
12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

27. Minimum Overhead Data Partitioning
Algorithms for Parallel Video Processing

D T Altılar1, Y Paker2

Introduction

Data partitioning is important in many aspects, such as computational, load distri-
bution, inter-process communication, load and data overhead considering different
applications. In this paper, overhead due to data partitioning is discussed and two
algorithms are proposed: Almost Square Tiles (AST) and Almost Square Tiles with
aspect ratio (ASTwar). We exploit data parallelism, which is suitable for both SPMD
and SIMD type of parallel computing.

The applications are selected from image/video processing arena most of which
involve some neighbourhood operations that require surrounding pixels such as con-
volution or motion estimation. However, this never excludes the applicability of these
algorithms to any other parallel applications, including linear or differential equation
solvers. Both AST and ASTwar are to minimise the amount of overlapped data by
defining a partition pattern that comprises rectangular tiles of similar sizes and having
an aspect ratio of around 1.

A detailed explanation of the problem is introduced in Section ”Background and
Problem”. ”Approaches to Data Partitioning Problem” provides the reader a brief
information about a recently proposed approach by Lee and Hamdi [LH95]. The
proposed algorithms are defined in detail, and a brief comparison between the algo-
rithms is given in ”Two Proposed Algorithms:AST and ASTwar” Section. The paper
concludes with a Section suggesting further research.

Background and the Problem

There are number of research areas in which data partitioning occupies an important
role, such as instruction level data parallelism [AAL95], graph partitioning [KQR95],
image processing for image space (2-D) or object space (3-D) [LH95, Whi92, LWY94,
CQ95]. An extended survey on I/O intensive parallel computing is given in [Bre97]
emphasising language support. As mentioned before, we take image/video processing
domain to illustrate the partitioning ideas developed. Moreover, data partitioning is
a very important issue in real-time video processing because any defined task should
terminate within 40ms and acquire new data periodically.

Video processing algorithms we are interested in require neighbourhood pixels or
blocks to be transmitted as shown in Figure 1. The original image is initially split
into rectangles of size a ∗ b. However, for the given application which includes a
neighbourhood operation, rectangle is expanded in size by n in both directions.

1Department of Computer Science, Queen Mary, University of London, altilar@dcs.qmw.qc.uk
2Department of Computer Science, Queen Mary, University of London, paker@dcs.qmw.qc.uk

252 ALTILAR, PAKER

Figure 1: (a): Size expansion of a sub-image of a ∗ b due to the neighbourhood pixels,
(b): A core block of N*N and search area of (2R+N)*(2R+N)

Figure 1a shows a sub-image of a by b pixels and the required n pixels size expan-
sion. If we are to compute a convolution algorithm, the overall size of the sub-image
becomes (a+2n)(b +2n) into an associated coefficient matrix of 2n+1 by 2n+1. The
difference in size in pixels between these two sub-images is given in Eq. 1

((a + 2n)(b + 2n))− (ab) = 2n(a + b) + 4n2 (1)

As another application, consider motion estimation, which is the most compute inten-
sive part of MPEG video compression: a core block (called ”macro block” in MPEG
terminology) of N by N from the current frame to be matched with neighbouring
blocks of previous frame (Figure 1b) which is a domain of (2R + N)(2R + N) centred
on the macro block. Considering the above given example, overhead data becomes
significant as R could be up to 16. Thus, comparing with the previous application n
could be up to 16 times bigger than a (or b) for this particular application.

When neighbourhood pixels are taken into account, different partition patterns
yield different amount of additional data, i.e. data overhead, to be transferred giving
rise to a minimisation problem.

Approaches to Data Partitioning Problem

In a recent article [LH95], Lee and Hamdi explain the experimental results of parallel
image processing applications on a network of workstations. They exploited image
parallelism on a client-server based application model, which they call Host-Node
Model. The host splits the image and dispatches to a number of workstations to
perform convolution. It is also responsible to collect the distributed sub-images. They
consider a one-to-one communication between the host and the other nodes. Nodes are
not allowed to communicate among themselves. Above given assumptions on system
fit into our model as well.

MINIMUM OVERHEAD DATA PARTITIONING ALGORITHMS 253

One of the main concerns they stated in the paper is the impact of the overhead
of neighbourhood pixels on the processing time. They proposed a heuristic method
for data partitioning which comprises four steps: assuming that t is the number of
sub-images (tiles) that the image will split into;

1. If t=1 then fetch another sub-image of whose t¿1,
if there is no such a sub-image left then terminate.

2. If t is even, divide image into sub-images A and B,
equally (with the ratio of 1:1)
horizontally or vertically by keeping overlap minimum.

3. If t is odd, divide image into two sub-images A and B
with the ratio of (t/2):(t/2)+1,
horizontally or vertically by keeping overlap minimum.

4. Go to the first step for both sub-image A and sub-image B.

They compared their heuristic method with three standard partitioning methods:
cross, column-wise, and row-wise. They indicated that the heuristic method is better
than row (or column) partition method but not so good as cross partition. This heuris-
tic method is a divide and conquer type of approach which could lead to undesired
partition especially because of the third step of the partition algorithm.

The Core of the Proposed Approach

In order to find a better way of partitioning, we believe the decision should be made
considering the original size of the image instead of dividing it into partitions recur-
sively as in the divide and conquer type of approach.

Eq. 1 defines the overhead. If n is a constant as number of partitions, one needs to
minimise a+b to minimise the data overhead for C = a*b. Since C, load per partition,
can be computed for a given n, one can define a generic minimisation problem for the
issue: For a given C, C=a*b , find Min(a+b) . This is a well known minimisation
problem having a solution of

a = b =
√

C (2)

Eq. 2 shows that the minimum is achieved for a = b, i.e., for a square. In other words,
square is the optimal shape for a constant area and minimum circumference. However,
it is not always possible to divide a given image into squares of size k for any given
number of partitions. Actually it is unlikely to have such a perfect partition except for
a few special cases. The partition would comprise a mixture of squares and rectangles
of different width and height. For achieving an acceptable solutions the height-width
ratio of the rectangles should be close to one.

Two Proposed Algorithms: AST and ASTwar

To solve the above problem, two heuristic algorithms, Almost Square Tiles Data Parti-
tioning Algorithm (AST) and Almost Square Tiles Data Partitioning Algorithm with
aspect ratio (ASTwar), have been developed. Let k, the square of an integer, be the

254 ALTILAR, PAKER

Figure 2: Internal steps of splitting in image of 576*720 into 11 partitions: a=192,
ar=288, b=196, and bp=132 pixels.

least number which is greater than or equal to the number of data partitions p to be
produced. The frame is split into k tiles with the concern that the height-width ratio
of the rectangles should be close to one as much as possible. By changing the width
and the height of sub-images afterwards, a partition producing minimum overhead is
produced.

Both of the algorithms start by splitting the frame into k = n2, n an integer
providing that k is the smallest number greater than or equal to p. There is the
possibility of reducing the number of rows (or columns with respect to the aspect
ratio) by one for some cases which satisfy n(n− 1) > p. The algorithm than proceeds
to reduce the number of tiles by changing the size of the tiles column-wise.

For example, the above explained steps are shown in Figure 2, for 11 partitions:
(a) The frame is split into 16 (4*4) initially although 11 is required, (b) For this
particular case, the number of rows is reduced by one since 4(4−1) > 11, (c) Column-
wise changing on the width and reducing the number of tiles to 11 is the latter step
of the overall algorithm. This third step comprises computing of height of the rows,
i.e., the a family consists of a, ap, ar and arp, and computing width of the columns,
i.e, the b family consists of b,bp, and bpp (Figure 3).

Computing the a family values is quite simple as number of rows for regular
columns are known and number of rows for irregular columns is one less than reg-
ulars. ap and arp are the last tile heights (residues) of the regular and irregular
columns respectively. For data balancing the area of tiles should be almost the same,
i.e, a ∗ b = ar ∗ bp . On the other hand, width = b ∗ reg cols + bp ∗ irr cols. The
solution of these two equations gives the value for b and bp.

Almost Square Tiles Data Partitioning Algorithm

In the AST algorithm it is assumed that the width of the frame is equal to or larger
than its height. The flow of the developed algorithm can be summarised as follows:

MINIMUM OVERHEAD DATA PARTITIONING ALGORITHMS 255

1) k ← least greater or equal square(partitions)
2) first square ← squareroot(k) (A)
3) cols ← first square
4) if (partitions is a square of an integer) rows ← first square (B)

else if ((rows-1)*cols partitions) rows ← first square -1
5) irr col ← cols * rows - partitions (C)
6) a ← image height/rows
7) ap ← image height - a * (rows -1)
8) ar ← image height/num rows - 1 (D)
9) arp ← image height - ar * (rows - 2)

10) b ← (image width/((ar/a) * (cols-irr cols) + irr cols)) * (ar/a)
11) bp ← (image width - b * (cols-irr cols)) / irr cols (E)
12) bpp ← image width - b * (cols-irr cols) - bp * (irr cols - 1)

Algorithm could be thought in five functional blocks from A to E. Lines 1 and 2
are to determine the maximum number of columns and rows. The number of tiles
is assumed to be a square of an integer. If the number of partitions, partitions, is
a square number, the number of columns, columns, and the number of rows, rows,
would be the same. Set the number of columns for every row(Line 3). By the end of
Block A, the number of column which equals the number of rows is known.

Line 4 is to search for the possibility of dividing the data into less rows than the
current value of rows. If /em partitions is not a square number then there is such a
possibility as shown in Figure 2. The final value of the rows is set while terminating
Block B.

Block C (Line 5)is to compute the number of irregular columns which is one less
than the regular ones.

Block D comprises lines to compute the values of the a family, i.e., a,ap,ar, and apr.
a and ar are tile height for regular and irregular columns respectively where ap and arp
are the last tile heights (residues) of the regular and irregular columns respectively.
Computing values for the a family members is quite simple as image height is known,
the number of rows for regular columns is computed in previous blocks, and the number
of rows for irregular columns is one less than regulars. The height of a regular tile, a,
can be computed by dividing the image height by the number of the rows (Line 6).
Line 7 is to check out whether there is a residue row having different height, ap. If
there is an irregular column, there will be a repeating tile height as well, which is ar
(Line 8). There might be a residue row having different height than ar, which is arp
(Line 9).

The b family members are computed through Block E. Line 10 possesses the so-
lution of two equations to numerate b and bp. In order to make the areas of most
of the tiles equal: a*b=bp*ar. Since image width should be covered by columns:
width = cols ∗ b+ irr cols ∗ bp. As a, ar, cols, and irr cols are computed previously b,
in Line 10, and bp, in Line11 can be numerated. Block E ends with checking out for
size of the residue column.

Thus, one could produce at most six different types of tiles through the given
algorithm. Tile type names and sizes are (Figure 3):

256 ALTILAR, PAKER

Figure 3: All possible tiles and sizes of tiles to be produced by the proposed algorithms

RST - regular standard ones (a ∗ b),
RET - regular excess ones (ap ∗ b),
IST - irregular standard one (bp ∗ ar),
ICET - irregular column excess ones (bpp ∗ ar),
IRET - irregular row excess ones (bp ∗ arp),
IRCET - irregular double excess one (bpp ∗ arp);

where
a is the standard tile height, ap is the height of the last standard tile in a regular

column, ar is the height of irregular column tiles, arp is the height of the last tile in
an irregular column, b is the width of the tile of standard regular column, bp is the
width of the tiles of irregular columns, bpp is the width of the tiles of the last irregular
column.

Almost Square Tiles with aspect ratio Data Partitioning Algo-
rithm

The aspect ratio of the image is taken into account in the ASTwar algorithm. There-
fore instead of dividing image into the same number of columns and rows initially, con-
sidering the aspect ratio, an image can be divided into different numbers of columns
and rows ensuring that widths and heights of rectangles should be as close as possible.

The ASTwar requires the overall ratio for the image. The aspect ratio of the image

MINIMUM OVERHEAD DATA PARTITIONING ALGORITHMS 257

Figure 4: Partition patterns for 142 tile: (a)Lee-Hamdi, (b)ATS, (c)ATSwar

is multiplied by the ratio of the number of rows to columns to compute the overall
ratio: overall ratio = aspect ratio of image ∗ (num rows/num cols)

In the ASTwar algorithm overall ratio to be close to 1 where in the AST number
of columns is equal to the number of rows as the image ratio is expected as one (or
close to one) implicitly. Thus, the ASTwar algorithm is the same as the AST except
the block (A) which comprises a loop to set a value for the overall ratio as close as
possible to 1.

Comparison of the Algorithms

Both AST and ASTwar data partitioning algorithms provide better solution than the
one suggested in Lee and Hamdi. The actual values of data overhead for a neighbour-
hood of 16 pixels are given in Table 1. Even for a neighbourhood of 16 pixels, two
proposed algorithms reduce I/0 data amount by upto 10%. Obviously more significant
reductions are available for larger values of n.

Lee-Hamdi AST ASTwar
Partitions (A) (B) (C) (A)-(B) (A-C) (B-C)

12 78336 74496 74496 3840 3840 0
24 112128 107904 107520 4224 4608 384

110 249792 237200 244544 12592 5248 -7344
130 275072 268672 259440 6400 15632 9232
142 290816 283264 282336 7552 8480 928

Table 1: Actual data overhead in pixels for an image of 576x720 requiring neighbouring
pixels of 16.

Partition patterns for 142 partitions are drawn in Figure 4. One should pay at-
tention to the irregularity of shapes in Figure 4a and regularity in Figure 4b and
Figure 4c.

258 ALTILAR, PAKER

Conclusion and Further Research

Two new algorithms, AST and ASTwar, have been introduced to reduce this overhead
for data transmission for parallel algorithms requiring neighbourhood pixels. They are
both based on the concept that the more tiles are close to squares the less data overhead
is to be introduced. Therefore, a global data partition pattern creation, keeping every
rectangles height and width as close as possible is the basic approach lying under the
two algorithms. ASTwar is slightly different from the first one as it takes the image
aspect ratio into account as well. The partition patterns and numerical analysis have
shown that the ASTwar algorithm has better performance than the AST algorithm.
All of the algorithms are currently being tested for images of different aspect ratios
for image/video processing area. These two algorithms for optimal data partitioning
are also applicable to other types of parallel applications since optimisation is on
overlapped (shared) data. Applying these two algorithms is for parallel numerical
solution of partial differential equations is in progress.

References

[AAL95]M. J. Anderson, S. P. Amarasighe, and M. S. Lam. Data and computation
transformations for multi-processors. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PpoPP’95) Santa
Barbara CA, July 19-21 1995.

[Bre97]P. Brezany. Input/Output Intensive Parallel Computing. Lecture Notes in
Computer Science Series 1220. Springer-Verlag, 1997.

[CQ95]P. E. Crandall and M. J. Quinn. A partitioning advisory system for networked
data-parallel processing. Concurrency: Practice and Experience, 7(5):479–495, 1995.

[KQR95]M. Kaddoura, C. W. Qu, and S. Ranka. Partitioning unstructured graphs for
non-uniform and adaptive environments. IEEE Parallel and Distributed Technology,
3, 1995.

[LH95]C. Lee and M. Hamdi. Parallel image processing applications on a network of
workstations. Parallel Computing, 21:137–160, 1995.

[LWY94]C. Lee, Y. F. Wang, and T. Yang. Static global scheduling for optimal com-
puter vision and image processing operations on distributed memory processors.
Technical Report TRC94-23, Dept. of Computer Science, Santa Barbara, CA, De-
cember 1994.

[Whi92]S. Whitman. Multiprocessor Methods for Computer Graphics Rendering. Jones
and Bartlett publishers, Boston, MA., 1992.

