page/jise/2009/
200901_03.html.

[95] Karthikeyan, S. and Nesterenko, M. (2005). RFID Security Without Extensive
Cryptography, Proceedings of the 3rd ACM Workshop on Security
of Ad Hoc and Sensor Networks, SASN ’05, ACM, New York,
NY, USA, pp.63–67, http://doi.acm.org/10.1145/1102219.
1102229.

[96] Chen, C.L. and Deng, Y.Y. (2009). Conformation of EPC Class 1 Generation 2
standards RFID system with mutual authentication and privacy protection,
Engineering Applications of Artificial Intelligence, 22(8), 1284 –
1291, http://www.sciencedirect.com/science/article/
pii/S0952197608001814.

93

[97] Qingling, C., Yiju, Z. and Yonghua, W. (2008). A Minimalist Mutual
Authentication Protocol for RFID System & BAN Logic Analysis,
Computing, Communication, Control, and Management, 2008. CCCM
’08. ISECS International Colloquium on, volume 2, pp.449–453.

[98] Choi, E.Y., Lee, D.H. and Lim, J.I. (2009). Anti-cloning protocol suitable to
EPCglobal Class-1 Generation-2 RFID systems, Computer Standards &
Interfaces, 31(6), 1124 – 1130.

[99] Sun, H.M. and Ting, W.C. (2009). A Gen2-Based RFID Authentication Protocol
for Security and Privacy, IEEE Transactions on Mobile Computing, 8(8),
1052–1062.

[100] Yi, X., Wang, L., Mao, D. and Zhan, Y. (2012). An Gen2 Based Security Au-
thentication Protocol for RFID System, Physics Procedia, 24, Part B(0),
1385 – 1391, http://www.sciencedirect.com/science/
article/pii/S1875389212002490, international Conference on
Applied Physics and Industrial Engineering 2012.

[101] Weis, S.A., Sarma, S.E., Rivest, R.L. and Engels, D.W., (2004). Security and
Privacy Aspects of Low-Cost Radio Frequency Identification Systems,
D. Hutter, G. Müller, W. Stephan and M. Ullmann, editors, Security in
Pervasive Computing, volume2802 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp.201–212, http://dx.doi.org/10.
1007/978-3-540-39881-3_18.

[102] Yeo, S.S. and Kim, S., (2005). Scalable and Flexible Privacy Protection Scheme
for RFID Systems, R. Molva, G. Tsudik and D. Westhoff, editors,
Security and Privacy in Ad-hoc and Sensor Networks, volume3813
of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp.153–163, http://dx.doi.org/10.1007/11601494_13.

[103] Dixit, V., Verma, H.K. and Singh, A.K., (2011), Enhanced Hash chain based
scheme for security and privacy in RFID systems.

[104] Bringer, J., Chabanne, H. and Dottax, E. (2006). HB++: a Lightweight
Authentication Protocol Secure against Some Attacks, Security, Privacy
and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006.
Second International Workshop on, pp.28–33.

[105] Juels, A. and Weis, S.A., (2005). Authenticating Pervasive Devices with
Human Protocols, V. Shoup, editor, Advances in Cryptology - CRYPTO
2005, volume3621 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp.293–308, http://dx.doi.org/10.1007/
11535218_18.

[106] Dawoud, M. and Altilar, D., (2014). Privacy-Preserving Search in Data Clouds
Using Normalized Homomorphic Encryption, L. Lopes, J. ?ilinskas,
A. Costan, R. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro,
L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold,
S. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart and
M. Alexander, editors, Euro-Par 2014: Parallel Processing Workshops,

94

volume8806 of Lecture Notes in Computer Science, Springer Inter-
national Publishing, pp.62–72, http://dx.doi.org/10.1007/
978-3-319-14313-2_6.

[107] Salton, G. and Buckley, C. (1988). Term-weighting Approaches in Automatic
Text Retrieval, Inf. Process. Manage., 24(5), 513–523, http://dx.
doi.org/10.1016/0306-4573(88)90021-0.

[108] Dawoud, M. and Altilar, D.T. (2015). HEADA: A Low Cost RFID Authen-
tication Technique using Homomorphic Encryption for Key Generation,
International Journal of Information Security, 10(4), 213–222, http:
//dx.doi.org/10.1007/s10207-011-0139-0.

95

96

APPENDICES

APPENDIX A.1 : Document Datasets
APPENDIX A.2 : Stopwords lists

97

98

APPENDIX A.1

Dataset preparation is done as follows:

1. html documents are parsed using htmlparser-1.6 to extract the data from them.

2. Stopwords are removed using three different lists of stopwords: Long list, Short list
and Google list.

3. Porter stemmer is used to stem the keywords.

4. The datasets are classified using k-means classification with cosine similarity
distance.

A.1.1 uw-can-data Dataset

The original dataset consists of 314 HTML web pages from various web sites at
the University of Waterloo, and some Canadian websites [66]. These documents are
grouped into 10 groups as shown in Table A.1.

A.1.2 mini-20newsgroups

The original dataset (called 20_newsgroups) [70] consists of a collection of
approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20
different newsgroups, the number of documents is minimized to 400 documents
with the same number of classes by selecting 20 documents from each group into a
minimized dataset called mini-20newsgroups. The details of the minimized dataset
are shown in Table A.2.

A.1.3 mini-classicdocs

The original dataset (called classicdocs) [69] consists of 7097 documents grouped into
4 groups: cacm with 3204 documents, cisi with 1460 documents, cran with 1400
documents, and med with 1033 documents. The dataset is minimized by selecting
200 documents from each group and re-classify them into 10 classes as shown in
Table A.3. Note that the selected documents are renamed by the numbers 1-200,
201-400, 401-600, and 601-800 for the classes cacm, cisi, cran, and med respectively.

99

Table
A

.1:uw
-can-data

dataset.

C
lusterN

am
e

N
um

berofD
ocum

ents
L

istofD
ocum

ents
black-bear-attack

30
000299;200172417514;4E

nU
p;attack;attacks;bbear;bearfacts;bear-attack-in-sm

okies;bear-diam
ond2-01;bear;B

earE
ncounters;B

earhuntingA
;

bears-great-sm
oky;

bears;
B

earTips;
bear_attacks;

bear_safety;
B

kbear6.28.00;
blackbear;

blackbearfacts;
black_bears;

cabc;
grizzly;

H
ikeG

uide;
H

ow
_D

angerous_are_B
lack_B

ears;incident;ityw
br;oldnew

s;trav_bears;w
alk-in-w

oods
cam

puse-netw
ork

33
atm

;
A

Treq;
directions;

external;
funding;

guarm
in;

history;
hom

eIP;
hom

eIP1st;
index-residence;

index-uw
ng;

index;
internet-account;

IPreq;
kw

area;local;logic;netadm
in;netdescr;netfirew

;netm
gm

t;netpract;netU
pgrade;opportunities;rfi;rfp;rfp199706;rn-excess;schedule;service;

strategy;tech;vlans
canada-transportation-roads

22
alberta;

backgr;
bibliography;

c2823;
ctar-recom

m
endations;

cta_rec;
D

efault;
directory;

great-lakes;
ham

pton;
IIST

PS;
kingston;

new
foundland;

pgrpe;position_paper_april01;tac;transport;transportation_act;transportation_frost_com
;trans_e;tu.gov.ab;w

hatsnew
career-services

52
abroad.add.resources;

abroad.credits;
abroad;

actionplan;
career-life;

careerobjectives;
chronological;

com
m

unityservice;
C

R
C

_G
eneral;

credits;
decision;

em
p-contact;

em
ployercontact;

entrepreneurism
;

functional;
handson;

header;
index;

inform
ationinterview

;
inform

ationsearch;
interests;

intern;introduction;jobshadow
;jobw

orkinterview
;jobw

orksearch;know
ledge;letters;lifelonglearning;m

anual-hom
e;m

odifiedchrono;occup-res;
order;personalcareer;personality;personalobjectives;publications;reevaluation;resum

es;SC
A

;self-assess;skills;steps;success;sum
m

er_register;
tableofcontents;trends;values;vitae;Volunteering;w

ork;w
orkoffers

co-op
55

10_1;
10_2;

10_3;
10_4;

10_5;
6_1;

6_2;
6_3;

6_4;
7_1;

7_10;
7_11;

7_12;
7_2;

7_3;
7_4;

7_5;
7_6;

7_7;
7_8;

7_9;
8_1;

8_2;
8_3;

8_4;
8_5;

8_6;8_7;9_1;9_10;9_11;9_2;9_3;9_4;9_5;9_6;9_7;9_8;9_9;advisors;affiliations;appendixa;appendixb;em
p_services;help;index-about;

index-access;index-em
ployees;index-students;index;index;info_sessions;staff;suppforfirstyearstudents;upcom

ing_events
health-services

23
acne;

appointm
ents;

C
H

I;chicken;
chlam

;
different;

em
ergencies;

events;
FE

D
;flu;

hours;
index;

insurance1;
lactose;

links;
services;

skin;
staff;

support;tb;topics;verification;w
arts

river-fishing
23

alaska-fishing-guide-1;
alaska-fishing-trip;

blueskiesfishing;
booking;

com
bahee-trip;

dir;
dkgld;

fish;
fishing;

fishingstoneyriverlodge;
fishraider;

gtjem
ez;

guided9;
indianriver;

lake-tahoe-Fishing;
northw

estfishingguides;
prem

ium
_fishing;

report;
rippingales;

rogueklam
ath;

salm
on-fishing;

trip;w
olfriverangler

river-rafting
29

800classvi;alpineadventures;gauley-river-rafting;know
nw

orldguides;nantahal;new
river-rafting;pw

ibow
o;raft-colorado;raft;raftarizona;rafting;

raftnepal;
raftw

et;
richm

ondraft;
riveradventures;

riverrafting;
riverrider;

riverriders;
riverw

ild;
sierram

ac;
travelsource-rafting;

trinityriverrafting;
turtleriver;w

elcom
e;w

esternriver;w
hitew

ater.safpar;w
hitew

atervoyages;w
ildrivers.com

;zrafting
snow

boarding-skiing
24

8-184;C
anada;cm

hski;courses;default;guide-canada;helicanada;htl_snb;intro;january99;m
aplesquare-skiing;m

ountainzone;overlandersports;
report;

skicentral;
skiing-snow

board;
skiing-w

estern-canada;
skiing;

SkiingSnow
boardinginC

anada;
skileb;

skischool;
snow

eb;
thealps;

tightw
adtours

w
inter-canada

23
01-11-26-back;

6008e;
alm

anac;
clim

ate;
clim

ate_e;
driving-cond-w

inter;
eastern_canada;

icestorm
98_w

inter_w
eather_w

arnings_e;
kanclim

ate-e;
new

foundland-w
inter;

northeastern-w
inter;

nw
clim

at;
page32_e;

quiz.en;
snow

snow
snow

;
storm

s_index;
storm

s_index2;
turfgras;

w
arning.en;

w
inter;w

interpage;w
intstrm

;w
w

_e

100

Ta
bl

e
A

.2
:M

in
im

iz
ed

20
_n

ew
sg

ro
up

s
da

ta
se

t(
m

in
i-

20
ne

w
sg

ro
up

s)
.

C
lu

st
er

N
am

e
N

um
be

ro
fD

oc
um

en
ts

L
is

to
fD

oc
um

en
ts

al
t.a

th
ei

sm
20

53
67

0;
53

75
3;

53
75

9;
53

76
0;

54
13

7;
54

14
0;

54
14

4;
54

16
0;

54
17

0;
54

17
1;

54
20

1;
54

21
5;

54
22

2;
54

23
4;

54
23

7;
54

24
4;

54
25

0;
54

25
1;

54
25

4;
54

48
5

co
m

p.
gr

ap
hi

cs
20

38
98

3;
38

99
8;

39
00

0;
39

00
8;

39
01

3;
39

01
7;

39
02

2;
39

02
7;

39
04

8;
39

04
9;

39
07

2;
39

07
8;

39
61

5;
39

62
0;

39
62

1;
39

65
9;

39
66

3;
39

66
4;

39
66

8;
39

67
5

co
m

p.
os

.m
s-

w
in

do
w

s.
m

is
c

20
10

16
0;

10
16

7;
10

18
8;

10
69

2;
10

74
2;

10
78

1;
10

79
0;

10
79

1;
10

80
6;

10
81

2;
10

81
4;

10
83

0;
10

83
5;

10
83

8;
10

84
3;

10
84

8;
10

84
9;

10
85

0;
10

85
7;

10
94

2
co

m
p.

sy
s.

ib
m

.p
c.

ha
rd

w
ar

e
20

61
01

9;
61

02
2;

61
02

6;
61

03
9;

61
04

4;
61

04
6;

61
06

0;
61

07
6;

61
09

0;
61

09
4;

61
09

8;
61

12
0;

61
13

0;
61

15
3;

61
15

4;
61

15
8;

61
16

4;
61

16
8;

61
17

3;
61

17
5

co
m

p.
sy

s.
m

ac
.h

ar
dw

ar
e

20
52

19
0;

52
21

4;
52

22
3;

52
23

1;
52

23
4;

52
23

8;
52

24
6;

52
24

8;
52

26
4;

52
26

9;
52

27
0;

52
27

6;
52

28
4;

52
29

6;
52

30
0;

52
31

2;
52

33
5;

52
34

2;
52

40
3;

52
40

4
co

m
p.

w
in

do
w

s.
x

20
67

54
2;

67
57

2;
67

97
3;

67
98

1;
67

98
3;

67
99

5;
68

00
2;

68
01

2;
68

01
9;

68
04

7;
68

11
0;

68
13

7;
68

17
4;

68
18

5;
68

22
8;

68
23

2;
68

23
7;

68
23

9;
68

24
3;

68
31

1
m

is
c.

fo
rs

al
e

20
76

58
9;

76
59

2;
76

59
4;

76
60

7;
76

64
9;

76
70

4;
76

78
2;

76
78

5;
76

79
5;

76
81

4;
76

83
1;

76
84

7;
76

85
1;

76
87

9;
76

88
0;

76
92

7;
76

93
6;

76
93

7;
76

94
0;

76
94

5
re

c.
au

to
s

20
10

34
40

;
10

34
45

;
10

34
97

;
10

35
03

;
10

35
10

;
10

36
63

;
10

36
67

;
10

36
80

;
10

36
89

;
10

36
98

;
10

37
04

;
10

37
14

;
10

37
23

;
10

37
28

;
10

37
34

;
10

37
40

;
10

37
58

;
10

37
71

;1
03

77
7;

10
38

06
re

c.
m

ot
or

cy
cl

es
20

10
51

33
;

10
51

35
;

10
51

40
;

10
51

50
;

10
51

53
;

10
51

54
;

10
51

59
;

10
52

05
;

10
52

07
;

10
52

17
;

10
52

20
;

10
52

23
;

10
52

38
;

10
52

43
;

10
52

49
;

10
52

52
;

10
52

54
;

10
52

57
;1

05
66

1;
10

56
62

re
c.

sp
or

t.b
as

eb
al

l
20

10
49

42
;

10
49

57
;

10
49

63
;

10
49

66
;

10
49

72
;

10
49

73
;

10
49

77
;

10
49

84
;

10
50

34
;

10
50

48
;

10
50

70
;

10
50

75
;

10
50

93
;

10
51

02
;

10
51

04
;

10
51

11
;

10
51

14
;

10
51

22
;1

05
12

3;
10

51
63

re
c.

sp
or

t.h
oc

ke
y

20
54

30
4;

54
36

5;
54

47
8;

54
50

7;
54

51
2;

54
54

8;
54

54
9;

54
70

9;
54

71
4;

54
71

5;
54

72
1;

54
72

4;
54

73
7;

54
73

9;
54

74
5;

54
75

4;
54

76
5;

54
77

1;
54

77
6;

54
78

0
sc

i.c
ry

pt
20

15
91

4;
15

91
9;

15
92

4;
15

95
3;

15
95

5;
15

96
2;

15
96

7;
15

99
6;

16
01

3;
16

02
6;

16
02

9;
16

03
6;

16
03

9;
16

04
3;

16
06

8;
16

08
5;

16
08

8;
16

11
7;

16
12

1;
16

13
5

sc
i.e

le
ct

ro
ni

cs
20

54
15

7;
54

16
0;

54
16

5;
54

17
5;

54
17

6;
54

21
2;

54
22

4;
54

24
4;

54
24

8;
54

25
5;

54
26

5;
54

30
2;

54
30

5;
54

30
6;

54
31

0;
54

32
5;

54
33

7;
54

35
3;

54
48

9;
54

49
0

sc
i.m

ed
20

59
42

4;
59

43
4;

59
43

5;
59

45
6;

59
45

8;
59

46
0;

59
47

7;
59

47
8;

59
48

0;
59

49
7;

59
55

9;
59

57
5;

59
57

9;
59

58
3;

59
58

4;
59

62
4;

59
62

7;
59

63
2;

59
63

3;
59

65
2

sc
i.s

pa
ce

20
61

40
1;

61
40

4;
61

43
1;

61
44

0;
61

45
0;

61
45

5;
61

45
9;

61
46

1;
61

48
4;

61
50

5;
61

53
2;

61
53

4;
61

54
6;

61
55

8;
62

31
9;

62
39

8;
62

40
8;

62
42

8;
62

47
7;

62
48

0
so

c.
re

lig
io

n.
ch

ri
st

ia
n

20
21

62
1;

21
64

8;
21

65
8;

21
66

3;
21

67
2;

21
69

6;
21

69
8;

21
69

9;
21

70
2;

21
70

8;
21

70
9;

21
75

4;
21

76
1;

21
77

3;
21

77
7;

21
78

4;
21

78
8;

21
79

9;
21

80
0;

21
80

4
ta

lk
.p

ol
iti

cs
.g

un
s

20
55

03
6;

55
06

0;
55

06
3;

55
06

8;
55

07
3;

55
08

0;
55

10
6;

55
11

5;
55

11
6;

55
12

3;
55

23
1;

55
23

9;
55

24
9;

55
26

0;
55

26
4;

55
27

8;
55

46
8;

55
47

0;
55

48
4;

55
48

9
ta

lk
.p

ol
iti

cs
.m

id
ea

st
20

76
54

8;
76

55
7;

77
17

7;
77

20
3;

77
21

2;
77

21
8;

77
23

2;
77

23
5;

77
25

0;
77

27
2;

77
27

5;
77

28
8;

77
30

5;
77

32
2;

77
33

2;
77

38
3;

77
38

7;
77

39
2;

77
81

3;
77

81
5

ta
lk

.p
ol

iti
cs

.m
is

c
20

17
88

70
;

17
88

87
;

17
89

06
;

17
89

07
;

17
89

24
;

17
89

27
;

17
89

39
;

17
89

45
;

17
89

60
;

17
89

65
;

17
89

93
;

17
89

94
;

17
89

97
;

17
89

98
;

17
90

18
;

17
90

66
;

17
90

67
;

17
90

70
;1

79
09

5;
17

90
97

ta
lk

.re
lig

io
n.

m
is

c
20

84
27

8;
84

29
0;

84
29

3;
84

30
2;

84
30

9;
84

31
6;

84
31

7;
84

32
4;

84
34

5;
84

35
0;

84
35

1;
84

35
5;

84
35

6;
84

35
9;

84
39

8;
84

40
0;

84
41

3;
84

43
6;

84
51

0;
84

56
7

101

Table
A

.3:M
inim

ized
classicdocs

dataset(m
ini-classicdocs).

C
lusterN

am
e

N
um

berofD
ocum

ents
L

istofD
ocum

ents
C

lass1
45

160;190;194;201;203;206;207;210;211;213;215;216;219;221;222;223;230;235;255;274;286;289;290;291;314;340;341;352;361;366;
376;377;380;381;382;383;384;385;386;387;388;391;392;395;399

C
lass2

146
136;20;351;401;402;403;406;407;408;409;410;415;416;417;418;420;421;422;423;424;425;426;427;432;433;434;435;436;437;438;
439;44;440;442;443;444;447;449;452;453;454;455;456;457;458;460;461;462;463;464;468;469;470;471;472;473;475;478;479;480;
483;484;485;486;487;488;492;493;495;496;497;502;503;504;505;506;508;509;511;513;514;515;516;517;518;520;522;523;524;525;
527;528;530;531;532;533;534;537;538;539;540;542;544;545;546;547;548;549;55;551;554;555;556;559;560;564;565;566;568;569;
570;572;573;574;575;576;577;578;579;581;582;583;585;586;587;588;589;590;591;592;595;596;597;598;599;761

C
lass3

70
552;615;616;617;618;622;623;624;625;626;627;628;629;630;631;632;633;634;635;639;648;652;655;659;661;662;665;674;676;681;
685;686;691;694;696;697;698;699;700;701;702;703;704;705;706;709;710;711;712;713;714;715;716;717;718;720;721;738;739;740;
747;748;749;750;756;788;790;791;792;799

C
lass4

69
10;100;101;108;11;110;111;112;113;117;119;124;125;13;130;135;137;14;140;141;148;153;154;16;161;162;163;164;166;169;173;
176;178;179;180;181;183;185;186;19;191;192;195;2;25;26;30;32;35;37;42;47;50;52;60;61;63;64;65;72;73;76;8;80;86;88;90;91;99

C
lass5

75
115;168;200;202;208;214;217;220;228;231;232;236;238;239;240;245;246;247;259;262;275;284;287;288;292;293;294;295;296;297;
298;299;300;301;302;303;304;305;306;307;308;309;310;311;312;317;321;329;330;331;332;335;336;337;338;342;346;347;353;354;
359;360;362;365;368;369;370;371;372;397;398;445;48;7;77

C
lass6

86
1;102;107;118;12;120;122;123;126;127;128;129;131;132;133;134;138;139;142;144;145;146;147;149;150;151;156;157;158;159;165;
167;170;171;172;174;177;18;184;187;188;193;197;198;199;204;21;22;244;28;29;3;31;323;33;34;343;36;39;390;40;41;43;45;46;49;
491;5;526;56;57;6;62;66;67;68;70;71;78;79;82;89;9;92;95;96

C
lass7

85
0;104;105;114;116;121;15;155;175;182;218;23;27;38;4;400;404;405;411;412;413;414;419;428;429;430;431;441;446;448;450;451;
459;465;466;467;474;476;477;481;489;490;494;498;499;500;501;507;51;510;512;519;521;53;535;536;54;541;543;550;553;557;558;
561;562;563;567;571;580;584;593;594;687;69;726;727;728;74;760;81;84;87;93;94;98

C
lass8

52
106;610;614;620;621;646;651;653;654;657;658;660;666;668;669;670;672;677;690;692;693;695;707;722;729;736;742;743;744;746;
751;753;754;755;759;762;765;771;772;774;775;776;777;778;784;789;793;794;795;796;797;798

C
lass9

98
103;109;143;152;17;189;196;205;209;212;224;225;226;227;229;233;234;237;24;241;242;243;248;249;250;251;252;253;254;256;257;
258;260;261;263;264;265;266;267;268;269;270;271;272;273;276;277;278;279;280;281;282;283;285;313;315;316;318;319;320;322;
324;325;326;327;328;333;334;339;344;345;348;349;350;355;356;357;358;363;364;367;373;374;375;378;379;389;393;394;396;529;
58;59;619;708;83;85;97

C
lass10

74
482;600;601;602;603;604;605;606;607;608;609;611;612;613;636;637;638;640;641;642;643;644;645;647;649;650;656;663;664;667;
671;673;675;678;679;680;682;683;684;688;689;719;723;724;725;730;731;732;733;734;735;737;741;745;75;752;757;758;763;764;
766;767;768;769;770;773;779;780;781;782;783;785;786;787

102

APPENDIX A.2

Three lists of stopwords are used to remove stopwords from the documents. These lists
are:

1. Google list stopwords: I; a; about; an; are; as; at; be; by; com; de; en; for; from;
how; in; is; it; la; of; on; or; that; the; this; to; was; what; when; where; who; will;
with; und; the; www.

2. Short list stopwords: a; about; above; after; again; against; all; am; an; and; any;
are; aren’t; as; at; be; because; been; before; being; below; between; both; but;
by; can’t; cannot; could; couldn’t; did; didn’t; do; does; doesn’t; doing; don’t;
down; during; each; few; for; from; further; had; hadn’t; has; hasn’t; have; haven’t;
having; he; he’d; he’ll; he’s; her; here; here’s; hers; herself; him; himself; his;
how; how’s; i; i’d; i’ll; i’m; i’ve; if; in; into; is; isn’t; it; it’s; its; itself; let’s;
me; more; most; mustn’t; my; myself; no; nor; not; of; off; on; once; only; or;
other; ought; our; ours; ; ourselves; out; over; own; same; shan’t; she; she’d; she’ll;
she’s; should; shouldn’t; so; some; such; than; that; that’s; the; their; theirs; them;
themselves; then; there; there’s; these; they; they’d; they’ll; they’re; they’ve; this;
those; through; to; too; under; until; up; very; was; wasn’t; we; we’d; we’ll; we’re;
we’ve; were; weren’t; what; what’s; when; when’s; where; where’s; which; while;
who; who’s; whom; why; why’s; with; won’t; would; wouldn’t; you; you’d; you’ll;
you’re; you’ve; your; yours; yourself; yourselves.

3. Long list stopwords: a; able; about; above; abst; accordance; according;
accordingly; across; act; actually; added; adj; adopted; affected; affecting; affects;
after; afterwards; again; against; ah; all; almost; alone; along; already; also;
although; always; am; among; amongst; an; and; announce; another; any; anybody;
anyhow; anymore; anyone; anything; anyway; anyways; anywhere; apparently;
approximately; are; aren; arent; arise; around; as; aside; ask; asking; at; auth;
available; away; awfully; b; back; be; became; because; become; becomes;
becoming; been; before; beforehand; begin; beginning; beginnings; begins; behind;
being; believe; below; beside; besides; between; beyond; biol; both; brief; briefly;
but; by; c; ca; came; can; cannot; can’t; cause; causes; certain; certainly; co; com;
come; comes; contain; containing; contains; could; couldnt; d; date; did; didn’t;
different; do; does; doesn’t; doing; done; don’t; down; downwards; due; during; e;
each; ed; edu; effect; eg; eight; eighty; either; else; elsewhere; end; ending; enough;
especially; et; et-al; etc; even; ever; every; everybody; everyone; everything;
everywhere; ex; except; f; far; few; ff; fifth; first; five; fix; followed; following;
follows; for; former; formerly; forth; found; four; from; further; furthermore; g;
gave; get; gets; getting; give; given; gives; giving; go; goes; gone; got; gotten; h;
had; happens; hardly; has; hasn’t; have; haven’t; having; he; hed; hence; her; here;
hereafter; hereby; herein; heres; hereupon; hers; herself; hes; hi; hid; him; himself;
his; hither; home; how; howbeit; however; hundred; i; id; ie; if; i’ll; im; immediate;
immediately; importance; important; in; inc; indeed; index; information; instead;
into; invention; inward; is; isn’t; it; itd; it’ll; its; itself; i’ve; j; just; k; keep; keeps;
kept; keys; kg; km; know; known; knows; l; largely; last; lately; later; latter;
latterly; least; less; lest; let; lets; like; liked; likely; line; little; ’ll; look; looking;

103

looks; ltd; m; made; mainly; make; makes; many; may; maybe; me; mean; means;
meantime; meanwhile; merely; mg; might; million; miss; ml; more; moreover;
most; mostly; mr; mrs; much; mug; must; my; myself; n; na; name; namely; nay;
nd; near; nearly; necessarily; necessary; need; needs; neither; never; nevertheless;
new; next; nine; ninety; no; nobody; non; none; nonetheless; noone; nor; normally;
nos; not; noted; nothing; now; nowhere; o; obtain; obtained; obviously; of; off;
often; oh; ok; okay; old; omitted; on; once; one; ones; only; onto; or; ord;
other; others; otherwise; ought; our; ours; ourselves; out; outside; over; overall;
owing; own; p; page; pages; part; particular; particularly; past; per; perhaps;
placed; please; plus; poorly; possible; possibly; potentially; pp; predominantly;
present; previously; primarily; probably; promptly; proud; provides; put; q; que;
quickly; quite; qv; r; ran; rather; rd; re; readily; really; recent; recently; ref; refs;
regarding; regardless; regards; related; relatively; research; respectively; resulted;
resulting; results; right; run; s; said; same; saw; say; saying; says; sec; section;
see; seeing; seem; seemed; seeming; seems; seen; self; selves; sent; seven; several;
shall; she; shed; she’ll; shes; should; shouldn’t; show; showed; shown; showns;
shows; significant; significantly; similar; similarly; since; six; slightly; so; some;
somebody; somehow; someone; somethan; something; sometime; sometimes;
somewhat; somewhere; soon; sorry; specifically; specified; specify; specifying;
state; states; still; stop; strongly; sub; substantially; successfully; such; sufficiently;
suggest; sup; sure; t; take; taken; taking; tell; tends; th; than; thank; thanks; thanx;
that; that’ll; thats; that’ve; the; their; theirs; them; themselves; then; thence; there;
thereafter; thereby; thered; therefore; therein; there’ll; thereof; therere; theres;
thereto; thereupon; there’ve; these; they; theyd; they’ll; theyre; they’ve; think;
this; those; thou; though; thoughh; thousand; throug; through; throughout; thru;
thus; til; tip; to; together; too; took; toward; towards; tried; tries; truly; try; trying;
ts; twice; two; u; un; under; unfortunately; unless; unlike; unlikely; until; unto;
up; upon; ups; us; use; used; useful; usefully; usefulness; uses; using; usually; v;
value; various; ’ve; very; via; viz; vol; vols; vs; w; want; wants; was; wasn’t; way;
we; wed; welcome; we’ll; went; were; weren’t; we’ve; what; whatever; what’ll;
whats; when; whence; whenever; where; whereafter; whereas; whereby; wherein;
wheres; whereupon; wherever; whether; which; while; whim; whither; who; whod;
whoever; whole; who’ll; whom; whomever; whos; whose; why; widely; willing;
wish; with; within; without; won’t; words; world; would; wouldn’t; www; x; y;
yes; yet; you; youd; you’ll; your; youre; yours; yourself; yourselves; you’ve; z;
zero.

104

CURRICULUM VITAE

Name Surname: Mohanad Dawoud

Place and Date of Birth: Palestine, 27.09.1984

Adress: Istanbul Technical University, Istanbul, 34469, TURKEY

E-Mail: dawoud@itu.edu.tr

B.Sc.: 2001-2006, B.Sc. in Computer Engineering, Islamic University of Gaza,
Gaza-Palestine. Project: Online Video Compression and Transmission.

M.Sc.: 2006-2008, M.Sc. in Computer Engineering, Arab Academy for Science,
Technology & Maritime Transport, Alexandria-Egypt. Thesis: Effects of Features
Transformation and Organization on Image Retrieval.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

Dawoud M., Altilar D.T., 2016: HEADA: A low cost RFID authentication technique
using homomorphic encryption for key generation. Security and Communication
Networks, August 2016.

Dawoud M., Altilar D.T., 2016: Privacy-Preserving Data Retrieval Using
Anonymous Query Authentication In Data Cloud Services. Proceedings of the 6th
International Conference on Cloud Computing and Services Science, April 23-25,
2016 Rome, Italy.

Dawoud M., Altilar D.T., 2014: Privacy-Preserving Search in Data Clouds Using
Normalized Homomorphic Encryption. Euro-Par 2014 International Workshops,
August 25-26, 2014 Porto, Portugal.

105

