

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

ITU-PRP: PARALLEL RUNNING PLATFORM

A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA

M.Sc. THESIS

Enis SPAHI

NOVEMBER 2014

Department of Computer Engineering

Computer Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

Enis SPAHI

 (504091531)

NOVEMBER 2014

Department of Computer Engineering

Computer Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

ITU-PRP: PARALLEL RUNNING PLATFORM

A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA

Thesis Advisor: Assoc. Prof. Dr. D. Turgay ALTILAR

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ITU-PRP : PARALEL İŞLEM PLATFORMU

JAVA İÇİN PARALEL PROGRAMLAMA ARACI

YÜKSEK LİSANS TEZİ

Enis SPAHI

(504091531)

Bilgisayar Mühendisliği Anabilim Dalı Dalı

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Doç. Dr. D. Turgay ALTILAR

KASIM 2014

v

Enis SPAHI, a M.Sc. student of ITU Graduate School of Science student ID

504091531, successfully defended the thesis entitled “ITU-PRP: Parallel Running

Platform A Parallel Programming Framework for Java”, which he prepared after

fulfilling the requirements specified in the associated legislations, before the jury

whose signatures are below.

Date of Submission : 9 October 2014

Date of Defense : 13 November 2014

Thesis Advisor : Assoc.Prof. Dr. D. Turgay ALTILAR

 İstanbul Technical University

Jury Members : Prof. Dr. Nadia ERDOĞAN

İstanbul Technical University

Assist.Prof. Dr. Yunus Emre SELÇUK

Yıldız Technical University

vi

vii

FOREWORD

This thesis was written for my Master degree in Computer Engineering Department

at Istanbul Technical University.

I would like to take this opportunity to thank following people, who helped and

supported me during the writing process of this thesis. First I would like to express

my gratitude to my supervisor Assoc. Prof. Dr. D. Turgay Altılar, for his patience

and encouragement during different phases of this process.

Finally, I am grateful to my family and my girlfriend, without whose support this

thesis would not be possible.

November 2014

Enis SPAHI

viii

ix

TABLE OF CONTENTS

Page

FOREWORD .. vii
TABLE OF CONTENTS .. ix
ABBREVIATIONS ... xi

LIST OF TABLES .. xiii
LIST OF FIGURES ... xv
SUMMARY .. xvii

ÖZET .. xix
1. INTRODUCTION .. 1

1.1 Parallel Programming Framework ... 3
1.2 Task Execution Middleware ... 3

2. RELATED WORK AND MOTIVATION .. 7
2.1 API Interfaces Derived From Native Interfaces ... 7
2.2 API Interfaces Derived From Java Jative Thread Models 8

2.3 Java Applet Based Parallel Systems ... 8

2.3.1 Javelin ... 8
2.3.2 JAVM .. 10

2.4 Motivation .. 12

3. ITU-PRP ARCHITECTURE AND DESIGN .. 15
3.1 Client .. 17

3.2 Host .. 17
3.3 Broker ... 17

3.3.1 Host registry .. 18

3.3.2 Host registry operations on Broker ... 20

3.3.3 Broker-to-Host Ping Pong messages ... 21
3.3.4 Client and host state transitions .. 23

3.4 Task Execution ... 24
3.4.1 Task (application) repository .. 24

3.4.2 Host resource request .. 25
3.4.3 Scoring for host selection .. 26
3.4.4 Task plan ... 28

3.4.5 Parallel application execution ... 29
3.5 Client, Host and Broker Connectivity .. 33

3.5.1 Approaches on communication flow .. 34
3.5.2 NAT issues of peer-to-peer communication ... 35
3.5.3 NAT Traversal techniques for peer-to-peer connection 37

3.5.4 Peer-to-peer Protocol designed for ITU-PRP ... 39

3.6 Data Transmission .. 42

4. ITU-PRP FRAMEWORK IMPLEMENTATION ... 45
4.1 ITU-PRP Web Application .. 45
4.2 Parallel Programming Library .. 48

4.2.1 Content of ParallelPatternFramework.jar library file................................ 48
4.2.2 Implementation guidelines for developers .. 50

x

5. EXPERIMENTAL RESULTS .. 53
6. CONCLUSION ... 59
REFERENCES ... 61

APPENDICES .. 63
DEPLOYMENT OF ITU-PRP ... 65
SOURCES AND DEVELOPMENT ENVIRONMENT SETUP 67

CURRICULUM VITA ... 69

xi

ABBREVIATIONS

PRP : Parallel Running Platform

TP : Task Plan

NAT : Network Address Translation

ITU : Istanbul Technical University

xii

xiii

LIST OF TABLES

Page

Table 3.1: Record on Host Registry. ... 19
Table 3.2: Entry on Task Repository. ... 25
Table 3.3: Task plan example. .. 28
Table 5.1 : Hosts used for experimental results. ... 54
Table 5.2 : SHA-256 processing times. .. 55

xiv

xv

LIST OF FIGURES

Page

Figure 1.1 : ITU-PRP framework services.. 2
Figure 2.1 : Javelin – Steps involved for applet execution [9]. 9
Figure 2.2 : Interaction among JAVM entities [11] .. 11
Figure 3.1 : ITU-PRP architecture. ... 15
Figure 3.2 : ITU-PRP design. ... 16
Figure 3.3 : Host registration. ... 20
Figure 3.4 : Host unregistration. ... 21
Figure 3.5 : Host list on Host Registry. .. 21
Figure 3.6 : Ping Pong mechanism. .. 22
Figure 3.7 : Host Registry response status. ... 23
Figure 3.8 : Client and host state transitions. .. 23
Figure 3.9 : Activity during host resource request. ... 26
Figure 3.10 : Parallel task execution steps. ... 30
Figure 3.11 : Approach 1 suggestion for communication protocol. 34
Figure 3.12 : Approach 2 suggestion for communication protocol. 35
Figure 3.13 : NAT private to public IP translation. .. 36
Figure 3.14 : Peer-to-peer connection failure of hosts behind different NATs. 37
Figure 3.15 : UDP Hole Punching technique [12]. ... 39
Figure 3.16 : Peer-to-peer connection steps. ... 41
Figure 3.17 : ITU-PRP peer-to-peer network. .. 42
Figure 3.18 : ITU-PRP Peer-to-peer network. .. 42
Figure 3.19 : ITU-PRP generic message. .. 43
Figure 4.1 : ITU PRP Web application logon screen. ... 45
Figure 4.2 : Java Applet on ITU PRP Web application. ... 46
Figure 4.3 : Task execution in ITU PRP Web application.. 47
Figure 4.4 : Actual hosts connected to system. ... 47
Figure 4.5 : User statistics. .. 47
Figure 4.6 : Task execution logs ... 48
Figure 4.7 : Parallel Programming Library implementation. 50
Figure 4.8 : Main Task implementation example. .. 51
Figure 4.9 : Sub Task implementation example. .. 51
Figure 5.1 : Performance gain achieved on experiments. ... 56

xvi

xvii

ITU-PRP: PARALLEL RUNNING PLATFOM, A PARALLEL

PROGRAMMING FRAMEWORK FOR JAVA DEVELOPERS

SUMMARY

During past decades, developments on Web technologies have brought various new

concepts on Distributed and Parallel Computing systems. Increased Internet usage

along with evolved capabilities of high level programming technologies, leaded to

new concepts such as Multi-Host parallel computing, task distribution, peer-to-peer

programming, etc. Especially, Java as the leading programming environment used on

Internet basis systems, attracted the attention of Parallel Programming Studies, which

resulted with the invention of many Parallel Programming Frameworks. The lack of

native Parallel Programming Frameworks to provide High-Scale Parallel systems,

oriented parallel programmers to develop various solutions. Also, multi-host parallel

systems have become reasonable alternative solutions over multi-core parallel

systems.

The System built in these study aims providing a Parallel Programming Framework

for Java Developers on which they can adapt their sequential application code to

operate on a heterogeneous multi-host parallel environment. Developers would

implement parallel models, by the help of an API Library provided under framework.

Produced parallel applications would be submitted to a middleware called Parallel

Running Platform (PRP), on which parallel resources for parallel processing are

being organized and performed. The middleware creates Task Plans (TP) according

to application’s parallel model, assigns best available resource hosts, in order to

perform fast parallel processing. Task Plans will be created dynamically in real time

according to resources actual utilization status or availability, instead of

predefined/preconfigured task plans. ITU-PRP achieves better efficiency on parallel

processing over big data sets and distributes divided base data to multiple hosts to be

operated by Coarse-Grained parallelism. According to this model distributed parallel

tasks would operate independently with minimal interaction until processing ends.

xviii

xix

ITU-PRP: PARALEL İŞLEM PLATFORMU, JAVA İÇİN PARALEL

PROGRAMLAMA ARACI

ÖZET

Son yıllarda, Web teknolojilerinin kaydettiği gelişim ile birlikte Dağıtık ve Paralel

İşleme sistemlerinde yeni kavramlar ortaya çıkmıştır. Artan İnternet kullanımı ve

gelişen üst seviye programlama dilleri sayesinde, Mutli-Host Parallel Computing,

Task Distribution, Peer-to-peer programlama gibi yeni kavramlar ortaya çıkmıştır.

Özellikle İnternet tabanlı sistemlerin geliştirilmesinde öncü geliştrme ortamlarından

biri olan Java, Paralel Programlama ile ilgili çalışmalarda yerini almaya başlayıp, çok

sayıda Paralel Programlama arayüzünün ortaya çıkmasında rol oynamıştır. İlkel

paralel programlama dillerinin kapsam genişletme ile ilgili yaşanan eksiklikler,

paralel programlama uzmanlarının değişik çözümler üzerinde çalışmalarına yol

açmıştır. Ayrıca, Multi-Host paralel sistemler Multi-Core (çok çekirdekli) paralel

sistemler karşısında alternatif çözüm olarak değerlendirilmeye başlamıştır.

Tez kapsaminda tasarlanan sistem, Java Geliştiricilerine uygulamalarını heterojen ve

Multi-Host çalışan bir paralel paralel platforma taşıyabilecekleri bir framework

sunmayi amaçlamaktadır. Bu sisteme göre geliştirilen uygulamalar Multi-Host bir

ortamda paralel çalışarak performans iyileştirme sağlanacaktır. Framework

kapsamında sunulan bir API kütüphanesi, paralel modellerin gerçeklenmesini

sağlayacaktır. Üretilen paralel uygulamalar Parallel Running Platform (PRP) olarak

adlandırılan bir ara katmana yüklenerek kayıt altına alınacaktır. İlgili ara katman

paralel işlemlerin gerçeklenebilmesi adına kaynak yönetimi ve tahsis etme süreçlerini

gerçekleştirmektedir. Bu ara katman, uygulamanın paralel modeline göre hızlı paralel

işlem gerçekleştirebilme adına, eldeki en müsait durumdaki kaynak Host’lardan

oluşan bir Görev Planı (Task Plan) oluşturmaktadır. Görev Planı önceden belirlenmiş

bir plandan ziyade, kaynakların anlık durum ve müsaitliğine dikkate alınarak gerçek

zamanda dinamik olarak oluşturulacaktır. ITU-PRP sistemi esas performans artışını

büyük data kümelerini bölerek çoklu hostlara dağıtıp işleyerek elde etmektedir.

Coarse-Grained Parallelism olarak adlandırılan bu modele göre dağıtılmış paralel

görevler birbirinden bağımsız bir şekilde işlem sonuçlanana kadar işlem

yapacaklardır.

ITU-PRP paralel uygulama geliştiricilerine hem paralel çalışan uygulama

geliştirebilecekleri hem de uygulamaların paralel çalışmasını sağlayan ortak bir

çözüm sunmacaktır. ITU-PRP paralel yazılım geliştirme sürecinin basit, kolayca

gerçeklenebileceği bir kütüphane sağlamayı amaçlamaktadır. İlgili kütüphane

kullanıcılara bir JAR paketi halinde sunulmaktadır. İlgili kütüphane, implementasyon

için gerekli arayüzlerden oluşmaktadır, ki bu arayüzler sıralı kodlamaya benzeyen

özerk paralel görevler yazmaya imkan tanıyacaktır. Ek olarak, ITU-PRP paralel

işleme için gerekli kaynakları hazırlayan bir ara katman sağlamaktadır. Task

Execution Middleware olarak isimlendirilen bu ara katman sistemdeki değişken

şartları göz önüne alarak dinamik kaynaklar sağlayacaktır.

xx

Paralel Programlama Framework’ü paralel işlemleri soyutlayarak kullanıcıdan

gizlemektedir. Multi-Host paralel işlemler de yine kullanıcılara yansıtılmayan paralel

işlemlerdir. Kullanıcı parallel görevlerin dağıdımı, çalıştırılması, paralel görevlerin

birleştirilmesi, sonuç toplam, senkronizasyon ve bağlantı konularıula

uğraşmayacaktır. Sadece uygulamaya ve gerçeklenen implementasyona ait bazı

parametre girişlerini yapacaktır. Kullanıcılar geliştirdikleri uygulamaları sisteme

yüklemektedirler. Sonrasında çalıştırma işlemlerini gelecekte yapacaklardır. Sisteme

yüklenen uygulamalar Task olarak adlandırılıp görev olarak değerlendirileceklerdir.

Kullanıcılar ITU-PRP sistemine kullanıcı bilgileriyle web tabanlı bir arayüz

üzerinden giriş yapmaktadırlar. Bu web uygulama kullanıcılara Task Execution

Middleware katmanının hizmetlerini sağlayacaktır. Yetkili kullanıcılar görev

işlemlerini başlatmakta, ayrıca sonuçları ilgili ekranlardan görüntüleyebilmektedirler.

ITU-PRP sistemi web tabanlı bir sistem olarak tasarlanmıştır. İlgili web sayfalarında

Java Applet teknolojisi kullanılarak Java eklentisi ve prosesi çalıştırılmaktadır ve

paralel işlemler bu proses içinde başlatılmaktadırlar. Sisteme giriş sonrası, yaratılan

applet prosesleri kullanıcıya ait lokal verileri toplayarak Task Execution Middleware

katmanına iletirler ve kayıt altında tutulurlar. İlgili Proses ve Thread’ler boşta

oldukları sürece kaynak Host olarak davranmaktadırlar ve görev ataması için hazırda

beklemektedirler. Kullanıcı görev talebinde bulunduğunda ise ilgili proses Client

olarak davranacaktır ve gerekli işlemleri yapacaktır.

ITU-PRP paralel çalıştırma kaynaklarının sağlanabilmesi için kullanıcılardan katkı

beklemektedir. ITU-PRP sistemine bağlı bütün kullanıcılar potansiyel kaynak

durumundadırlar. Sisteme bağlı Client’lar Host olarak kayıtlıdırlar, diğer

kullanıcılara görev işlem talepleri için yardımcı görevini yürütmektedirler.

Kullanımda olmadıkları süre içinde potansiyel kaynak durumunda kalacaklardır.

Birçok bilgisayarın çoğunlukla boşta olduğu, tüm kaynaklarını kullanmadığı

düşünüldüğünde, bu yaklaşım yüksek performans paralel uygulama gerçeklenmesi

için bir yöntem olarak düşünülmüştür.

Proje kapsamındaki Paralel Processing yöntemi Multi-Threaded task dağıtım

modeline göre gerçeklenmektedir. ITU-PRP tasarımı, bir ana görevin çok sayıdaki

alt görevi paralel bir döngü ile Host’lara dağıttığı, nesne yönelimli paralel

modellerden oluşmaktadır. Bu tasarıma göre alt görevler paralel işlenmektedir.

Sistemin nesne yönelimli olması, diğer ilkel paralel modellere göre bir artı olma

özelliği taşımaktadır.

ITU-PRP’nın veri paralelleştirme yaklaşımı kullanıcıya özelleştirilebilir bir yapı

sunma yönündedir. Veri dağıtımı işleminin alt sınıfa Object Serialization yapılarak

uygulanması kullanıcının veri paralelleştirme üzerinde kontrolünü sağlamaktadır.

Veri dağıtımın nesne bazlı olması, mesaj bazlı yapıya kıyasla kullanıcıya alt görev

veri tiplerini belirlemesi açısından esneklik sağlamaktadır.

ITU-PRP için tasaralanan peer-to-peer protokolü proje kapsamını belirleyen önemli

bir unsur olmuştur. İnternet üzerinde ağ erişim kısıtlamaları göz önüne alındığında

farklı peer’lerin birbirlerine bağlanması zorlayıcı bir çalışma olmuştur ve bu konuda

derin literatür araştırması yapılmıştır. 3 farklı NAT traversal tekniği olarak bilinen

Relaying, Connection Reversal ve UDP Hole Punch Teknikleri kombine edilip

internet üerindeki farklı Host’ların birbirine bağlanması sağlanmıştır. Yapılan

tasarıma göre, bütün Host’lar birbirine bağlanacaktır ve bağlantılarını sisteme bağlı

oldukları sürece aktif tutacaklardır. Ek olarak, Peer gruplama kavramı bölgesel host

gruplarının oluşturmayı veya belirli görev gruplarının oluşturulabilmeyi

xxi

amçlamaktadır. Ancak, bu uygulama sistemde kullanıcı sayısının artmasıyla daha

anlamlı olacaktır, gelecekte yapılmak üzere şimdilik kapsam dışında bırakılmıştır.

Deney sonuçları minimal sayıda kaynak Host’la yapılan Paralel Uygulama

çalıştırmanın bir performans artışı sağlamadığını gstermiştir. Ancak, kaynak Host

sayısının artmasıyla birlikte deney sonuçlarının istenilen performans artışını

sağladığı gözlemlenmiştir. Ek olarak, kaynak sayısı attıkça ağ iletişim gecikmelerinin

etkisinin azaldığını göstermiştir. Ayrıca, Sequential çalıştırılma süreleri nispeten

yüksek olan uygulamaların ITU-PRP’ye uyarlanmasının daha olumlu performans

iyileştirme sağlayacağı görülmüştür.

Deneyler sırasında en yüksek Client-to-Host bağlantı gecikmesi 360ms olarak

hesaplanmıştır. Ancak, gerçek Dünya’daki ağ iletişim sorunları göz önüne

alındığında bu değerin daha yüksek olabileceği düşünülmektedir. Prensip olarak 2

saniye üzerinde sequential çalıştırma süresi olan uygulamaların ITU-PRP’nin paralel

kalıplarına uyarlanması önerilmektedir. Çalıştırma süresi arttıkça, ITU-PRP’ye

üzerinde başarım artışı daha fazla beklenmektedir. Her ne kadar ITU-PRP bir paralel

programlama aracı olsa da, performans için diğer paralel programlama araçlarıyla

yarışmamaktadır. ITU-PRP’nin asıl amacı global bir ortamda yüksek başarımlı

uygulamaların çalıştırılabileceği Multi-Host ve heterojen bir sistem sağlamaktır.

Ayrıca, kullanıcılar için bireysel işemci kaynaklarının global işlemci kaynağına

dönüştürülmesi amaçlanmaktadır.

Farklı Paralel programalama framework’lerinin performans karşılaştırmalarının

yapılması için kullanılan Benchmark araçlarının ITU-PRP’nin performans ölçümleri

için kullanılabilmesi sözkonusu olamamaktadır. Bunun nedeni heterojen ve Multi-

Host çalışan ve global peer-to-peer protokolüyle çalışan farklı karakterli bir sistem

olmasıdır. Ayrıca, üst kısımda da bahsedildiği üzere, ITU-PRP’nin amacı başka

ürünlerin performansları ile yarışmak değil, farklı karakteristikleri olan özgün bir

sistem sağlayarak, maliyetsiz, yüksek başarımlı ve global bir sistem sağlamaktır.

Daha etkin bir sistem ancak yeterli sayıda kullanıcının katılımıyla sağlanabilecektir.

Bu amaçla bir kullanıcı katılım ödüllendirme sistemi kurulacaktır. Kullanıcı

sayılarının artmasıyla birlikte daha gerçekçi performans ölçümleri yapılım geleceğe

yönelik sonuçlar incelenecektir ve ona göre sistemde iyileştirmeler yapılacaktır.

xxii

 1

1. INTRODUCTION

ITU-PRP provides an all-in-one solution for Parallel Programmers, with a Parallel

Programming Framework and a Task Execution Middleware within a single system.

ITU-PRP intends a simple way for Parallel Application Development, which makes

Parallel Code easy to implement through a Java Library released as JAR Package.

The regarded library contains implementable interfaces, which would generate

autonomous parallel tasks written as sequential code blocks. Parallel tasks are

operated according to Loop Parallelism and Divide and Conquer parallel models [1].

Additionally, ITU-PRP’s distributed middleware provides resources for parallel

processing and ensures execution of tasks. Computing resources are assigned

dynamically according to System’s real time conditions.

Parallel Programming Framework mostly encapsulates parallel operations and

provides abstraction to developer. Multi-Host parallel operations are handled by the

encapsulated package. Developer will not deal with Parallel Task Distribution, Task

Execution, Task Reunification, Result Collection, Synchronization and Connection

issues. Only some initial parameters regarding to task execution are required to be set

as configuration on the implemented code. User will configure his application on the

regarded platform with parameters specified for parallel task execution. Any user

submits its produced applications for future task execution, request for task execution

and collect execution results. Submitted applications are treated as tasks in the

system, so once an application is submitted to system, it will be named as Task.

Users with their accounts for ITU-PRP System will connect to system through a web

based graphical user interface. This web application would serve users for their

operations on ITU-PRP System, especially on Task Execution Middleware.

Authenticated user initializes task execution and views the results of parallel

processing through a specified screen.

ITU-PRP system is designed as a web based system, which mainly utilizes Java

Based Applet technology and does parallel processing operations on user’s Web

Browser. Prior to system log on, initialized Applets processes gather user

 2

ITU-PRP

Parallel Programming Framework

JAR Library

Parallel Application Development

Task Execution Middleware

User Account / Log on

Produced Parallel App. Application Submission

Task Execution Request

Main Task Execution

Task Plan Creation

Main Task Initialization

Sub Task Execution on Parallel

Task Distribution

Execution Result Execution Result

ITU-PRP Web Application

information and are registered to Task Execution Middleware. The Process and

Threads created on user’s process behave as hosts during their idle states and wait

assignments of a task execution. If user requests for Task Execution, main process

will behave as client and do operations accordingly.

ITU-PRP expects contribution in terms of execution resources from any user using

the platform. Any user logged in to ITU-PRP will be considered as potential

resource. Connected clients are registered as hosts as well, in order to make possible

serving other Task Execution Requestor clients. Hosts will be available as potential

computational resources during their idle times. Considering that many computers

are mostly idle, the approach of this research has been utilization of non-used

executional power in order to achieve high performance parallel applications.

ITU-PRP System provides Parallel Programming Framework and Task Execution

Middleware. Figure 1.1 illustrates operations within these two main entities.

Figure 1.1 : ITU-PRP framework services.

Code parallelization for clients is achieved via a JAR Library provided to Java

developers. This library would function as a framework implementable on

development tools like Eclipse and etc.

 3

1.1 Parallel Programming Framework

Parallel Programming Framework basically provides parallel code blocks for

application developers. User adapts his application code to patterns specified by this

framework. Provided JAR Package is named as Parallel Programming Library,

which is implementable by the user according to specifications on Implementation

Guidelines. The produced application will be uploaded to ITU-PRP Web

Application, which is a unit of Task Execution Middleware. Besides the

implementation, execution of Main Task, Parallelized Sub Task Execution and result

generation are background operations hidden from the user.

The essential concerns of Application Framework can be listed as follows:

 Easy Implementation: Provide an easy to implement Parallel Programming

Library to users. User’s application is developed as sequential code blocks,

but operate on parallel.

 Simplicity: Framework aims simplicity for parallel developers not being too

much familiar with parallel programming.

 Scalability: Task executions running parallel on 2 hosts or on 10 hosts would

not make any difference on implementation. This would be a configuration

issue on Task Execution Middleware.

 Performance: Even performance is much more a concern of Task Execution

Middleware, Application Framework also has some optimizations for getting

better results during executions. Especially data sizes during task distribution

are kept in small pieces. Caching mechanism of Java during applet execution

also makes application execution faster after first time execution. Peer-to-peer

communication instead of Centralized communication also optimizes the

performance.

1.2 Task Execution Middleware

Applications developed on Parallel Programming Framework are uploaded to Task

Execution Middleware. Once an Application is submitted to Parallel Running

Framework, it becomes a registered application on the repository. Authorized users

which have credentials are able to request execution for their application. Task

 4

execution requests are processed by the Broker and responded to client with a Task

Execution Plan with assigned hosts and peers providing multi-host parallel

execution. As soon as the Task Execution Plan is prepared, Broker calls the main

task of the application executed on client’s Java Applet process. Client’s main task

will distribute parameter information to assigned host’s by communicating on peer-

to-peer protocol. This is the Task Distribution phase specified by Task Execution

Middleware but operated by Parallel Programming Framework. After the finalization

of task execution, the main task will respond with an execution result to the user.

The essential concerns of Execution Framework:

 Security: Task repository is controlled under a permission mechanism. The

user is able to execute only its own applications, check the results of its own

task execution requests. Other users serving as hosts during their idle times

would notice activity on their Java Applet processes, but calculation data and

results are hided, unless the owner of application has put some output logs

during development of it.

 Performance: Broker as coordinator of Task Execution should prepare such

Task Execution Plans that it should predict the behavior of hosts in terms of

performance and network delays during task distributions. Task Repository

has got complexity information about the application. Also information

regarding to available hosts are available on Host Registry. IP Addresses,

Country, City, Location Info, Response Time, intensity, CPU and

Configuration information are registered and updated initially and

periodically. Broker does consider both information regarding to Applications

and hosts, in order to prepare the best available Task Execution Plan to the

client.

 System Learning: It’s mentioned that information kept on Host Registry and

Task Registry will guide the Broker to prepare the best possible task plan. But

on some cases the prepared Task Plan may work better or worse than

expected. System will also keep classified statistical information like

execution time, host based individual execution times, network latency times

or host based cooperation times. Multiple occurrences of executions will

more valuable information on Task Execution performances. After multiple

 5

executions of a Task, System will prioritize statistical information over Host

Registry and Task Registry during Task Execution Plan creation.

 6

 7

2. RELATED WORK AND MOTIVATION

Java with its capability in developing Client-Server, Internet Based and Peer-to-peer

application systems has been widespread in past few years. Growth of Java attracted

the attention of Parallel Programming community to develop Parallel Programming

frameworks adaptable in Java. The tendency of making Java programs to do parallel

operations, aimed taking the advantage of Java capabilities, create Internet Based

Parallel Applications easily. Parallel API Interfaces like Message Passing Interface

(MPI), Parallel Virtual Machine (PVM), OpenMP [4] implementable in native

languages (C/C++, Fortran) were lacking on wide range distribution over internet.

On the other hand, also Java community needing for capability of Parallel

Computing, in order to benefit computational resources over internet.

Several parallel programming API interfaces have shown up during recent few years.

Mainly, existing parallel programming API interfaces are categorized in 3 main

groups:

 API Interfaces Derived From Native Interfaces

 API Interfaces derived from Java native thread models

 Java Applet Based Parallel Systems

2.1 API Interfaces Derived From Native Interfaces

This category involves API interfaces derived from native C/C++, Fortran interfaces

like MPI [4], PVM. Wrappers over MPI, PVM implement directives, provide

adapted implementations. jPVM, MPJ-Express [5], Java MPI [6] are some of the

existing ones.

API Interfaces provided under this category may face some issues regarding to

heterogeneous platforms. Due to implementations requiring the explicit use of

C/C++ or Fortran native libraries, platform dependency may be an issue or custom

configurations may be required to run the same implementations on different

 8

platforms. This argument is considered against Java’s platform independence feature.

Also, error handling and security may be another issue due to lack of control over

Native methods.

2.2 API Interfaces Derived From Java Jative Thread Models

This category involves interface models developed from Java native Threads and

communication protocols provided by Java. JOMP and JaMP [7] API interfaces have

their directives adopted from OpenMP. JADE (Java Agent Development

Framework) [8] as another specific Framework implemented on Java, provides a

framework for Parallel Processing. It provides implementation of multi-agent

systems through a middleware specified by FIPA. FIPA is the organization of

standards for agents and multi-agent systems. Users create Agents, which will be

able to run on remote hosts. Agents are task entities able to travel between hosts, do

autonomus operations and get the results back to the initiator hosts. This

methodology is especially suitable for Coarse-Grained Parallelism.

2.3 Java Applet Based Parallel Systems

This category involves Internet Based technologies utilized to use distributed parallel

resources. Java Applets are application structures running on Browser. Embedded

Java Applets on Web based Applications, create processes running on client

computers. Applets are downloaded from the regarded URL to browser’s cache

during first initialization and will behave like applications installed on client’s

computer. Systems like Javelin [9][10], JAVM [11] implement Java Applets in order

to use computational resource on a wide range network over Internet.

The drawbacks of using Java Applet based Parallel Systems may be limitations and

security constraints on client computers. However, scalability is considered the main

benefit of utilization of Java Applets.

2.3.1 Javelin

Javelin as a Java-Based parallel Infrastructure, provides a Java Applet based

architecture for parallel computing. Javelin has 3 main entities of design for parallel

processing, clients, Hosts and Brokers. Client is a process seeking computing

resources, Host is a process offering computing resources and the Broker coordinates

 9

computing resources for clients. Client opens a URL on the Web Browser, on which

an applet is created on client’s computer. Applet initializes listener for tasks

incoming from the broker. Client and Host may transform to each other, depending

on activity, in case when client is idle it transforms to a host waiting for incoming

tasks from broker. During task assignments, broker sends URL of the Applet process

to be executed on host computer. Check Figure 2.1 for steps involved during Applet

execution cycle.

Figure 2.1 : Javelin – Steps involved for applet execution [9].

According to applet execution scenario on Figure 2.1, Javelin goes through this

steps:

1. Client uploads the applet to HTTP Server.

2. Client registers the corresponding URL with Broker.

3. Host getting task notification retrieves the URL for execution.

4. Host downloads applet from server and makes the execution.

5. Host stores the result to server after execution.

6. Client gets the result of execution.

According to the opinion of authors in [9], server is required to function as a gateway

for communicating client with hosts. This is a consequence of Applet security, of

which its stated that applet cannot open a network connection to any computer other

than the server where applet is downloaded. That’s the reason why client does not

communicate directly the listeners on hosts, instead Broker notifies Hosts for task

assignment and sends the URL of the executable task in Applet form. All

 10

communication is routed through server, which is a potential single server a

bottleneck. In order to minimize bottleneck in centralized server communication,

applets communicate Broker based on HTTP connection to server. Applet connects

to servlets implemented on the broker.

A newer version of Javelin, Javelin 2.0 [10] has some optimization compared with

Javelin [9]. For instance multiple Brokers are utilized in order to achieve scalability

and to prevent single server bottleneck. On the other hand host availability graph is

sent to all hosts on response of the Broker. Hosts have information about other

Brokers in cases when they ask for execution resource in case becoming clients.

Mentioned graph consists state information on status of hosts and the status of task

execution. The regarded graph is sent as multicast messages to hosts.

2.3.2 JAVM

JAVM (Java Astra Virtual Machine) [11] is an Internet-based parallel computing

framework designed with pure Java implementation. JAVM is implementable on

standalone Java applications. JAVM aims connecting users over Internet, which may

be available as computational power. JAVM considers computational power as pool

of machines, which are idle most of the time, offering more computational power

than what a central parallel supercomputer can offer. JAVM involves 2 groups of

users, the programmers who develop the parallel applications and the volunteers who

contribute their machines for the computations.

Scenario of JAVM System interaction between entities is represented on Figure 2.2.

 11

Figure 2.2 : Interaction among JAVM entities [11].

According to interaction scenario represented on Figure 2.3:

1. Coordinator entity registers itself to Director

2. Director responds to Coordinators registration request

3. Volunteer during initializing itself, asks director for active coordinators.

4. Director gives back information of active coordinates.

5. Volunteer selects one of the coordinators and provides its hardware

information as computational resource information.

6. Coordinator assigns a Volunteer ID to the volunteer and informs the

Volunteer.

7. Client asks director for available coordinators during start up.

8. Director provides active coordinators.

9. Client will select a coordinator and ask for Volunteers for computational

purposes.

10. Coordinator will check available volunteers and will inform any assigned

volunteers with the session information of client.

11. Volunteers will acknowledge the coordinator for assignment.

12. Coordinator will send the list of assigned volunteers to client.

13. Client will send task assignments to Volunteers in terms of application to run.

14. Volunteer will run the task and send the execution result to the client.

 12

According to the opinion of the authors on [11], the design of the JAVM handles

only master-slave style of parallelism. This implies that tasks executed on

participating volunteers, would not be able to communicate with each other during

computation. This means that coarse-grained parallel computing model is being

implemented. However, the authors of [11] have mentioned on further enhanced to

support peer-to-peer communications among volunteers and parallel applications

based on tree computing model.

2.4 Motivation

As stated on the beginning of this section, Internet based parallel computing systems

have become trending studies among the community. What arguments motivated us

for developing ITU-PRP, in common with existing systems are as follows:

 Various Internet based Parallel Programming Frameworks implemented on

Java, have the main idea of benefitting hosts as potential computational

power during their idle states, providing computational power during their

request for parallel execution. Considering that hosts would be idle on the

most of their lifecycle, which is reasonable for using as computational power.

 Java applet is another useful model utilized for running tasks on distributed

hosts. Applets are downloadable form of applications, which are initialized on

web browsers of the user and run on the users computer just as described on

section 2.2.

 Java as platform independent environment will also make possible make the

parallel applications run on any platform with the philosophy of ”write once,

run anywhere” [11].

 Another concern of such Frameworks is to provide opportunity of

implementing parallel applications easily, with the concept of Automatic

Parallelization. User should be able to parallelize its sequential code through

Parallel Framework’s capability.

The arguments that motivated and made us excited about ITU-PRP study, differently

from other existing systems are:

 13

 ITU-PRP’s model of execution involves assigned computational hosts to

communicate each other via peer-to-peer protocol during Parallel task

execution, instead of a centralized Server coordinating communication traffic.

Our design of peer-to-peer principal of communicating hosts with each other

optimizes performance during Parallel Computing operations.

 Adaptability for heterogeneous and scalable platforms

 A low-cost global processing power

 Automatic parallelization is implemented via an object-oriented pattern

prepared for parallelization.

 ITU-PRP offers implementations both for applet based and standalone

applications.

 Java Applet security restrictions regarding to peer-to-peer communication

may be overcome by doing policy configuration on Java.

 Broker as the coordinator entity makes real time decision for computational

resource assignment by a special scoring system, which uses value factors

such as host IP address locations, response times, declared computational

power and retrieved computational power.

 Priority and special scoring for contributor clients named as Volunteer

Reward System and additional scoring on Statistical Performance Records for

recent executions.

 14

 15

3. ITU-PRP ARCHITECTURE AND DESIGN

ITU-PRP System is designed with the goal to provide users an all-in-one platform

with separate self-functioning components integrated for a single purpose, realizing

high performance parallel execution by easy implementation. ITU-PRP as an

integrated Web Based System is implemented under layered architecture with several

components. Figure 3.1 illustrates components and the technologies used for

implementation within layered architecture.

Figure 3.1 : ITU-PRP architecture.

The key point for creating the regarded architecture was selection of open source and

standard technologies. Especially, various Java technologies such as Spring

Framework, Hibernate, JSF, PrimeFaces, Java Threads, Java Socket programming

methods and Java Applets are utilized for realization of the Web Based integrated

system. MySQL was also utilized as the Relational Database tool, which is also an

open source product. Hibernate is selected as the component on on data access layer

 16

in order to benefit its Object-Relational Mapping feature which makes possible

mapping MySQL tables to Java classes. Java Spring Framework was utilized due to

its features, which make accessing data access layer from upper layers easy. Front

end of ITU-PRP Web Application is implemented by JSF framework and

PrimeFaces component library. Broker, which is one of the key entities within the

system, is implemented with Java’s TCP/UDP Socket components and Thread based

operations are realized by Java standard Threading libraries. Client side operations

which consist Presentation Layer are realized by Java Applet technology.

Server-Side Architecture is hosted and deployed on Apache Tomcat Web Server

hosted on a globally accessible Server. Client-Side architecture works on Web

Browser, usable without installing any additional application on client or host’s

computer, which totally fits ITU-PRP’s vision of wide usage and scalability.

Application will work on any Java enabled Web Browser which is active in default,

unless user or any security application disables Java Applets. These structure aims

the system to make widely used without special requirements.

ITU-PRP consists three main entities in terms of system design, which are shown on

the diagram in Figure 3.2:

 Clients

 Hosts

 Broker

Figure 3.2 : ITU-PRP design.

Broker, Client and Hosts operate within an integrated Web Based System, each one

with its own role. The system will assign a role to each user that connects the system.

Initially, user will be redirected to a web based application, on which a Java Applet

will be initialized and will create a process and a set of threads for parallel processing

CLIENT

BROKER
CLIENT

CLIENT

CLIENT

HOST

HOST

HOST

HOST
REGISTRY

HOST

 17

interaction. Broker as the coordinator entity, manages hosts and client activities.

Broker is implemented as a set of Java Threads with active TCP socket connections

to client and hosts. On the other hand clients and hosts are implemented through Java

Applet technology. In order to make Java Applet to function, some security

configuration on client’s java configuration files is required. Java.policy file set up is

the most known security policy configurations for Java Applets. Detailed

configuration is explained on appendix.

3.1 Client

Application requesting Parallel execution will send parameters to Broker, which may

be usable as decisive information about Task Planning. Client getting Task Plan as

response will through the regarded parts of application code, divide data to fractions,

send to hosts which are interconnected as P2P. Client creates Threads as subtasks,

which will wait for the calculation results from other hosts. Distributed tasks sent to

hosts are collected and reunited on Threads created during task distribution. Clients

and hosts communicate with P2P sockets. In order to make less overhead

interchanged data streams are kept as small byte buffers.

3.2 Host

Hosts are registered on Host Registry during the initial connection to System. IP

Addresses, Country, City, Location Info, Response Time, intensity, CPU and

Configuration information of hosts are saved on Host Registry in order to be

considered for decision purposes during Task Plan creation phase. This information

will be retrieved by Broker and saved to Host Registry, in this case there host will

not be sending its information to Broker which will reduce overhead on host.

3.3 Broker

Serves clients requesting parallel operation by providing assigned resources and task

plans. Clients complete their initialization by creating subscription requests to

Broker. Incoming connection requests from clients are processed, by creating a

record for each of them. Records are added to Host Registry, which is characterized

as collection of available hosts for Task Executor clients. Records on Host Registry

 18

may behave both as client or hosts depending on the activity status of the client. If a

client is on the state of requesting an execution plan, acts as client. On the other

hand, if any subscribed client is on idle state, it acts as host available for Parallel

Execution resource for other clients. Client connecting to Broker during the

initialization is registered as Host-to-Host Registry. Also, hosts leaving the system

are removed from Host Registry. Clients requesting parallel resource from Broker,

should have provided required parameters about application’s complexity, data size,

its own resource power and parallel task model, so that Broker may decide on

assigned resources. Sufficient number of qualified hosts according to the

requirements with given parameters are provided to requesting client as Task Plan.

The initial execution of the Application running on client, will be followed by the

distribution of tasks to hosts on the regarded parts of the application code, then

execution results will be collected on initial client. Client and hosts will do task

distribution and result collection operations through a special P2P messaging

protocol designed for this system. Broker may refuse request of client, if it decides

that a Multi-Processor or Sequential execution would be more optimal rather than the

Multi-Host task execution. This usually may occur on the cases when clients own

resource power would make execution more optimal rather than a Multi-Host task

execution or there are no sufficient available host resources. Broker is implemented

as a Java Thread listening to incoming TCP socket connections from Clients/Hosts

and keeps active socket connections for interactions during host activities.

3.3.1 Host registry

Registered hosts on Host Registry go through some information retrieval phases

during their lifetime. This is achieved by some threads, which collect periodic

information.

 Broker adds host name information generated by the host. This would be hash

information of the host while doing operations on the Broker.

 Broker registers the host session for the user name which is logged on to the

System

 Broker retrieves IP address of hosts and clients connected.

 19

 Broker sends tiny TCP/IP messages to hosts on periodic intervals, so that

potential response times of resource hosts can be calculated. A kind of Ping

and Pong messaging are sent in order to calculate response times..

 Based on Host’s registered IP numbers Country, City, Region,

Longitude/Latitude, Time information is collected from a third party IP

Information Service provider. Check below URL for information about IP

Information provider.

 http://api.ipinfodb.com/v3/ip-

city/?key=24e8ee217d936586d72aa698e044c75ec56300801da99373def22955b76b8468&ip

=78.180.100.160&format=xml

 Information about host’s hardware is sent by host itself. Free memory and

number of processors are registered as host hardware information to the

Broker.

Check Data Structure of a Record on Host Registry on Table 3.1.

Information Explanation Example

Host Name This information is generated

by the Host and sent to Broker

during Host registration

26951e56-3b18-4efd-

82de-ef2c3f339b8d

User User Name of the Client or

Host

genericuser

IP Address Broker Retrieves the IP

Address of the Host doing the

registration

127.0.0.1

Country Got from IP Address

City Got from IP Address

Lattitude / Longitude Got from IP Address

Time Zone Got from IP Address

Response Time Renewed Periodically through

PING / PONG messages

1 ms

Free Memory Free memory declared by Host 111720208 (Byte)

Available Processors Available Processor count

declared by Host

4 (core)

Active Broker switches the Host to

Client or Client to Host

depending on the active role of

Host

true/false

Table 3.1: Record on Host Registry.

 20

3.3.2 Host registry operations on Broker

Broker accepts host registration and host unregistration requests from clients and

updates Host Registry accordingly. A client sends a registration request to the Broker

as soon as the Java Applet is initialized on the client computer and the initial process

is created. The Broker will create a host instance and register to mapped list on Host

Registry according to the sequence diagram in Figure 3.3.

Figure 3.3 : Host registration.

Unregistration of hosts is another operation performed by Broker in order to keep

Host Registry up-to-date for task assignment operations. Client Applet initiates

Unregister host operation during destroy event of Applet, which is triggered prior

applet process ending. Check Figure 3.4 for the sequence of operation performed

during unregister host operation.

 21

Figure 3.4 : Host unregistration.

List of available hosts is updated frequently and considered as the list of potential

resource hosts for task assignments. A snapshot of Host Registry logged by the

Broker’s Application Server during different phases of operations would as on Figure

3.5.

Figure 3.5 : Host list on Host Registry.

3.3.3 Broker-to-Host Ping Pong messages

Broker updates information regarding to hosts periodically and modifies them on

Host Registry. Response Time is the key information on this point. Broker sends

special PING messages to any host on the Host Registry and expects a special type of

message called as PONG message. Host Listener Thread on the host listens for

incoming Ping messages from Broker anytime and responds with a Pong message

accordingly. The interval between Ping and Pong messages gives the response time

of communication between Broker and host.

HOSTS

1. HOSTNAME:e3a08936-5a92-4d70-96f8-17b5b3f5cb2e, ACTIVE:true, RESPONSETIME:1

 Free Memory: 1516880, availableProcessors: 1

 IP:192.168.56.102, COUNTRY:- (-), CITY:- -, LATTITUDE:0, LONGITUDE:0, TIMEZONE:-

2. HOSTNAME:6b2ea425-4014-47f1-abae-52fe7b9192ae, ACTIVE:true, RESPONSETIME:1

 Free Memory: 110477432, availableProcessors: 4

 IP:127.0.0.1, COUNTRY:- (-), CITY:- -, LATTITUDE:0, LONGITUDE:0, TIMEZONE:-

 22

BROKER

H1
HOST REGISTRY

H2 H3
HOST1

HOST2

HOST3

1.1 Ping H1

1.2 H1 Pongs Broker in
5ms

2.1 Ping H2

2.2 H2 Pong Message Lost

3.1 Ping Message to H3 Lost

HOST4

4.1 Ping H4

4.2 Pong
declaring busy
state

H4

 xw

Figure 3.6 : Ping Pong mechanism.

As illustrated on Figure 3.6, Broker sends Ping messages to hosts in order to

calculate response times, check the availability and reachability of hosts via sockets

connected to host addresses. 4 different possible cases regarding to Ping Pong

messaging are being considered. Figure 3.6 shows examples of these 4 cases, on

which 4 hosts are registered to Host Registry, each one showing a different case.

1. Step 1.1 and 1.2 shows Broker sending Ping message to Host 1 and getting

Pong response from Host 1. Broker Updates response the entry of Host 1 on

Host Registry and set the response time to 5ms as on example on 1.2.

2. Broker sends Ping message to Host 2, according to Host 2 entry on Host

Registry. Example on Step 2.2 expresses the case when the Pong message not

able to be sent to Broker due to communication issues. Broker in this case

considers Host 2 as unavailable. In this case, Response Time is set as -1 and

active status as false.

3. Step 3.1 shows the case of which Broker is not able to send Ping message to

Host 3. In this case, Response Time is set as -1 and active status as false also.

4. Step 4.1 and 4.2 shows the case of which Broker gets the Pong feedback from

Host 4, but host Host 4 declares itself on busy state. In this case Broker sets

the busy parameter to true for Host Registry entry of Host 4.

 23

CLIENT
BUSY
HOST

AVAILABLE
HOST

Initial

Requested for Task
Execution Assigned to Serve

other Client

Completed Task
Execution

Go through Execution

Request Refused

As explained above, response status of host entries in Host Registry is updated

periodically. The actual status regarding to 4 cases above would be logged as on

Figure 3.7.

Figure 3.7 : Host Registry response status.

3.3.4 Client and host state transitions

A Java Applet process created on client computer may behave as client or host

depending on its activity status. Client User during its initialization connects Broker

and registers itself as host on the Host Registry. By default the client remains in

available host state unless the user requests for a Task Execution or serves as

execution resource to other requester clients. Check Figure 3.8 for illustrated state

transitions of client and host.

Figure 3.8 : Client and host state transitions.

Initially Java Applet is on available host. It may remain on Available state unless 2

possible cases trigger status change to client or busy host states. In case of user

selecting an application for execution the state of available host will be transformed

to client state. Another transition occurs when Broker assigns the host with a task for

serving some other client in terms of executional power. In this case available host

will be transformed to busy host state. Whenever the host completes its task process

will return to its original state, available host in this case. Also, client while doing

1- HOST1 -- active: true -- busy: false -- response time: 5 ms

2- HOST2 -- active: false -- busy: false -- response time: -1 ms

3- HOST3 -- active: false -- busy: false -- response time: -1 ms

4- HOST4 -- active: true -- busy: true -- response time: 7 ms

 24

parallel task execution it will be transformed to busy host during the execution and

return to original available host state on finalization.

3.4 Task Execution

Task execution involves a set of operations under Task Execution Middleware, in

order to complete parallel processing. Initially, users do request for execution of their

Applications. Then Broker would respond to requests with a set of assigned resource

hosts. The decision for assigning hosts is made according to a scoring mechanism

performed by the Broker. As a result, high rated available hosts are provided to

requestor clients. In the meantime client will be responsible for initiating the main

task, distributing the fragmented data to sub-tasks, sending divided data sets to each

task and collecting back after each hosts execution is finalized.

Data messaging between client and hosts are made via peer-to-peer protocol instead

of a centralized protocol. On the other hand, idle hosts, which are on the available

host state, have their dedicated Listener Threads, which wait for incoming Task

assignments. Both client and hosts download and cache packaged JAR application

from the Task Repository during execution. Java Reflection API, Remote Class

Loading and Object Serialization are the technologies implemented for these

purposes. Also, Remote Jar Packages executed under the Context of Java Applet, are

cached and executed from the local cache unless the JAR is modified or the Cache is

cleared.

3.4.1 Task (application) repository

Task Repository consists entries of uploaded parallel applications. Users, which have

developed their application implemented on Parallel Programming Library, submit

their JAR packaged applications on ITU-PRP Web application. Any submitted

application will be registered to Task Repository and will be available for execution

by the client and hosts. User submitting its application should provide parameter

information as on Table 3.2.

 25

Information Explanation Example

Application ID
A unique key assigned by the broker

from a sequence
37

Parallel Task Name

Task name defined by the user. This is

the identity name of the task on ITU-PRP

web application

Parallel Sums

Main Task Name

Main task name defined for Reflection

API to initialize the Main Task on Client

Applet. Main task involves Java

implementation of the main method

executed by Requestor Client.

com.itu.ppp.examples.Su

msWithFuture

Callable Task Name

Task name defined for Reflection API to

execute the implementation code of sub-

task on Host Applet. Callable Task

involves the implementation of the work

of the parallel task performed on the

assigned Host.

com.itu.ppp.examples.Su

m

Required Host Count

Suggested host count for parallel

processing. This value is defined by user,

but is not the fixed value, may be defined

by Broker on real time.

4

Parallel Task JAR

URL

The URL Path of the JAR application

uploaded by the user. The JAR name is

given by the user before the submission,

the path is defined by ITU-PRP system.

http://parallelpattern:80

80/AppletParallelProgI

mplementation/jars/Par

allelProgram.jar

Parallel Task Version

Revision number of the application

submitted. The version number should be

increased according to versioning

standards and defined by the user.

1.00

User

Is defined by the System with the

username of the Task uploader. User

information is defined for security

purposes, to set the owner of the Task

and restrict the usage for the

genericuser

3.4.2 Host resource request

Users requesting for host resources contact Broker Service to get Task Execution

Plan for parallel operation. User transforms its state from available host to client

during this operation. The set of activities performed during Host Resource Request

are shown on the Sequence Diagram illustrated on Figure 3.9.

Table 3.2: Entry on Task Repository.

 26

Figure 3.9 : Activity during host resource request.

At first step, client asks Broker to provide the required Task Execution Plan in order

to perform Parallel Processing. On the following steps, Broker will get the

information regarded to requested Application for execution from Task Repository.

This information is named as applicationInfo, which contains parameters like

required host count, main task name, callable task name, Task URL and so on.

Especially required host count an important information, on which Host Registry

assigns a number of assigned hosts resources according to this. Although required

host count is predefined, Broker may assign for a different number of hosts

depending on the actual available hosts the measured experimental results during

recent Task Executions.

Just after application Info retrieval, Broker contacts Host Registry and calls

createTaskPlan function, in which Host Registry will create a Task plan for the

requested Application with the required number of host resources. The combination

of the results for both application and host resources is called as Task Plan. Host

Registry decides for the assigned hosts from the list of available hosts. Host Registry

makes this decision by scoring available hosts and assigning the highest ones.

Assigned hosts will become resources to be provided to the client and their states

will be set as busy hosts during Parallel Processing lifecycle.

3.4.3 Scoring for host selection

Broker should provide the best possible resource in order to achieve worth parallel

performance over sequential performance. This is achieved by a scoring algorithm

performed by Host Registry. Information like client’s location, host’s location, Host

 27

Response Time, Free Memory and number of CPU cores are being considered. The

scoring algorithm is cost based, the hosts with lowest costs are being selected.

Geographical information of hosts, which involves Longitude and Latitude are

special prioritized parameters during Score calculation. Considering that Parallel

Processing is made by peer-to-peer protocol between client and hosts, the assumption

that hosts with close location to each other will spend less time on network latencies

may be a reasonable consideration. Longitude and Latitude information is effectively

used, unless location information is not be provided by IP Location information

provider. In case of missing location information, distance consideration will be

ignored. On the other hand, Host Response Time, which is the measured time

difference between Ping/Pong messages gives idea about response status of the host.

Other additional information regarding to host’s computational power, which are

Free Memory and number of CPU cores are other considerations during scoring

operation.

Below pseudo code shows the formula of cost calculation that express that distance

between client and hosts are calculated geometrically and the reference point is

client’s location. So the client should be ideally the center of selected hosts. Higher

CPU and Free Memory are the measures, which decrease the cost.

Pseudo Code:

The calculated cost values for each host are compared to each other and the lowest

ones are picked and provided for Task Plan creation. Additional scoring mechanisms,

like Volunteer Reward System and Statistical Performance Records for recent

executions are future works to be implemented on the scoring system.

function calculateCost (clientLongitude, clientLattitude, hostLattitude,

 hostLongitude, respTime, freeMem, cpu)

begin

 distance = sqrt(abs(hostLattitude-clientLattitude)^2 + abs(hostLongitude-

clientLongitude)^2);

 cost = respTime/10 + distance – cpu*(freeMem/1000000);

 return cost;

end

 28

3.4.4 Task plan

Task plan, which is generated as a response for Host Resource Request, is structured

from a list of assigned Resource Hosts for the requested task. Assigned hosts are

assumed to be on available host status and waiting for client’s contact in order to

perform their task. Length of resource host entries within Task Plan would be

number of Parallel CPU’s doing the Task Execution for Parallel Processing.

Table 3.3 gives an example of a Task Plan provided by Broker to client. Client Host

Address, Host Name, JAR URL, Callable Task Name information on its disposition.

Host Address contains IP Address and port number of resources host, to which client

will connect and notify for an execution request. Host name is the information used

for Task Execution Report, which will be sent as a performance feedback to Broker.

Also, host name is used for logging purposes. On the other hand, JAR URL and

Callable Task Name is sent to host to specify which application and function will be

executed by the host. Host’s Task Listener thread getting those parameters will know

that its assigned task is to run com.itu.ppp.examples.Sum task on the

http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgra

m.jar application as shown on the example on Table 3.3.

Resource

Host
Resource Detail

1

Host Address: 192.168.56.103:2049

Host Name: b4b45ff2-04e3-4af5-b1af-19d62d711807

JAR URL:
http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgram.jar

Callable Task Name: com.itu.ppp.examples.Sum

2

Host Address: 192.168.56.101:2049

Host Name: c3e37603-45cc-43fb-8e6b-be55e104286e

JAR URL:
http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgram.jar

Callable Task Name: com.itu.ppp.examples.Sum

3

Host Address: 192.168.56.104:2049

Host Name: 6dc711e3-33b5-4a3c-b3cd-73135a0d050a

JAR URL:
http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgram.jar

Callable Task Name: com.itu.ppp.examples.Sum

4

Host Address: 192.168.56.102:2049

Host Name: 2496f352-260e-4799-8790-8eaea4b7109b

JAR URL:
http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgram.jar

Callable Task Name: com.itu.ppp.examples.Sum

Table 3.3: Task plan example.

 29

3.4.5 Parallel application execution

Client Applet that requests for the execution of an Application by user’s directive

will act according to Task Execution Plan provided by the Broker. Task will be

completed without presence of the Broker, client will communicate resource hosts

directly via peer-to-peer protocol and will not contact Broker until the end of the

Task. By the finalization of the task, client will generate a Task Execution Report as

a feedback of Task status and send to Broker. Steps performed during the Task

Execution, are illustrated on Figure 3.9, on which Main Task, Sub Tasks, Thread

Pool and hosts are the performers of the Task Execution cycle.

Parallel Applications are developed according to implementation pattern of Parallel

Programming Library, of which implementation details are described on section 4.2.

Developer implements Main Task and Sub Task code blocks, specifies the work to

be done on client and hosts. While Main Task is created and executed on the client,

Sub Task is created on the client but performed on the host. User would know that

Sub Task is executed on the host. Main Task is specified by implementation of

runMainTask method of Parallelizable interface. On the other hand, Sub Task is

specified by implementing calculate method of TaskHandler abstract class.

Developer also sets data variables to constructor of the implemented TaskHandler

object. The mentioned data variables are used as Data set for execution of Sub Task

on the host. Main Task Name and Callable Task Name parameters are required to be

configured during result application upload to Task Repository. While Main Task

Name represents full package presentation of the class to be executed as the Main

Task, Callable Task Name is the full package presentation of the class to be executed

as Sub Task.

 30

Figure 3.10 : Parallel task execution steps.

Steps illustrated on Figure 3.10 describe the sequence of operations performed

during Parallel Task Execution cycle. More detailed information about these steps

are as follows.

1. Initialization of the Main Task: By selecting the Application from Task

Repository, the user gives the directive for the execution of a Task, which

will be initiated on client Applet. The execution mechanism is realized by

client’s Java Applet, on which application’s JAR URL is injected to Applet’s

Class Loader. Then the object of Main Task is created via Reflection API

referencing to the regarded Class on the injected JAR package. By calling

runMainTask method of created Main Task object, user’s Application is

initiated and started for execution. A case example of runMainTask is shown

on Figure 4.8 on Implementation section.

2. Create a Sub Task Object for each available host: Developer specifies the

work of host by implementing SubTask interface and its calculate method.

Calculate method (Figure 4.9) of the implementation should be filled by

parallel developer in order to set result field on termination. Sub Task’s data

may be set even by constructor or explicitly depending on requirement. User

creates a list of Sub Tasks within the scope of runMainTask method as shown

on Figure 4.8. User may also set even same data to all sub tasks, which makes

shared memory model applicable.

 31

Main loop should have its number of iterations equal to available numbers of

resource hosts which will ensure one Sub Task per host as the ideal condition.

3. Submit Sub Tasks to Task Executor: User submits SubTask list by calling

execute method of TaskExecutor component within the scope of

runMainTask in order to submit Sub Tasks to be processed in parallel.

Executor Service and Thread Pool mechanism of Java Concurrent API is

utilized for Thread based operations within Task Executor component. In

default, Parallel Programming Framework sets Thread Pool size to number of

available resource hosts and it should be ideally equal to number of Sub

Tasks, which will create parallel threads per host. However, the framework

may set Thread Pool size to another value depending on execution type for

these cases: Sequential execution; Lack of sufficient resource hosts;

Speculative Execution Type. Due to this reason, user should set a proper

required host count value to Task Repository entry of the application. In case

of available host count being lower than Sub Task count, at least one Sub

Task will be processed sequentially. As example, the case when the there are

8 sub tasks, but number of available resource hosts are 4, means that 8 Sub

Tasks will be sent to 4 hosts in 2 occurrences, so each host will operate twice.

The case of available host count being higher than Sub Tasks, would make

some of assigned hosts doing no operation, remaining idle.

4. Notify each host for task processing by sending the Sub Task to each one:

By the submission of a Sub Task to executor service, notification service

makes a connection check to resource host’s TaskListener Thread via UDP

socket connection to the regarded host’s IP Address and Port. Connection

check is important in order to prevent connection faults. In case of failed

connection check, Task Executor sends the sub task to a backup resource

host, performs sub task locally or notifies client as failed for failed execution.

If the connection check succeeds, notification service will send Application’s

JAR URL, Callable Task Name of the Sub Task and Serialized Object Stream

of the Sub Task to resource host. Sending object stream of the Sub Task

instead of parameter specific messaging ensures maintaining application state

in both ends.

 32

5. Sub Task execution on each host: TaskListener Thread on the available host

has an active UDP socket waiting continuously for incoming Task

assignments. In case when Task Listener gets an incoming Task Message

from a client, where a JAR URL and a Callable Task Name parameter that

will specify the Application and the regarded Sub Task to be executed. The

execution mechanism is realized by Java Applet, application’s JAR URL is

injected to the Class Loader like on step 1. But differently from step 1, host’s

Applet will get the incoming Sub Task Object stream and get the Sub Task

with the state and data, which was created on step 2. Task Listener executes

its task by calling calculate method of the Sub Task. By the finalization of

processing, Task Listener Thread will respond back to client with the

Serialized Object Stream of the Sub Task. Note that response Sub Task will

have its result set on the result field.

6. Wait until parallel processing is completed on each notified host (Result

Barrier): Host Task Notify Service, which has sent the Sub Task to the host,

this time will wait for the response from host, modified Sub Task object with

its result field set. In order to finalize Parallel Processing, Executor Service

should ensure all Sub Tasks to be processed. A barrier mechanism provided

by the Executor Service expects all the results back from the hosts. Shutdown

function of the executor service releases the Barrier and makes the Main Task

to continue through its normal flow. Depending on the design of the

developer, barrier release operation may be issued without getting all results

also. If developer implements speculative parallelism where same data and

same Sub Task is sent to all hosts, developer rely onto a single result from the

Host which has processed the Task faster than others. In this case Executor

service will release the barrier as it receives the first processing result.

7. Result collection: Developer may decide how to manipulate with Sub Task

results collected from each Sub Task’s Handlers. Final result may be

collected by an aggregate operation (Sum, Average, etc) from result sets or

may be manipulated depending on its design. Perhaps any comparison or a

matching operation would be a result of the parallel processing. Result

collection is flexible in terms of result data manipulation. For instance,

 33

example on Figure 4.8 shows a case where the final result is the sum of

collected result sets.

8. Provide execution result to client: As final step, Main Task will return the

final Result to client Applet, on which the result will be presented to the user.

Also the result is included to Task Execution Report, which is sent to Broker

after the finalization of Task Execution. Execution Reports are the basis of

execution details and results to be viewed in ITU-PRP Web Application on a

later time. While user is notified for the final result, Broker is notified with an

execution report in order to transform hosts to available state.

3.5 Client, Host and Broker Connectivity

Any host that connects Broker is required to maintain an active connection during its

lifecycle. Broker keeps sessions of hosts on Host Registry and updates tracked

information on any activity. Due to the nature of the session based design, active

connection should be mandatory. A TCP Socket connection with Broker is

maintained during initialization of the host and remains active until host terminates

its session. On normal conditions, a TCP Socket terminates the connection and

remains idle. Stability is ensured by sending Keep-Alive Sockets [12] and Ping

messages periodically. The frequency for sending Ping messages to hosts is 20

seconds, which is beyond the timeout of a TCP socket.

Client and hosts, assigned for Task Execution, would communicate each other in

order to exchange data parameters required for task execution and result retrieval.

Connectivity and delay time during transmission of data between hosts is the key

point and delays should be minimal in order to achieve efficient parallel execution.

Achieving optimal delay is very challenging due to heterogeneity of the system.

Designed protocol for communication between client and hosts, data sizes sent to

hosts affect directly on delay times. Client which request for Task Execution gets a

response with ID and addresses of available hosts for execution. This phase of delay

is followed with distribution of data parameters to hosts, which is a bigger deal

compared to task plan retrieval request.

 34

CLIENT BROKER
1. Task Plan Request

2. Task Plan Response

3. Send DATA to n
Hosts Request

HOST 1 HOST n

4. Send Parameter Data to Hosts 1..n

5. Send Results Back to Broker

6. Send Results to
Client

t (time) : 6 hops

3.5.1 Approaches on communication flow

Assume communication protocol is designed according Approach 1.

Approach 1: According to this approach, client requests for Task Execution Plan

from Broker and gets the list of available hosts with its addresses. On the phase of

task distribution to hosts, client will send required parameter data to Broker then

Broker will forward data to the regarded hosts. After independent execution and

result generation on hosts, hosts will be sending the calculated results to Broker.

Then Broker will send the results back to client. According to this centralized

protocol, client and hosts are dependent to a centralized Broker service, which will

coordinate data forwarding. Check Figure 3.11, for representative schema of this

approach. There would be totally 6 hops of communication within task execution

cycle, 2 hops for Task Plan retrieval (1, 2), 4 hops for sending and receiving data

between client and hosts (3, 4, 5, 6). Also, depending on the intensity on Broker

Service and the data size of host parameters, 4 hops of data exchange phase may

have additional latencies.

Figure 3.11 : Approach 1 suggestion for communication protocol.

Protocol on the first approach can be optimized in terms of hop count for sending

Data parameters to hosts. A slight reduction may be if client is able to

communication hosts directly instead of data distribution through presence of Broker.

Assume suggestion in approach 2.

Approach 2: Client requests for Task Execution Plan from Broker and gets the list

of available hosts with its accessible addresses. On the phase of task distribution to

hosts, client will attempt to establish connections to hosts directly. In case of

successful connection, client will send data and get result data after execution on

hosts. This method of communication will work without presence of broker during

 35

CLIENT BROKER
1. Task Plan Request

2. Task Plan Response

3. Send Parameter
Data to Hosts 1..n
 HOST 1

4. Send Results Back to Broker

t (time) : 4 hops

HOST 2

HOST n

data exchange, in decentralized manner. Check Figure 3.12 for representative schema

of this approach. There would be totally 4 hops, 2 hops for Task Plan retrieval (1, 2),

2 hops for sending and receiving data between client and hosts (3, 4). Compared with

first approach, there would be no additional latencies caused by intensity on Broker

will be reduced. Broker will remain responsible for Task Plan assignment in

dedication.

Figure 3.12 : Approach 2 suggestion for communication protocol.

In conclusion, protocol in second approach is much more optimized then the design

in first approach. Clients and hosts will communicate through peer-to-peer protocol.

Network latencies related to centralized Server bandwidth usage, will be reduced.

High throughput on Server processing power will be prevented.

3.5.2 NAT issues of peer-to-peer communication

Peer-to-peer communication between hosts and clients has taken a remarkable part

within this research. Peer-to-peer communication is difficult, due to Network

Address Translation (NAT) and global accessibility between nodes. Two nodes

within a local network would access each other’s IP Address and ports. On the other

hand, NATs assign public IP addresses to packets during Internet access. Host’s IP

address and port is changed during intra network connections and NAT creates

address/port translations maps on Gateway Routers. Figure 3.13 would illustrate this

case, on which a client with 192.168.1.10 local IP Address and Port will be translated

 36

to a public IP address and the port of the session when reaching another node on a

different network. NAT Protocol on the router assigns a global 212.252.140.70 IP

Address and another port and adds IP/Port pairs to port mapping. Depending on NAT

type some routers may preserve local port number and not change the source port of

the IP packet. A connection made to a Server (5.101.107.102) has different IP and

Port information on both sides. While client knows its address and port number as

192.168.1.10:31000, Server knows client’s address/port pairs as

212.252.140.70:2571.

Figure 3.13 : NAT private to public IP translation.

Considering the nature of NAT, two hosts on different networks should know each

others global IP address and port number in order to maintain a direct connection. A

central server that collects each host’s public IP address and ports may perform this

task and would coordinate hosts on different networks to connect each other. In fact,

such a server may be called “Rendezvous Server”. Broker would be the most likely

entity within ITU-PRP to perform rendezvous role. Considering that Broker takes

part in activities, like accepting initial connections, retrieving Host IP addresses and

ports, monitors hosts’ connectivity status and processes requests from clients, it

obviously would have all required information in order interconnect hosts. In that

case, connection attempt between two hosts would be as illustrated as in Figure 3.14.

The regarded figure illustrates a case where H1 which is one of 2 registered hosts on

Broker will try to connect another H2 host registered to Broker as well. The first

assumption is that Broker has collected global ip address and port information of

each hosts during initialization. Second assumption is that H1 requests Broker for a

host resource for task processing during a time of its lifecycle. Then Broker would

respond H1 with a task plan where H2 is the host to connect for task processing. H1

 37

tries to connect H2 through given global 91.42.131.123 ip and 14422 port number.

Due to the fact that H2 is in another network behind NAT2 and 91.42.131.123 is

global IP address of NAT2 router, the packet will be send to NAT2 router, on which

NAT2 will check the source address and port on its port mapping table in order to

decide to which endpoint should incomming packet routed. In fact, NAT2 has the

information that a previous outgoing message of H2 (10.1.1.2:60493) has been

mapped to 14422 port number. So, NAT2 would make the incomming message to be

sent to 10.1.1.2. However, most routers perform strict security checks and ensure that

incomming packets source ip is available on port mapping table. In our case, the

recent port mapping which has set 92.42.131.123:14422 pairs for 10.1.1.2:60493

endpoint was set for Broker’s (5.101.107.102) output traffic and only incomming

traffic from Broker would be recognized by NAT 2. So, H1’s connection attempt to

H2 mostly fails, except for some cases: NATs which behave with non-strict rules;

hosts which are assigned with a global IP by ISP.

Figure 3.14 : Peer-to-peer connection failure of hosts behind different NATs.

3.5.3 NAT Traversal techniques for peer-to-peer connection

Methods used to overcome NAT difficulties are specified as NAT Traversal

Techniques [12]. Relaying, Connection Reversal, Hole Punching are analyzed NAT

Traversal Techniques on during literature research.

Relaying is the technique where server handles traffic between peers. Packets are

sent to server, then server forwards packets to destination peer. In fact, this technique

 38

is the most reliable one and NAT issues do not affect connectivity. However delay

times are higher, since messages are sent via server.

Connection Reversal is the technique where at least one of two peers is not behind a

NAT and has a public IP. Assuming that a peer is behind NAT is named as P1 and

tries to connect another peer with a public IP named P2, the connection would be

successful. However, the first connection should be initiated from P1 to P2. If P2

tries to connect P1 initially, P1’s NAT will drop the connection and it will fail.

UDP Hole Punching technique enables two peers to connect each other directly, even

they are behind NATs. A rendezvous server that collects endpoint information of

peers, coordinates peers to connect with each other. The key characteristic of this

tehcnique is the fact that rendezvous server collects both public and private ip/port

pairs. Peers send their private ip/port pairs to rendezvous server during initialization

phase, also server gets the public ip/port of the peers. The reason of collecting private

ip/ports is establishing connections of endpoints within same NATs. Peers behind

same NAT would be able to connect each other directly, since they are on the same

network. On the other hand, server keeps public ip/port of endpoints to make peers

behind different NATs connecting each other. The working principle of UDP Hole

Punching is a bit tricky which forms a flexible architecture that makes possible

internal and global connectivity. Figure 3.15 taken from [12] illustrates a case, on

which Client A and Client B create sessions to server. If Client A is supposed to

connect Client B, the rendez vous server sends notification to both Client A and

Client B on the same time. The notification message send to Client A consists public

and private ip/port of Client B. A will send 2 UDP packet to B, one packet to B’s

public address, one to B’s private address. On the other side, Client B gets peer

information of Client A and performs the same process. It is supposed that both

clients will send UDP packets to each other within a common time slot. Let’s assume

that first message is sent by Client A. A’s UDP packet to B’s private address never

reaches, because Client B is behind another NAT. On the other hand, Client A’s

message to Client B’s public ip reaches to B’s NAT, but the router drops the UDP

packet, because the because the source IP of Client A is not known on the port

mappint table on NAT B. So Client A’s first attempt fales. Anyway, even Client A

has failed sending UDP packet to B, A’s attempt will create a Hole on its NAT. As

described on above quotes, a NAT accepts only incomming messages which are

 39

coming from an IP and Port of which a recent message was sent. So, in our case

Client B’s incomming UDP packet which is sent from the opposite side, is coming

from an known known source IP and Port, in fact the first packet of Client A was a

fake message to create a hole and make its NAT to treat the incomming B’s message

as the response of outgoing A’s message. Although, the principle makes sense, the

mehtod does not guarantee success on real world. While some routers will accept

hole punching, some other routers have strict NAT rules especially on port

mappings. Such routers do not preserve outgoing port numbers and alter them on

every sent message. Such behavior of routers make UDP Hole Punching non-

applicable.

Figure 3.15 : UDP Hole Punching technique [12].

3.5.4 Peer-to-peer Protocol designed for ITU-PRP

Peer-to-peer connectivity is one of the key motivations of ITU-PRP. A widely used

and more effective system would be possible only with a perfect peer-to-peer

protocol design. ITU-PRP’s peer-to-peer protocol combines Relaying, Connection

Reversal and UDP Hole Punching techniques in order to cover different types of

connectivity challenges. UDP Hole Punching characteristics are adopted to ITU-PRP

for connecting hosts within same NAT or behind different NATs if applicable. Also,

charasteristics of Connection Reversal are adopted and performs well if one of hosts

has public accessibility. Additionally, a relaying mechanism is performed for the

cases where Hole Punching and Connection Reversal is not applicable. For all this

three techniques, ITU-PRP’s Broker takes the role of Rendez Vous Server, hosts and

clients fit to the role of peers. The characteristics of the combined design are as

follows.

 40

1. Peer registration: As mentioned on previous units, hosts subscribe to the

system during their initialization. host connects Broker via TCP Socket and

UDP socket connections. Host-to-Broker session is kept active by using TCP

Socket connection. On the other hand, UDP Hole Punching is applicable with

UDP Sockets, because it makes possible connecting ends with the same

socket.

2. Peer information update: Hosts, send their private IP address and port

number to Broker each time they get a ping message. Host’s public IP and

ports are retrieved by Broker, along with incoming port update message. Port

update messages are UDP based. Host binds a UDP socket locally and waits

for incoming connections from other peers. On the contrary, TCP socket

would not be applicable, because active TCP session would not allow the

same port to accept connections from other ends.

3. Relay pipes: Rendez vous Server, in fact Broker creates pipes on Server for

peer pairs, which will perform relaying. A pipe performs the task of message

transmission through Broker. Creation of pipes is made just before

notification of peers to connect each other. A logical pipe is created with two

physical UDP sockets, of which one will listen for incoming relay messages

and server will send to destination peer through other UDP socket.

4. Peer notification: All hosts are expected to connect each other in order to

form a network of hosts. In order to achieve this, Broker performs Rendez

Vous operation during subscription o a new host. Broker sends the list of all

hosts to new registered host. Also, peer information of new registered host

would be sent to all other recently registered hosts as well. Peer grouping

would be implementable in case of increased number of users. Peer group

principal would revise the load on Server and also make more specific groups

to perform specific tasks. However Peer grouping was kept out of the scope.

5. Perform punching: A peer notification message contains three different ip

address and port pairs for destination peer, Private Peer address/port; Public

Peer address/port; Relay Address/Port. Notified host will initiate 3 messages

(private, public, relay) and will keep sending until connection establishment.

Figure 3.16 illustrates the set of steps.

 41

Figure 3.16 : Peer-to-peer connection steps.

6. Connection establishment: Hosts which get hole punch messages from its

assigned pairs will send acknowledge messages back and will expect

acknowledge from the same pair. As soon as two-way handshake is

completed, hosts stop sending punch messages. Within 3 punching attempt

types, host may connect to private or public or relay address/ports. However,

one of established connections will be selected according to prioritization, 1)

private; 2) public; 3) relay ip/port connection. The reason of private

connectivity being first option lower delay within private networks. For the

hosts behind different networks public connectivity is preferred, relay

connection would be the last option due to increased delay of centralized

connection.

7. Beacon messages: Hosts, which have established connection with each other,

will send beacon messages during their lifecycle. Beacons would be small

UDP packets sent periodically, for keeping inter-host communications active.

Beacon exchange will keep host’s peer-to-peer connection state information

up to date. Also connection checks during task distribution and executions are

performed by beacon exchange, in order to reduce faults during Task

Execution.

Peer-to-peer design of ITU-PRP intends creating a network of all registered hosts to

connect each other, as showed in Figure 3.17. However heterogenity and conditions

of the real World would make any nodes not missing connection with each other. For

 42

such cases, Task Execution process performs connection checks and fault prevention

steps.

Figure 3.17 : ITU-PRP peer-to-peer network.

3.6 Data Transmission

Data transmission is an important matter which affects delays and performance of

Task Executions. Established peer-to-peer connections exchange a wide range of

message types with each other, including task notification, beacon or hole punch

messages. Also hosts exchange messages with Broker, such as host registration, Peer

Information Update, Ping/Pong Messages, etc. A brief schema showing all message

time exchanged within system are illustrated on figure 3.18.

Figure 3.18 : ITU-PRP Peer-to-peer network.

In order to cover all message types a generic messaging type has been implemented.

This aims performing a common handling for messaging. Messages contain message

 43

header and data sections. Message header contains information about message type,

sender Host ID, data length, buffer count, buffer index and message sequence. While

header section is 176 Byes long, data section is 400 bytes long, which makes a total

of 576 Bytes during message transmission. However data transmitted to another host

may exceed 400 Bytes. In this case, data will be devided to multiple buffers. In

Figure 3.19 a case for 520 Bytes is given. Buffer count would be 2 and two separate

messages will be sent, with 1 and 2 buffer indexes. This principal is same with the

Sliding windows protocol of Transport Layer.

Figure 3.19 : ITU-PRP generic message.

 44

 45

4. ITU-PRP FRAMEWORK IMPLEMENTATION

ITU-PRP’s framework has two entities in terms of implementation. While the web

application is where user does its operations on his account, Parallel Programming

Library is the implementation where the framework for parallel programming has

been made possible.

4.1 ITU-PRP Web Application

ITU PRP operations like user subscription, client logon, application upload and

modification on repository, task execution are made through a Web application

designed in the system. ITU PRP Web application is hosted on an Apache Tomcat

Web Server located on the same location with Broker and P2P Server. User logs on

to a web based application as showed on screenshot on Figure 4.1.

Figure 4.1 : ITU PRP Web application logon screen.

User logs on or signs up on the initial page of ITU PRP Framework. As the user logs

on to Web Application, a Java Applet embedded to the web page will initialize and

run. The regarded Java Applet creates a host listener thread, which will process as an

available host for the system on client’s computer. Check Figure 4.2 for Java Applet

Console, which shows the activity client/host.

 46

Figure 4.2 : Java Applet on ITU PRP Web application.

User is able to view and select task on its repository with uploaded applications.

Application submission to system is made by the user, by filling Application

information such as Application/Task name, Java class name with package hierarchy,

suggested host count for execution, application version which will be considered

base information for Task Execution. User may also select its application from

repository and modify its information.

In case of selection of the task from the list of repository, the user will see a screen as

shown on Figure 4.3. Task information filled during task creation will be displayed

the user. User is able to trigger the execution of the task Sequentially on its own host

or in Parallel according to Task Plan created by Broker.

 47

Figure 4.3 : Task execution in ITU PRP Web application.

In addition to task operations, user is able to view actual hosts connected to the

system as shown on Figure 4.4. Detailed information such as Host ID, user name,

Client IP Address, activity and busy status, response times, location information and

additional information regarding system resources are available for user’s inspection.

Figure 4.4 : Actual hosts connected to system.

System, also provides viewable information regarding statistical information for

recent activities of users as showed on Figure 4.5. User Based classified data shows

total time of activity and assignment/execution counts in total.

Figure 4.5 : User statistics.

Authenticated user is able to view recent executions and task plans of host executions

with detailed information. Check Figure 4.6 for the screenshot of task execution logs.

 48

Figure 4.6 : Task execution logs

4.2 Parallel Programming Library

A Java library is provided to Parallel Developers to adapt their application codes for

Parallel Running Platform. ParallelPatternFramework.jar can be downloaded from

ITU PRP Web Site. A parallel developer must include the provided library file to

Java project and implement its program code according to specifications. Result

implementation will be uploaded to ITU PRP Web Site to application repository.

Result application should be packaged as Jar file as well. Application developer is

required to fill Application/Task name, Java class name with package hierarchy,

suggested host count for execution, application version. Library also does consist

task distribution, barrier and result collection functions, which are transparent to

developer.

4.2.1 Content of ParallelPatternFramework.jar library file

 MainTask : Interface which specifies the main task to be execution on initial

execution of main task. Developer overrides runMainTask method on which

routines of main task are implemented.

 SubTask<GenericResult> : Interface is implemented in order to specify

operation of sub tasks. GenericResult generic type is defined in order to make

declaration of result type of sub task. GenericResult is applicable for Java

primitive object types, such as String, Integer, Long, Double, byte arrays, etc.

Overrided calculate method would consist the operations to be performed on

 49

sub task. On the other hand, getResult method implementation would return

the result of execution.

 TaskExecutor : Consists task distribution and result collection routines

which are performed during task execution. Those operations are hided by

user and the library takes care of this operations. The only visible

execute(TaskList,ExecutionType) method is called on MainTask in order to

trigger task operations. TaskList and ExecutionType are two parameters set by

user in order to specify the execution work to be performed and the way how

they are performed.

 TaskHandler : Consists routines performed during sub task distribution.

TaskHandler converts sub task objects to byte arrays and initializes

transmission streams of them to established host connections. Results of

transmitted object streams are expected to be received when remote hosts

terminate and send back result object streams. Task handler will unmarshal

result bytes, extract SubTask result object and send back to caller. Task

send/receive operations are made synchronously.

 TaskList : Holds the list of sub tasks. TaskList is prepared by user within the

scope of MainTask and is send to TaskExecutor for execution.

 ExecutionType : Enumeration on which task execution type is defined.

Parallel application developer decides one of five execution types for task

processing. PARALLEL_MULTIHOST_STRICT is set for the cases where

developer sets the rule of subtasks to be executed only parallel on multiple

hosts. This execution type fails in case of any host fails processing the sub

task. PARALLEL_MULTIHOST_ADAPTIVE is also execution type processed

on multiple hosts with a more flexible execution plan in cases of any host

fails. If any host fails on subtask execution, main task executes the task on

client CPU. SPECULATIVELY_PARALLEL_MULTIHOST is defined for a

single host to be processed on multiple hosts. First incoming execution result

is considered as the final result. SEQUENTIAL_LOCALHOST is defined for

sequential execution on localhost. MULTITHREAD_LOCALHOST is defined

if tasks would be executed parallel within multiple threads on client’s local

workstation.

 50

Relations between classes of Parallel Programming Library and implementation

model is illustrated on the UML diagram on figure 4.7.

Figure 4.7 : Parallel Programming Library implementation.

4.2.2 Implementation guidelines for developers

Developers using Parallel Programming Framework should follow below guidelines.

 Include ParallelPatternFramework.jar to Java Project

 Create a main class which implements MainTask interface. Developer should

fill overrided runMainTask method. Check Figure 4.8. for implementation

example.

 Create a class which implements SubTask interface. Calculate method is

required to be implemented, which will consist the autonomous calculation

task made on the distributed task. Check Figure 4.9. for SubTask

implementation example.

 51

 Developer should export a JAR package form its application, which will be

deployed to PRP Repository.

 Parallel Programming Library would be implemented as illustrated on UML

in Figure 4.7.

Figure 4.8 : Main Task implementation example.

Figure 4.9 : Sub Task implementation example.

@Override

public void calculate() {

 sumResult = 0l;

 long tempResult = 0;

 for (long i = from; i <= to; i++) {

 tempResult = tempResult + i;

 }

 sumResult = tempResult;

 System.out.println("SUM between " + from + " " + to + " is " + sumResult);

}

@Override

public String runMainTask() {

TaskExecutor executorInstance = TaskExecutor.getInstance();

 TaskList taskList = new TaskList();

 for (int i = 0; i < 4; i++) {

 long min = 100000000 * i + 1;

 long max = 100000000 * (i+1);

 Sum sum = new Sum(min, max);

 taskList.addTask(sum);

 }

 long sum = 0;

 List<SubTask> resultList =

executorInstance.execute(taskList,ExecutionType.PARALLEL_MULTIHOST_STRICT);

// Now retrieve the result

for (SubTask<Long> resultItem : resultList)

{

sum += (Long)resultItem.getResult();

}

System.out.println("MAIN TASK RESULT : " + sum

return String.valueOf(sum);

}

 52

 53

5. EXPERIMENTAL RESULTS

This section describes the results of experimental tests performed on ITU-PRP.

Experiments were conducted on parallel applications developed according Parallel

Programing Framework specifications. Multiple hosts located on different networks

over Internet have joined and participated the testing sessions. Also, computers with

various configuration and computational power were used as hosts. By Task

Execution Middleware coordination, a Multi-Host heterogeneous platform was

created.

SHA-256 Hash Decoding as a characteristic example for High Performance

Computing was selected for case study. Application was developed according

Parallel Programming Framework and was uploaded to Task Execution Middleware.

As a test scenario, a 6 letter numeric pin encoded with SHA-256 Hash algorithm,

will be decoded/decrypted. SHA-256 is a function that encodes a set of characters.

However the algorithm has not a reverse function and encoded hash cannot be

decoded. In order to decode the Hash, decode function should anticipate the hashed

pin by hashing all available combinations and comparing the results with the hashed

pin. For example, a pin number 871367 will get below result after performing SHA-

256 Hash function.

5513cbf6f4112774fb01961e107714a9f96bee0234a12401f21aef088ac8c1e9

Let’s assume that there is a requirement to decode the hash and get the pin code

871367. Another assumption is that the pin is a 6 letter numeric characters set. In

order to find the pin from the hash, hashing function will be performed for all

guesses from 100000 to 999999. Decoding function should be implemented like in

pseudo code given below.

 54

A sequential java console application has decoded SHA-256 hash in 2265

milliseconds. Application was executed on a MacBook Pro laptop with Intel Core i5

2,5 GHz Processor and 8 GB Memory.

SHA-256 Hash decoding application uploaded on ITU-PRP. A client that distributes

sub tasks to be executed on resource hosts has performed executions according 4

different task plans provided by Broker. During first test, client process has separated

all pin combinations to 2 subtasks, which was executed parallel on 2 resource hosts.

Then during each further testing phase an additional resource host has joined the

system until a desired result was achieved. Table 5.2 shows resource hosts used for

experiments. System details, computational power and operating system of hosts

vary and belong to various configurations. These 5 hosts are placed behind different

NATs, 3 on a local network, the other 2 on a remote network. All these varieties of

hosts form a heterogeneous system, which expresses a typical platform described on

this research.

Host System Info CPU Memory Public IP/

Private IP

Operating

System

1 Dell Lattitude

E6430

Intel Core i7-

3630QM 2,4GHz

8GB 92.45.23.114/

10.1.3.200

Windows 7

2 Asus N550JV-

CN127H

Intel Core i7-

4700HQ 2,4 GHz

16GB 212.252.141.106/

192.168.2.107

Windows 8

3 MacBook Air 4,2 Intel Core i5 1,7

GHz

4GB 212.252.141.106/

192.168.2.155

Mac OS X

Mavericks

4 Dell Lattitude

E5440

Intel Core i5-

4210U 1,7 GHz

4GB 92.45.23.114/

10.1.3.175

Windows 7

5 MacBook Pro 10,2 Intel Core i5 2,5

GHz

8GB 212.252.141.106/

192.168.2.103

Mac OS X

Mavericks

Table 5.1 : Hosts used for experimental results.

begin

 hash 5513cbf6f4112774fb01961e107714a9f96bee0234a12401f21aef088ac8c1e9

 foundfalse;

 i 100000

 while found=false and i<=999999 do

 begin

 tempHash SHA256(i)

 if tempHash = hash then

 begin

 foundtrue

 decodedPini

 end

 i i+1

 end

end

 55

Client, which performed main task, was a member of 212.252.141.106 network, like

other 3 members within same network. Measurement was made based on processing

times obtained for 2, 3, 4 and 5 hosts. Detailed results are shown on Table 5.2. While

sequential decoding has taken 2265 milliseconds, a first challenge of ITU-PRP with

2 resource hosts was not able to beat an ordinary sequential execution. 2 resources

have got a 2358 ms processing time, which is higher than sequential processing. In

fact, a sequential process enhanced to 2 parallel processes should achieve a

performance gain. However, host 1 is on a remote network far from Client 1 and

Host 2 is another end within 212.252.141.106 network. Network delays during

message transmissions have caused such a disadvantage. By the attendance of 3
rd

host, the processing time became head-to-head with sequential processing with a

2253ms of processing time. However, the goal is to beat the sequential processing

and this is not achieved yet. Anyway, if the 3
rd

 host would be a resource with

stronger computational power, the overall processing time would be lower than the

occurred one. According to Parallel Application Execution principals of ITU-PRP,

all subtasks should be processed in order to terminate overall processing power. Host

3, which had less computational power and performance compared with others took

longer than the others and affected overall processing time by providing the task

result later than others. However, this is a good example for impact of heterogeneity

over parallel processing on ITU-PRP.

Application Model Hosts Repeated

Tests

Avg.

Processing

Time (ms)

Speed Up Performance

Gain (%)

Sequential Java

Console App.

1 5 2265 ----- ------

ITU-PRP 2 Hosts 2 5 2358 0.96 -4,11

ITU-PRP 3 Hosts 3 5 2253 1.01 0.53

ITU-PRP 4 Hosts 4 5 1636 1.38 27.77

ITU-PRP 5 Hosts 5 5 1270 1.78 43.92

A performance optimization was achieved by addition of 4
th

 host, which gave

1636ms of processing times and 1.38 speed up. 5
th

 host also affected positively,

which resulted to 1270ms processing time, 1.78 speed up and 43.92 percent

performance gain over sequential processing. Figure 5.1. also shows a graphical

chart of experimental results for Hash decoding. The overall progress on chart

Table 5.2 : SHA-256 processing times.

 56

reveals that higher available resource hosts will reduce processing times remarkably.

But the processing time would not be beyond network/message transmission delays.

So, minimal processing time would be near to network delay times on ideal

conditions. And the user should not expect a performance gain for applications that

processing times takes less than an ordinary Client-to-Host delay times.

Figure 5.1 : Performance gain achieved on experiments.

Even the performance gain achieved for Hash Decoding reflects a comprehensive

performance analysis, any other application implemented and deployed on ITU-PRP

may give different performance results. Depending on characteristics of application,

the parallel processing performance may be better or worse. The main principal

should be applying problems with high processing time or data, for which ITU-PRP

promises performance gain.

As mentioned above, minimal processing time would be the maximum delay time

within two-way Client-to-Host data transmissions. However, such a delay was not

possible to be measured during experiments. In order to measure a delay between

two ends, a global synchronized time should be set, which will make possible

calculating time differences during transmissions. However, in a heterogeneous

platform such as ITU-PRP a global synchronized time is not applicable, so network

delay time cannot be extracted from total sub task processing time. Anyway, some

estimation can be made to give a delay time during Client-to-Host transmission.

Ping tests with 1MB packet data were made in order to get estimated delay times.

Ping tests from Istanbul to arbitrary IP addresses to different locations shows that a

1MB ping, to an IP address on New York return in 170-180ms. Other 1MB pings

 57

have been measured as, Istanbul-London 110-120ms, Istanbul-Ankara 65-75ms,

Istanbul-Istanbul 30-40ms. Which shows the fact that worst case delay time of two

way 180ms sub task exchange will affect a round trip delay of 2 x 180ms to a worst

case delay of 360ms.

On Data Transmission section, it was mentioned that a buffer size of a transmission

message sent to any component of system is defined as 576 Bytes. The regarded

buffer size was decided according test results conducted in this section. The

observation during the tests was that Multi-Host messages within a local network or

between different networks, were affecting transmission performance differently.

Within local networks, higher buffer sizes and lower data separation was causing less

delays. But transmission during transmissions over Internet, higher buffer sizes were

suffering higher packet loss, which was causing unexpected packet loss during

Parallel Execution. The highest buffer sizes preserving the reliability of transmission

was monitored as 576 Bytes. This value seemed to balance minimal packet loss and

higher possible transmission performance.

Another noticeable factor affecting execution performance was power saving modes

of laptops used as resource hosts. Especially, laptops performing power saving

strategies during their battery consuming mode, were reducing their CPU power. In

these cases, reduced CPU power causes higher processing time. However, usage of

smaller number of resource hosts during execution is affected by this. Higher

available resource hosts absorb such an impact.

 58

 59

6. CONCLUSION

The methodology of Parallel Processing is based on Multi-Threaded task distribution

model. ITU-PRP’s design on Parallel Processing, in which Main Task creates and

sends Sub Tasks to hosts in a within a loop mechanism, aims to provide an object

oriented pattern to combine with parallel models. Object oriented pattern and

adaptability of this design is also another noticeable feature, compared to

conventional native parallel development tools.

ITU-PRP’s approach on Data Parallelization is based on user’s customization and

user is able to define data of Sub Tasks accordingly. Data distribution via Sub Task

object serialization ensures users control over data parallelization. Object-based data

distribution, instead of message-based distribution is also another feature, which

provides flexibility to user to specify data types for distribution.

Peer-to-peer protocol designed for ITU-PRP has been an important issue that defined

the scope of the project. Considering the restrictions of maintaining connections

between peers over Internet, implementation of peer-to-peer was difficult and

required a lot of literature research. A combined protocol with 3 different NAT

traversal techniques, such as Relaying, Connection Reversal, UDP Hole Punch made

possible connecting hosts over Internet. System was designed that all hosts to

connect each other, keep their connection active during their lifecycle. Also, Peer

grouping principal aims grouping creating location groups, specific task groups.

However, Peer grouping would be possible with the increased number of users and it

was kept out of scope, for a future scale increasing of project.

Experimental results have revealed that minimal number of assigned resource hosts

have not make a noticeable performance gain during Parallel Application Executions.

But higher available resource hosts have achieved remarkable performance

optimization results. Tests have also showed that network delays have less impact for

negative performances during executions with higher available hosts. Also,

applications with higher sequential processing times are more likely applicable to

ITU-PRP and easier to achieve a performance optimizations.

 60

Calculated maximum Client-to-Host delay time in Experimental Results section was

360ms. However, real world network problems, may impact to higher delays.

Principally the suggestion of ITU-PRP is performing parallelization for sequential

applications that take longer processing time then 2 seconds. A higher performance

gain is achievable if sequential application with higher processing times is

implemented on ITU-PRP. In fact, ITU-PRP does not intend to beat up any multi-

core framework and achieve higher performance. The goal of ITU-PRP is providing

a heterogeneous Multi-Host parallel processing platform, where some specific High

Performance Applications would work on a global environment. And users will be

able to benefit a low cost parallel computing environment, which transforms

individual idle processing power to a global processing power.

Benchmarking tools applied for performance comparison of other Parallel

Programming Frameworks were not applicable to ITU-PRP, due to the

heterogeneous Multi-Host architecture formed with a global peer-to-peer protocol.

Also, as described above, ITU-PRP has not the goal to challenge the performance of

any other parallel framework. Instead it provides a characteristic architecture with

specific dynamics in order to achieve a low-cost global parallel processing

environment.

Statistics for Parallel Application executions and performance measures will be

saved and logged. Any applications statistical information for their recent activity in

terms of performance measures would be considered for future executions, so that

higher utilization can be achieved on future execution plans.

Higher effective system will be achieved by higher volunteer attendance. A volunteer

reward system is provided in order to increase the host numbers in the system. By the

increase of available hosts, additional experiments will be done in the future for more

concrete measures. Additionally, an established community would get feedbacks

from users, in terms of discussions about system’s performance and issues.

61

REFERENCES

[1] Thomas Rauber, Gudula Rünger (2010), Parallel Programming for Multicore

and Cluster Systems. 2nd Edition, Springer Heidelberg Dordrecht,

London, New York

[2] Sartaj Sahni, George Vairaktarakis, 1996: The Master-Slave Paradigm in

Parallel Computer and Industrial Settings, Journal of Global

Optimization, Springer

[3] URL-1 <http://www.oracle.com/technetwork/articles/java/fork-join-

422606.html>

[4] Michael J. Quinn, (2004), Parallel Programming in C with MPI and OpenMP,

1st Edition, McGrawHill, New York

[5] URL-2 <http://mpj-express.org/docs/guides/windowsguide.pdf> accessed at

04.04.2013

[6] URL-3 < https://code.google.com/p/javampi/>, accessed at 04.04.2013

[7] M. Klemm, M. Bezold, R. Valdema and M. Philippsen, (2007) : JaMP: An

Implementation of OpenMP for a Java DSM, University of Erlangen-

Nuremberg, Computer Science Department, Erlangen, Germany

[8] URL-4 <http://jade.tilab.com/doc/index.html>, accessed at 16.03.2014.

[9] Peter Cappello, Bernd Christiansen, Mihai F. Ionescu, Michael O. Neary,

Klaus E. Schauser and Daniel Wu, 1997: Javelin: Internet-Based

Parallel Computing Using Java, University of Bristol, Department of

Computer Science, University of California, Santa Barbara.

[10] Michael O. Neary, Alan Phipps, Steven Richman and Peter Cappello, 2000:

Javelin 2.0: Java-based parallel computing on the Internet, University

of California, Santa Barbara

[11] L. F. Lau, A. L. Ananda, G. Tan, W. F. Wong, 2000: JAVM: Internet-based

Parallel Computing Using Java, School of Computing, National

University of Singapore.

[12] Bryan Ford, Pyda Srisuresh, Dan Kegel, 2005: Peer-to-Peer Communication

Across Network Address Translators, Massachusetts Institute of

Technology, Caymas Systems, Inc..

62

63

APPENDICES

APPENDIX A: Deployment of ITU-PRP

APPENDIX B: Sources and Development Environment Setup

64

65

APPENDIX A

DEPLOYMENT OF ITU-PRP

The related files for deployment of Task Execution Environment are given under

DEPLOYMENT folder of attached CD:

- war/itu_prp.war

- tomcat/apache-tomcat-7.0.39

- database/ituprp_test.sql

In order to setup a Server for providing the hosting service of ITU-PRP System, the

deployable war package and database backup files are provided. itu_prp.war will be

deployed to an Apache Tomcat Web Server. The Web Server may be downloaded

from http://tomcat.apache.org/download-70.cgi but is provided on attachment CD as

well. ituprp_test.sql is MySQL database backup file for ITU-PRP Database. A

MySQL Server should be installed and set up on a Server where Database will be

hosted. ITU-PRP Database is deployed by running ”mysql –u root –p ituprp_test <

ituprp_test.sql” command. This command will create ituprp_test database to Server.

Apache Tomcat may be set up to any of Linux, Windows or Mac OS X operating

systems. The regarded folder of apache-tomcat-7.0.39 may be placed to a preferable

folder within the file system. The bin folder contains startup and shutdown (.bat for

Windows, .sh for the rest) files, which start and terminate the Server Service. The

conf folder contains server.xml and other files on which Tomcat is configured.

Connector port of installed server may be changed from server.xml, which is 8080 as

default. The webapps folder is the location where applications are deployed.

itu_prp.war file will be copied to webapps folder in order to deploy the Application.

Then startup (.bat or .sh) file is executed in order to start the Web Server. In order to

verify if Tomcat Server is started successfully, http://localhost:8080/ is opened on a

Web Browser and the default page of the Tomcat is expected to show up. For

verification if Task Execution Environment has been deployed successfully

http://localhost:8080/itu_prp/Login.xhtml would be opened on a Web Browser,

where the Web Application of Task Execution environment is showed up.

Deployed ITU-PRP application is configured by modifying below files:

66

Application.properties: IP, port and ping intervals of Broker are set on this file. Also

uploaded jar file path is set withing this configuration file.

Persistence-mysql.properties: MySQL connection parameters are set in this

configuration file.

The key point about Task Execution Environment is the connectivity of the Web

Application globally. Due to frequent TCP Socket operations between Server and

hosts, a global IP address should be assigned to the Server where the Task Execution

Environment is deployed, in order to serve globally for parallel processing. The

second alternative is providing parallel processing within a network subnet. In this

case, a private IP of Task Execution Environment Server is assigned and parallel

processing is performed within a local network scope.

67

APPENDIX B

SOURCES AND DEVELOPMENT ENVIRONMENT SETUP

The related files of Development Environment of the project are provided under

SOURCES folder CD:

- ITU_PRP Maven Project

- Eclipse Installation Files

- ParallelPatternFramework.jar Parallel Programming Environment API

- ITU_PRP_IMPLEMENTATION Eclipse Project

The source codes of ITU_PRP project are in SOURCES/ITU-PRP folder of

attachment CD. The related project is developed under Eclipse development

environment and should be imported to Eclipse for further development. In order to

work on the project the latest version of Eclipse can be downloaded on

www.eclipse.org. The Eclipse IDE for Java EE Developers is preferable, which

already contains configuration and plug-ins for Java EE Web Applications. Also,

Eclipse installation with all required project is provided in APPLICATIONS folder

of attached CD. It is preferred to use provided Eclipse installation.

The Parallel Programming Environment API is provided on the SOURCES folder as

well. This the JAR Library to be used by Parallel Application developers which will

create Parallel Applications according to specifications of ITU-PRP given on the

implementation section. The source code of a sample implementation for Parallel

Programming Framework is given as an Eclipse Project in

SOURCES/ITU_PRP_IMPLEMENTATION folder. The project contains source

code of SHA256 Hash Decoding example shown on experimental results section.

68

69

CURRICULUM VITA

Name Surname: Enis SPAHI

Place and Date of Birth: Prizren / Kosova, 16.09.1985

Address: Gülbahar Mah, Bıldırcın Sk. 14/6, Mecidiyeköy/İstanbul

E-Mail: enisspahi@gmail.com

B.Sc.: Yıldız Technical University, Computer Engineering

Professional Experience and Rewards: Garanti Teknoloji (July, 2008 – February,

2009); AEC Teknoloji (March, 2009 – October, 2009); Hitit Computer Services

(November, 2009 - Present)

List of Publications and Patents:

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 Enis Spahi and D. Turgay Altılar, 2014: ITU-PRP: Parallel and Distributed

Middleware for Java Developers. 1
st
 International Conference in Computer Science,

Information System and Telecommunication (ICCSIST 2014), November 7-8, 2014,

Durres, Albania.

mailto:enisspahi@gmail.com

