

ISTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

RELIABILITY AND SECURITY OF

ARBITER BASED PHYSICAL UNCLONABLE FUNCTION

M.Sc. Thesis by

Zaur TARIGULIYEV

 DEPARTMENT : ELECTRONICS ENGINEERING

 PROGRAMME : ELECTRONICS ENGINEERING

Thesis Supervizor : Assist. Professor Dr.Sıddıka Berna ÖRS YALÇIN

DECEMBER 2010

ISTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

RELIABILITY AND SECURITY OF

ARBITER BASED PHYSICAL UNCLONABLE FUNCTION

M.Sc. Thesis by

Zaur TARIGULIYEV

504021229

 Date of submission :

 Date of defence examination:

 Supervisor (Chairman) : Assist. Prof. Dr. Sıddıka Berna ÖRS

 Members of the Examining Committee : Prof. Dr. Ece Olcay GÜNEŞ

 Members of the Examining Committee : Assist. Prof. Dr. Gökay SALDAMLI

2011

5

FOREWORD

I would like to extend my sincere gratitude to my advisor, Berna ÖRS, for her
inspiring advice and encouragment through the beginning to the end of this search.
I would like to express my appreciation and thanks to my best friend, Zafer Işcan,
providing me the PR software tools, and supporting me with some ideas.
Furthemore, I’m thankful to my friends from Embedded System laboratory for
technical support in experiments with FPGA.

Decemeber 2010 Zaur TARIGULIYEV

 Electronics Engineer

6

7

TABLE OF CONTENTS

1. INTRODUCTON .. 17

2. DEFINITION AND APPLICATION OF PHYSICAL UNCLONABLE FUNCTIONS . 21

2.1 Definition of One–Way Function .. 21

2.2 Definition of Physical Unclonable Function .. 22

2.3 PUF Based RFID Authentication ... 23

3. DESCRIPTION AND LINEER MODEL OF PUF CIRCUIT .. 25

3.1 General Description ... 25

3.3 Delay Paths in the PUF Circuit ... 28

3.3.1 Switch delay .. 28

3.4 Symmetrical Structure of PUF circuit ... 31

3.5 Lineer Model of an Arbiter-based PUF ... 33

4. IMPLEMENTATION OF A PHYSICAL UNCLONABLE FUNCTION ON AN FPGA 35

4.1 Introduction to a FPGA ... 35

4.2 Implementation of PUF components .. 36

4.2.1 Switch implemented with MUX ... 36

4.2.2 Arbiter ... 39

4.3 Placement of Switch Box ... 41

5. ANALYSIS AND CHARACTERIZATION OF ARBITER-BASED PUF 43

5.1 Inter-chip Variation ... 43

5.1.1 Information –bearing challenges .. 43

5.1.2 Definition and evaluation of inter-chip variation .. 45

5.2 Environmental Variations ... 46

5.3 Identification/Authentication Abilites .. 47

6. SOFTWARE ATTACKS ON ARBITER-BASED PHYSICAL UNCLONABLE FUNCTION 49

6.1 Prediction and Calculation Tools ... 50

6.1.1 Lineer Programming method .. 51

6.1.2 Lineer Support Vector Machine .. 52

6.2.3 Radial Base Functions Support Vector Machine .. 54

6.2 Attacks on PUF Circuit Using Linear Programming Aproach 56

6.2.1 Experiments using data generated by Matlab ... 56

6.3.2 Experiments using data measured from the PUF on the FPGA 57

6.3 Attacks on PUF Circuit Using Support Vector Machine Classification 58

8

6.3.1 Experiment using data generated by Matlab ... 58

6.3.2 Experiments using data measured from the PUF on the FPGA 59

6.4 Reason of Failure in Prediction of PUF Circuit Responses 60

7. CONCLUSION .. 63

APPENDICES ... 69

CURRICULUM VITAE .. 71

9

ABBREVIATIONS

POWF : Physical One Way Function

PUF : Physical Unclonable Function

MUX : Multiplexer

SVM : Support Vector Machine

FPGA : Field Programmable Gate Array

LUT : Lookup Table

RBF : Radial Basis Function

10

11

LIST OF TABLES

Table 5.1: Table form of PUF responses, indexed with j, against randomly chosen i

challenges..

Table 6.1: Results of prediction test using linear programming approach for PUF

implemented with MUXs and response generated by the mathematical

model... 41

Table 6.2: Results of prediction test using linear programming approach for PUF

implemented with MUXs and response measured from the PUF on the

FPGA.. 42

Table 6.3: Results of prediction test using Lineer SVM classifier for PUF implemented

with MUXs and response generated by the mathematical model.............................. 42

Table 6.4: Results of prediction test using Lineer SVM classifier for PUF implemented

with MUXs and response measured from the PUF on the FPGA................................ 43

Table 6.5: Results of prediction test using RBF SVM classifier for PUF implemented

with MUXs and response measured from the PUF on the FPGA............................... 43

12

13

14

RELIABILITY AND SECURITY OF ARBITER BASED PHYSICAL

UNCLONABLE FUNCTION

 SUMMARY

Modern cryptographic protocols are based on the premise that only
authorized participants can obtain secrets keys and access to
information systems. However, various kinds of tampering methods
have been devised to extract secret information from smartcards and
ATMs. From storage of digital secret key in a chip we came to an idea to
use physical property of nonhomogenious material that make him
unique . This property make a secret key unclonable and due to this, the
structure created from this material are called physical unclonable
function. First time, this idea was realized using optical micro-structure
with bubbles. Then, silicon material was used to realize the Arbiter-
based Physical Unclonable Functions (PUFs). This technique exploit
statistical delay variation of wires and transistors across integrated
circuits (ICs) in the manufacturing processes to build a secret key unique
to each IC. We implemented Arbiter-based PUFs in Xilinx FPGA and
investigated the identification capability, reliability, and security of this
scheme. Experimental results and theoretical studies show that a
sufficient amount of variation exists across ICs. This variation enables
each IC to be identified securely and reliably over a practical range of
environmental variations such as temperature and power supply
voltage.

15

FIZIKSEL KOPYALANAMAZ FONKSIYONUN GÜVENLİĞİ VE

GÜVENİRLİĞİ

 ÖZET

Modern kriptografik protokoller sadece yetkili kişilere sistemdeki

bilgiye ve gizli anahtara erişimini sağlamaktadır. Ancak, smart

kartlardan ve ATM’lerden gizli bilgileri elde etmek amacıyla değişik

teknikler geliştirilmiştir. Gizli anahtarın dijital veri yerine maddenin

homojen olmayan ve o maddeyi tek yapan fiziksel özelliği ile

ilişkilendirilmesi fikir olarak sürülmüştür. Bu özellik gizli anahtarın

kopyalanmasını imkânsız kıldığı için bu maddeden oluşan yapıya

fiziksel kopyalanamaz fonksiyon adı verilmiştir. Bu fikri önce içinde

kabarcık olan cam, sonra silikon maddesi kullanılarak hayata

geçirilmiştir. Bu yöntem her bütünleşmiş devresinin ait tek gizli

anahatarı oluşturmaktadır. Bunu için bütünleşmiş devrelerin üretim

sürecindeki oluşan hat ve tranzistorlardaki geçikme varyasyonları

kullanılmaktadır. Arbiter tabanlı PUF devresi Xilinx FPGA’de

gerçeklendi. PUF devresi kimlik belirleme yeteneği, güvenirlik ve

güvenlik açısından incelendi. Deneysel sonuçlar ve teorik çalışmalar

entegre devre içinde varyasyon yeterli miktarda var olduğunu

göstermektedir. Bu varyasyonlar her entegre devreyi, ısı ve güç

kaynağı gerilimin değişimi makul sınırların içinde kalmak kaydıyla,

güvenilir ve sağlam şekilde tespit edilmesini sağlıyor.

16

17

1. INTRODUCTON

Typically, cryptography is used to secure communication between two parties

connected by an untrusted network[1]. In such communication, each party has

privately stored key information which allows it to encrypt, decrypt, and authenticate

the communication. It is implicitly assumed that each party is capable of securing its

private information. This assumption is reasonable when a party is a military

installation, or even a person, but breaks down completely for low-cost consumer

devices. Once a secret key is attained, eavesdropping and impersonation attacks

become possible[2].

In low cost devices such as RFIDs and smartcards is essential that sensitive

information is safely stored and communicated. However, the inherent power and

footprint limitations of such devices, prevent us from employing standard

cryptographic techniques for authentication which were originally designed to secure

high end systems with abundant power. In practice, the implementation cost of

cryptographic hash functions is near that of block ciphers which is around 10K logic

gates [3,4]. For RFIDs the footprint allotted for security is less than 1K gates [5].

Public-key cryptography bears significant computational overhead when compared

to secret key techniques. Furthermore, even if the footprint problem is solved, each

time an authentication takes place, the device has to transmit large amounts of data

through the channel to the reader, which will unnecessarily consume the power of

the device.

Another issue of secret key technique is resilience against invasive and non-invasive

physical tampering attacks. Laser cutting, microprobing and power analysis have

made it possible to extract digitalized secret information from ICs and compromise

conditional access systems by using illegal copies of the secret information[2].

Focusing on the problem of invasive attacks, it is apparent that once a device has

been opened, the large difference in state between a 0 and a 1 makes it relatively

easy to read out the device‟s digitally stored secrets. Traditionally, such attacks are

avoided by detecting intrusion and erasing the key memory when an intrusion is

detected [6]. However, tamper-sensing environments are expensive to produce and,

as long as a key is being protected, the intrusion sensors need to be powered, further

18

increasing costs. In order to resist to the cloning and invasive attacks random

functions based on the randomness in physical materials were proposed.

Chronology in development of unclonable artifacts show that the first powerful

notion of a physical one-way functions (POWF) was introduced by Papu et. al [7].

In the study of the physical one way functions he used transparent optical medium

with a 3 –dimensional micro-structure containing bubbles. The input-challenge of

the POWF is an incomming laser beam and the output /response is a fixed-length bit

vector derived from resulting interference patterns. The interference pattern depends

on the angle and frequency of incoming beam and the speckle pattern in the optical

medium. After that, Gassend et. al. introduced the concept of a silicon physical

unclonable function or silicon PUF [8,9]. Modern and future silicon technology-

based integrated circuits may serve as PUFs due to their intrinsic manufacturing

variability. Essentially, a number of unavoidable physical and chemical phenomena,

such as silicon lattice imperfection, uneven distribution of dopants, imperfect mask

alignment, and non-uniform chemical mechanical polishing, result in gates with

sharply different characteristics. Already in 45 nanometer technology, it is common

that the delay of the same gate in different ICs differs by 1/3 from the nominal value

[7]. Therefore two silicon PUFs, having the same structure and designed to be

sensitive to circuit delays, implemented on the same IC or different ICs have

different responses to the same inputs.

 Since process variation is beyond manufacturers' control, even an adversary who has

detailed information of the PUF circuit cannot physically clone the silicon PUF of a

given IC. So the authentication in PUF circuits are based on hidden delay or timing

information corresponding to a circuit rather than digitial information [10]. Since

there are several types of PUFs with different structure and complexities from a

security point of view(XOR PUF, Feed Forward PUF, Ring Oscilator PUF) we

consider only basic type called arbiter-based PUF.

The main purpose of this thesis is to investigate the reliability and resistance of a

PUF, implemented on FPGA, to software attacks. Also, we aim to implement PUF

structures based on MUXs and make analysis on data obtained from them. These

data enable us to study the characteristics of the PUFs and sensitivity to changes to

environmental factor such as the ambient temperature and voltage fluctuations.

19

This thesis is structured as follows. Chapter 2 defines physical unclonable functions

and physical one-way functions, gives an example of one-way mathematical

function. Furthemore, in this chapter one of the most common application of PUF is

considered.

 In Chapter 3 general overview of PUF system and notion of the delays is

considered. In this we cover the fundamental components containing in the

differential structure of PUF. Also, we show how delay path can be configured using

additive property of the delay and underline the conditions that are providing more

sensitivity to inherit process variation in PUF circuits. We provide a linear model of

PUF circuit where responses are expressed in terms of challenges and delay

variables.

Chapter 4 introduces a detailed circuit implementation of arbiter-based PUF on a

Xilinx FPGA device using program Xilinx ISE 9.2 . We shortly touches on the

primitive logic elements that enable us to implement the main components of PUF

circuit. Furthemore, the hardware description language codes(VHDL) that generate

these components are also given. In this chapter we show how to adjust “synthesize”

tool that comes inside Xilinx ISE 9.2 in order to prevent from converting MUX.

Also with the integrated in ISE environment “Floorplanner ” tool we try to achieve

symmetrical placement of switch blocks.

In Chapter 5 the experimental results for PUFs implemented on FPGA are shown.

We analyze the important, for security and reliability, characteristics of PUFs such as

the inter-chip variation and environmental noise.

Chapter 6 studies the vulnerability of the arbiter-based PUFs against possible

software attack models. Based on the linear model we make attacks using a limited

number of linear inequalities and linear programming technique. Using this method,

we try to solve for uknown delay parameters of the circuit. Then we compares the

responses produced by our theoric model and the model extracted by linear

programming algorithm. In the second attack we use artificial neural network.

Providing challenge-response pairs for training of the Supported Vector Machine

neural networks, the prediction capabilites of these method are investigated. Also, in

this chapter is told about causes of inconsistency between responses of a lineer

model of a PUF with the responses obtained from FPGA.

20

Finally, in the last chapter all the parameters that have effects on security of PUF on

FPGA are summarized.

21

2. DEFINITION AND APPLICATION OF PHYSICAL UNCLONABLE

FUNCTIONS

2.1 Definition of One–Way Function
Information security requires a mechanism that provides significant asymmetry in

the effort required to make intended and unintended uses of encoded information.

Modern cryptographic practice rest on the use of one-way functions(OWF). If is

one–way function i.e for any argument it is easy to compute but extremely hard to

invert, then, even if and were made public, it would be nearly impossible

for a reasonable adversary to compute the password (PW) from . Here, a

reasonable adversary is one that does not have access to exponential computing

resources.

Here is the formal definition of one-way functions.

A function f:{0,1}*{0,1}* is called strongly one-way if the following two

conditions hold[2].

 Easy to compute: There exist a deterministic polynomial time algorithm A

such that on input x, A outputs

 Hard to invert: For every probabilistic polynomial time algorithm , every

polynomial , and all sufficiently large

 (2.1)

Saying that a function is easy to compute means that there exist a P-time algorithm

 which, given an input , output . The second condition means that the

probability that algorithm will find an inverse of under is negligible[1]. Weak

one-way functions require only that all efficient algorithms fail with some non-

negligible probability.

22

In order to give an example of OWF candidate let‟s define a function as

 , where and are -bit primes and is the regular integer multiplication[2].

(So , our domain is the set of pairs of k-bit primes, and where is

the set of -bit primes, and is set of -bit numbers). So clearly, is not a

permutation. And let‟s assume that n=p q, so that . There‟s no

known polynomial time algorithm such that output values and so

 . Of course, we can object this claim offering test all the number

from 2 to . And propose a program that works like the following:

For i=2 to do

If (i divides n) then output (i,

);

And we would claim that our program runs in time O(which is polynomial in

temrs of n[2]. However, keep in mind taht the number n inputted in this algorithm is

of magnitude roughly and of size 2k and since , this

algorithm runs in time O(, which is exponential in terms of input size. Thus this

algorithm runs in exponential time. And, no algorithm that‟s polynomial in terms of

k is known that can factor n. Therefore, this function f is easy to compute and

difficult to invert .

2.2 Definition of Physical Unclonable Function

 Instead of using computational complexity of algorithm, we can exploit the physical

randomness in nature, such as heterogeneous optical medium, electrical noise, and

process variation in silicon manufacturing, to construct unclonable functions[2]. A

physical unclonable function has common properties as one way function but

differently it‟s implemented in a physical device.

Here is a definition of physical unclonable functions based on the definition of one-

way functions. The term challenge refers to the input to the functions and response

refers to the output[1].

23

A physical Random Function is the function embodied by a physical device, and

maps challenges to responses. A physical unclonable function satisfies the following

properties:

 Easy to evaluate: The physical device can easily evaluate the function in a

short period.

 Hard to predict: From a polynomial number of physical measurements (in

particular, determination of chosen challenge – response pairs(CRPs)), an

adversary who no longer has the device and can only use a polynomial

amount of resources (time, matter) can extract only a negligible amount of

information about the response to a randomly chosen challenge.

By the tern “easy”, we mean that the function can be computed in polynomial

time.

2.3 PUF Based RFID Authentication

PUFs are tiny electrical circuit primitives that exploit the unavoidable IC fabrication

process variations to generate unlimited number of unique, unpredictable, though

reliable "secrets" from each chip. These secrets are dynamically generated, using a

challenge response scheme. A PUF is queried with a challenge vector (input vector) -

a random 64-bit (or longer) number. It almost instantly generates a unique response

vector(output) - a 64-bit (or longer) number.

In the figure 2.1, an application of PUF based RFID authentication is given[24]. As

shown in the figure below, a set of challenge response pairs are collected from the

chip, and stored in a database. This may usually happen at an initial stage in the life

of the chip, perhaps at a secure location. To authenticate the chip at a later time, one

of the stored challenges from the database is sent to the chip, the response generated

is compared against the one initially recorded in the database. If the two match, the

chip is authentic. Since each chip can have multiple challenge response pairs, each

challenge response pair is used just once, as a one-time pad. This prevents replay

attacks on PUF authentication.

24

Figure 2.1: PUF based RFID authentication procedure

25

3. DESCRIPTION AND LINEER MODEL OF PUF CIRCUIT

3.1 General Description

An arbiter-based PUF is a {0, 1}
n
 →{0, 1} mapping, that takes a n-bit challenge (a)

and produces a single bit output (r). The basic idea of a PUF circuit is to create a race

between two signals which originate challenge (C) as an input and produces a single

bit output (R). The arbiter based PUF circuit consists of n consecutive MUX blocks.

Each MUX block consist of two MUXs and has two input and two output bits and a

control or select bit. If the control bit of a MUX block is logical 0, the two inputs are

directly passed to the outputs through a straight path. However, if the control bit is

set to logical 1, the two input signals are switched before being passed to the outputs

of the MUX block. Based on the control bit of the MUX block, each of the two input

signals will take one of two possible paths. As can be seen from Figure 3.1, there are

n MUX blocks where the output of each block is connected to the input of the

following block. After the last block, the two output signals are connected to an D

Flip-flop. The two inputs of the first block are connected to each other, and the

connection is sourced by a pulse generator.

Figure 3.1: Arbiter-based PUF circuit

Afterwards, a pulse is generated and fed into the inputs of the first block. Since the

inputs of the first block are connected, the pulses traveling through each of the two

paths(red and blue lines) are expected to be simultaneous. Although these two paths

have been supposed to be perfectly symmetrical, manufacturing variations of these

paths will cause a small mismatch. As the two pulses pass through the consecutive

MUXs, they will start acquiring a time delay. The arbiter at the end of the delay

26

paths determines which rising edge arrives first and sets its output to 0 or 1

depending on which of the pulses comming first .

3.2 Components of PUF Circuit

As it‟s seen in the Figure3.1 the main components of PUF circuit are MUX blocks

and D-type Flip Flop. Due to their functions they can be representated as a switch

block and an arbiter. In the next chapters MUX blocks and switch blocks are used

interchangeably. The same is valid for a D-type Flip- flop and an arbiter component.

So, switches as MUX block have 2 inputs, 2 outputs and control or select pins.

Applying logic “0” to control pin provide direct connection between input and output

which means the signal stay on the same path. On the contrary, if control signal is

logic “1” the connection are cross coupled which means the input signals interchange

their path. The described operation of switch block component are shown in the

Figure 3.2.

Figure 3.2: Operation of MUX blocks or switch block components

A positive edge-triggered D-type flip-flop or arbiter has two input and 1 output pins

as it shown in the Figure 3.3. On the positive transition of the clock, the Q outputs

will be set to the logic states that were set up at the D input. This logic states are hold

until the next transition of clock input.

27

Figure 3.3: Operation of a D-type Flip-Flop or an arbiter

Flip – flop have setup and hold time that must be satisfied[25]:

Figure 3.4: Setup and Hold times in a Flip-Flop

If D will arrives before setup time and is stable after the hold time Flip-Flop will

work. FF will slow the signal by the setup and “clk to Q” delay in the worst case. In

a PUF circuit, if the delay difference between signals in G and D pins is more than

setup time, Tsetup , the output will be logic ”1” ,otherwise the output will be logic ”0”.

28

3.3 Delay Paths in the PUF Circuit

3.3.1 Switch delay

CMOS non-linear model let us define the total(switch) delay of a logic gate i.e the

delay between input of the first gate and the input of the next gate as shown in the

Figure 3.5. This model propose us to divide the switch delay in two components as

cell delay and connect delay which is expressed below by the formula (3.1)

 (3.1)

The delay contributed by the MUX gate itself, is typically defined as the 50

percent input pin voltage to 50 percent output voltage[26]. Cell delay is usually a

function of both output loading and input transition time. The connect delay

of an element is the time it takes the voltage at an input pin to charge after the

driving output pin has made a transition. In brief, it‟s the time neccesary for a

waveform to travel along a wire. The connect delay are the function of wire

capacitance, pin capacitance and wire resistance. The wire capacitance and wire

resistance are related with wire length.

Figure 3.5: Cell and Connect delays in a PUF circuit

29

3.3.2 Delay path configurations

Unique delay paths consist of unique delay of MUXs. Different challenges will

impose different paths on the propagating pulses. In order to see different

configurations of delay path in PUF circuit we can consider a circuit that consist of

two switch components without an arbiter part. In this example we assume that the

delay behavior‟s of circuit obeys additive delay model[10].

Figure 3.6:. Delays in a switch block

We label the two paths which the upper signal can take as ai and bi, and for the lower

signal as di and fi. Paths a1 and f1are chosen when the challenge bit c1 is 0, whereas

b1 and d1 are chosen when the challenge bit is 1.

Figure 3.7: Configured delay paths with C1=0 and C2=0 control inputs

When C1 =0 1.path delay is a1

 2. path delay is f1

When C1 =1 1.path delay is d1

 2. path delay is b1

30

Figure 3.8: Configured delay paths with C1=0 and C2=1 control inputs

Figure 3.9: Configured delay paths with C1=0 and C2=0 control inputs

Figure 3.10: Configured delay paths with C1=1 and C2=1 control inputs

 , is the delays of a signal gained at the end of direct passing through switch to

the input of next switch and , is the delays of a signal gained at the end of cross

passing through switch to the input of the next switch .

 For 1. path all set of total delay will be

m11(b)= a1 + a2 (C1=0, C2=0) (3.1)

m12(b)= f1 + d2 (C1=0, C2=1) (3.2)

m13(b)= b1 + d2 (C1=1, C2=1) (3.3)

 m14(b)= b1 + f2 (C1=1, C2=0) (3.4)

 For 2. path all set of total delay will be

m21(b)= f1 + f2 (C1=0, C2=0) (3.5)

m22(b)= a1 + b2 (C1=0, C2=1) (3.6)

m23(b)= d1 + b2 (C1=1, C2=1) (3.7)

m24(b)= b1 + f2 (C1=1, C2=0) (3.8)

If we set and , the delay of path 1 is f1 + d2 and a1 + b2.

So, if the delay difference, δ, between path 2 and path 1 is greater than Tsetup the

31

response will be logic “1” , otherwise the response will be logic “0”as depicted in the

Figure 3.10 . As we see for n=2 challenges we get 2x2
2

 different configurations or

equations for 1 and 2 path. So if we generalize n challenge bits lead to 2
n

 equations

for each path with 4n unknow delay variables.

Figure 3.11: Arbiter operation in the example with m1 and m2 delay paths

3.4 Symmetrical Structure of PUF circuit

Analyzing the PUF circuit, which is shown in the Figure 3.1, and path delays, which

are described in previous section, allow us to propose more general structure of PUF

as shown in the Figure 3.11, below:

 Figure 3.12: More general structure of arbiter based PUF

32

The delay pathes are configured by using n-bit challenge vectors. These challenges

select different routing for signals. The signal travelling on this route passing

through different switches or MUXes. So, the total delay of signal1 and signal2 at

the end of delay paths is sum expression where each entry belongs to unique

combination of unique delays. In order to find more general expression for the total

delay path 1 and 2 we adds up all the switch delays that signal passing through. After

that we separate all switch delays to cell and connect delays components. All this

operation are reflected in the formula 3.9 and 3.10. The arbiter gives the output

according to measured differences between these delay paths. Formula 3.11 gives

the general expression for these difference.

 =

 (3.9)

 =

 (3.10)

 - =

) (3.11)

The last expression show that if difference connect delay components are much more

than difference of cell delay component and setup time of D Flip-flop then the

response of PUF circuit are biased to logic”1” or logic “0”. As a result the circuit

become insensitive to process variations in silicon. That is why we need to reduce

the contribution of a connect delay. From section 3.3.1 we know that connect delays

are mainly the function of wire length. That‟s why the only way to do it is to make

the structure of PUF symmetric i.e make wire length connecting the MUXs equal.

Figure 3.12 help us to depict our statement

Figure 3.13: The symmetrical wiring between two switch blocks

The symmetrical structure must be maintaned through all PUF circuit in order to

produce random responses against random challenge vectors.

33

3.5 Lineer Model of an Arbiter-based PUF

In this section we derive a linear model for arbiter based PUF [1].

 Figure 3.14: PUF circuits represented with switch blocks and switch delays

To compute the total delay, the path of the upper signal is followed from the initial

input pulse. The signal will start traveling in a separate path to get to the first switch.

Let us label this initial delay as a0. For the signal going through the lower path we

label this delay as f0. In the first switch the delay of the signal 1 will be (1a1 + c1b1),

where 1 is the complement of c1. The delay in the second switch will depend on

whether the signals switched paths in the first stage or not. For signal 1 if it doesn‟t

change path (c1 =0) the delay at switch2 will be 1(2a2 + c2b2). If it changes (c1 =1)

the delay at switch will be c1(2f2 + c2d2) . So, the total delay of signal 1 at switch 2

will be 1(2a2 + c2b2) + c1(2f2 + c2d2) . Let‟s specify a new variable xi which

represents the parity of the first i−1 challenge bits, and will signify if the signal

starting at the upper path stays in that path or moves to the lower path after i − 1

switches. The expression for xi is

 (3.12)

So the delay of i th switch can be denoted as i(iai + cibi) +xi(ifi + cidi)

. The total delay in the pulse of signal 1 is

 (3.13)

34

Similarly the delay for the signal 2 initiated in lower path can be derived to be equal

to

 (3.14)

The difference between these two delays δ is the main variable for our model. This

difference will decide whether the output of the PUF is 0 or 1. Since we do not know

which of the two signals will end up in the upper path, we will need to incorporate

the parity of all the challenge bits which we label P. The difference between the two

delays becomes

 (3.15)

 (3.16)

Finally , we define

 and

 for

i=1...n and . We define the parity of the challenge bits from a reverse

order as . The delay equation becomes:

 +

 (3.17)

Since connection delays in direct and cross wiring between two following switch

boxes ideally suppose to be equal, due to symmetry, we can conclude that the

defined variable ui must be close to zero. Extracted expressions for ui and variable

are given in appendix A. So, in the above expression for (delay difference) we can

omit the parameter ui . Note that p1=P, and that . After defining yi=νi-1

the final delay equation becomes

 (3.18)

Equation 1 uses only n+1 rather than 2n+1 variables to desribe the delay between the

upper and lower signal paths. It‟s important to note that the delay variation yi will

depend on the fabrication process of the PUF circuit. Therefore, one would expect

these variable to follow a normal distribution. Without loss of generality, we can

35

normalize these values and assume they belong to a normal distribution of mean 0

and variance 1. We invoke the arbiter condition for the response bit R. We have

δ> Ts R=1 (3.19)

δ< Ts R=0 (3.20)

Where Ts is the setup time for the arbiter.. Finally , we can use Equation to write

response equation.

 (3.21)

Equation (3.21) is an inequality relating the challenge vector C which consist of n

input bits Ci to the output bit R. This inequality has n+1 variables which

characterize the PUF circuit. So, for a single PUF, we may form the following linear

equation:

δ j =

y1 + +

 + ... +

 + (3.22)

Using Equation 2 we may write the following linear inequalitiy

[

 Y < 0 (3.23)

where Y=

4. IMPLEMENTATION OF A PHYSICAL UNCLONABLE FUNCTION ON

AN FPGA

4.1 Introduction to a FPGA

For implementation of PUF circuit we preferred FPGA Virtex2Pro designed and

produced by Xilinx Corporation. FPGA devices are preffered to custom IC because

of some advantages such as flexibility in reprogrammability and short amount of

time for implementation of circuits [11].

FPGAs contain programmable logic components called "configurable logic blocks",

and a hierarchy of reconfigurable interconnects that allow the blocks to be "wired

together", somewhat like a one-chip programmable breadboard. Logic blocks can be

http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard

36

configured to perform complex combinational functions, or merely simple logic

gates like AND and XOR. In most FPGAs, the logic blocks also include memory

elements, which may be simple flip-flops or more complete blocks of memory[12].

CLB resources include four slices and two 3-state buffers. Each slice is equivalent

and contains:

 Two function generators (F&G)

 Two storage elements

 Arithmetic logic gates

 Large multiplexers

 Fast carry look-ahead chain

 Horizontal cascade chain (OR gates)

The function generators F & G are configurable as 4-input look-up tables (LUTs), as

16 bit shift registers, or as 16-bit distributed SelectRAM+ memory. In addition , the

two storage elements are either edge-triggered D type flip flops or level-sensitive

latches. Each CLB has fast internal interconnect and connects to a switch matrix to

access general routing resources [12].

4.2 Implementation of PUF components

Xilinx ISE 9.2 is the one of a software tool produced by Xilinx for synthesis and

analysis of HDL designs, which enables the developer to synthesize their designs,

perform timing analysis, examine RTL diagrams, simulate a design's reaction to

different stimulus, and configure the target device with the programmer. In order to

synthesize a component and implement it on FPGA we should know the VHDL

design flow and understand VHDL codes [13] Any primitive logic are implemented

in FPGA by using function generators or look-up tables(LUTs)[12].

4.2.1 Switch implemented with MUX

The structure of this switch unit is shown on the Figure 4.1. Each switch unit

includes two MUX elements. So this structure enable us to connect directly or cross

connect inputs “dI0” and “dI1” to outputs “dQ0” and “dQ1” depending on a

challenge input bit .

http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Programmer_(hardware)

37

Figure 4.1: A Switch block implemented with a MUX

For synthesis of MUX switch we need to define the entity with three inputs (one of

them is challenge bit) and two outputs. Inside of the entity we describe the MUX

unit and how they connected. In the architecture part of VHDL codes we define the

loop statement “ ” ,which is necessary to obtain a chain of

serially connected MUX switch[15] . spesifies the number of switches and the size

of input vector of challenge bits. The VHDL codes for implementation of switch

blocks on FPGA are given in the CD, which is attached with the thesis. As a result of

synthesizing this code we get RTL schematic as shown on Figure 4.2.

A Synthesizer integrated in ISE tool always try to optimize the logic. There are

usually many ways to implement logic with a given functionality. If the

synthesis/mapping/place & route tools recognize that certain blocks do not fulfil a

timing requirement, these blocks may be optimized in terms of placement and

logic design, possibly at the cost of an increased area or slow speed. That is why as

the result of synthesis the MUX gate are simplified and the routing between gates are

not as shown in the figure 3.1. To avoid it we must change the constraints of

synthesizer as it shown on the figures 4.7, 4.8.

38

Figure 4.2 : RTL schematic of a switch implemented with a MUX

Figure 4.7: Access the “Property” option of a synthesize process

39

Figure 4.8: Setting “Keep Hierarchy” parameter to “YES” value

4.2.2 Arbiter

For an arbiter we use pozitive edge triggerred D type Flip Flop. Unwilling wiring of

clock input of flip flop to an internal system clock signal done by synthesizer make

us to implement own D type flip flop. The schematic of the Flip flop are shown on

the figure 3.10 [15]

40

Figure 4.10: The D type edge-triggered flip flop

The operation of D Flip- flop are illustrated in the Figure 3.3.

As the rising edge of D comes earlier than that of G, an ideal arbiter output must be

1. However, if the time differnece between two signals is less than the setup time of

the Flip-flop , an output remains at „0‟ instead of being switched to „1‟. This property

introduces an skew factor or imbalance in ratio of numbers of 1 and 0 at the output.

The desiring probability of comming „1‟ or „0‟ at the output must be the same and

equal to 0,5. Frequently most of flip flops favor the path to output „0‟. So, to

compensate for the skews we fix some of the most significant challenge to

effectively lengthen the delay path connected to a gate input[2]. Also, in the

graduation project[15] the number of switch blocks or challenge bits, n, giving

almost equal rate of logic „1‟ and logic‟0‟ in response, has been determined

experimentally. In this experiment, the responses has been measured against

randomly generated challenge vectors. Implementing PUF with n= 64 switch blocks

almost solve our skew problem. In our experiments, with 64 switch blocks we obtain

the rate as 61 %.

 The two signals emitted from the source at the same time after passing through

switch blocks arrives to data and clock input of the arbiter. . For implementation of

41

the flip-flop shown in figure 4.10 we need a primitive NAND gates. That can be

accomplished by configuration of LUT as result of synthesizing the next code:

LUT2_inst : LUT2

 generic map (

 INIT => X"7")

 port map (O => O, -- LUT general output

 I0 => I0, -- LUT input

 I1 => I1 -- LUT input

);

4.3 Placement of Switch Box

In order to maximize the inter-chip variation, the delay path must be placed and

routed as symmetrically as possible so as to minimize the delay differences between

two paths[1]. Since Xilinx ISE places the gates automatically not considering the

wire length or wire delay, the implemented PUF always gives response that biased to

logic „1‟ or logic ‟0‟. So symmetrical placement of switch box minimizing the wire

delay shown on the figure 4.12 For that placement we should manually drag and

place the MUXs in the according slices that contains this logic gates in Xilinx

Floorplanner tool. Having done this placement the tool automatically write this

constraint into “ucf” file,which is designated for defining pozition, time, connection

constraints. In this file must be inserted the constraints that fix upper and lower

MUXs. In order to keep them close one of them are placed in F LUT the other in G

LUT in the according slices. For that we must enter the following codes in “ucf” file

shown on the figure 4.13:

42

Figure 4.12: The placement of MUX switches in Floorplanner

Figure 4.13: Constraints in “UCF” file to select LUT F and LUT G for placement of MUXs

43

5. ANALYSIS AND CHARACTERIZATION OF ARBITER-BASED PUF

In this section we present the primary characteristics of arbiter-based PUF such as

inter-chip variation, measurement noise, and environmental variations, which have

an important effects on identification process between different PUFs.

5.1 Inter-chip Variation

5.1.1 Information –bearing challenges

Information –bearing challenges can be defined as the challenges whose responses in

a number of different PUFs are not equal. In order to identify a large amount of PUF

on FPGA we need considerable numbers of information-bearing challenges. In an

experiment where we applied 2000 randomly chosen challenges to 37 chips we could

define the ratio of information bearing challenges. Due to the lack of so many

FPGAs in our laboratory I decided to make experiments on available two FPGA

chips but with different positions of PUF circuit across the FPGA chip wafers. The

results of measurements done in another graduation project [2] approve our decision.

The results obtained there shows that the variations across different wafers is similar

to the variations across one wafer.

Putting the obtained data in matrix form enable us to facilitate some manipulations

over data. The entries Ri,j in this matrix are the PUF function F
(j)

 (corresponding to j

FPGA chip)

which takes C

(i)
as an input vector.

For each challenges, we have calculated the probability of a response being 1 as

follows, in other words we count the occurence of 1 across a row and divide it by the

number of tested FPGA chips or j.

44

Table 5.1: Table form of PUF responses, indexed with j , against randomly chosen

i challenges

 Response of each PUF, F
(j)

Challenges,

C
(i)

F
(1)

F
(2)

 F
(3)

 ... F
(h)

C
(1)

R1,1 R1,2 R1,3 R1,... R1,h

C
(2)

 R2,1 R2,2 R2,3 R2,... R2,h

... Ri,1 Ri,2 Ri,3 Ri,j Ri,h

C
(v)

Rv,1 Rv,2 Rv,3 Rv,j Rv,h

 (5.1)

where k is the number of PUFs that output 1 against each challenge vector ,

 and . Figure 5.1 shows the density function of the

random variable pi for 2000 challenges. When =0 or =1 , the challenge does not

generate any information since all PUF response are equal. Except for the cases

when =0, =1 , more than 84 % of the total challenges are information-bearing

challenges.

Figure 5.1: The density function of the random variable

The changes in responses of PUFs across a row in the table[2]are resulted from

differences in a process variation. The changes in responses of PUFs across a

column are arised from different challenges.

45

5.1.2 Definition and evaluation of inter-chip variation

Here we define the inter-chip variation between two different PUFs as below . For

two different PUF responses () and () to a challenge we can define a

function that compare the responses which are the inputs to this function . This

function behaves like XOR logic function.

Dm, p = XOR((), Ri, p())=
 (5.2)

where m , p , i

Simply by this formula we estimate the Hammming distance between responses of

two different FPGAs.

Inter-chip variation is one of the basic functions tha make the PUF ouputs unique. It

is very important for security of PUF based identification. If the PUF produces

uniformly distributed independent random bits, the inter-chip variation should be 50

% on average[2].

For a random challenge set C, we define the inter-chip variation yi,j between PUF i

and j as

 (5.3)

For convenience, we denote the inter-chip variation by (100*)

Let „s assume that our responses from different FPGAs are in matrix or table form as

it‟s shown in the table 1. Finding inter-chip variations between PUF
i
snd PUF

j
 is

equvalent to finding the hamming distance between two columns that corresponds

to FPGA with i index and FPGA with j index.

We have evaluated yi,j from 91 arbiter-based PUF pairs using a random challenge set

C, where |C|=20000. Figure 5.2 shows the density function of 91 evaluated inter-chip

variation. Our test-chips have 34% inter-chip variation on average, and the minimum

inter-chip variation is 2%. So minimum value of inter-chip is not allowable since it is

less than our environmental noise, which will be described in the next section. It

means that we can not distinguish any of two different FPGA using this challenges.

This PUF based system is vulnerable to impersonation attacks.

46

Figure 5.2 : The density of the inter-chip variation yi,j for a number of PUF pairs.

5.2 Environmental Variations

Environmental or intra-chip variation is the property that make outputs of a PUF

reproducibile. It is important for reliability in applications based on PUFs. We desire

0 % intra-chip variation[15].

Noise, which may cause unreliability in measured PUF responses are arised from

temperature and power supply variation[16].

Temperature or power supply voltage variations can significantly change circuits

delay and lead to unreliable responses. Since we exploit relative delay measurement,

arbiter-based PUFs are robust to such environmental variations. Figure 5.3 shows the

amount of environmental variation introduced by temperature (μt) and voltage

variation (μv) . The reference responses are measured at 27 °C and 1,8 V power

supply voltage [2]. In this experiments 10000 challenges are used to estimate

environmental variations. Even if the temperature increases more than 40 degrees to

70 °C , μt 4,82 %[2]. Also with ± 2% power supply voltage variation , μv 3,74%

.Both μt and μv are below the average inter-chip variation.

47

Figure 5.3: The variation of PUF responses due to temperature and power supply

changes[2]

5.3 Identification/Authentication Abilites

When we use PUFs for the identification of registered users , there exists the server

that stores CRP profile of N registrered PUFs in the database . Each CRP profiles

has k CRPs. When a user present a PUF to the server , the server generates CRPs

using the presented PUF and compare it with all CRP profiles of the registered users

in the database. The server identifies the user by finding the minimum distance CRP

profile from generated CRPs of the presented PUF.

In this identification scheme we are trying to find the number k that enable us to

identify N=10
9

 different chips with the negligible error probability. It‟s apparent that

before finding the sufficient challenge number k we need to calculate the number of

information bits or delay stages of PUF to distinguish between 1 billion components.

The birthday phenomenon will guide us to the right answer. It „s so named because

the problem of finding two random challenges which gives the same response value

48

is identical to finding two people in a group of people who share the same birthday

with probability greater than a certain threshold. The probability of one collision is

expressed in the next inequality [17]

P>1

where n - the number of evaluation, m-possible outputs (m=2
l
 , l –is the number of

information bits)

If we require that the probability of a collision be greater than 0.5, all we have to do

is to find that value n in terms of m which makes it happen. We found that n

approximately equal to

 . This solution say that in the set of m possible outputs

after n times evaluation the ouput will repeat with the probability more than 0,5.

Therefore n is the maximum number of times when we can get different output.

Similarly in our problem of finding l information bits to distinguish 1 billion

components we need m (the number of all possible challenges) which is equal to n
2

. So the number of all possible challenges is 10
18

 which is aproximately equal to 2
60

. Thus to distinguish 10
9
 chips we need more than 60 information bits.

In the master thesis[1] identification/authentication capability of arbiter-based PUFs

based on inter-chip variation ζ and noise probability μ have been studied. Using

ζ=0.22 and μ=0.048 the number of sufficient challenges k is calculated as 443 with

error probability pe <

=10

-9
 . The conclusion that using less than 450 CRPs we can

authenticate 1 billions of PUF with negligible probability[2].

To imagine how many combinations can be created with the responses to 450

challenges where the ratio of 1‟s in 450 bit output vector is 50 % we solve the

combination problem where we try to place 225 numbers of 1 in 450 cells. Our

expected expression will be

The maximum number of components that can be distinguished by 450

challenges is approximately equal to 10
134

.

In this expression we don‟t consider

inter-chip variations and environmental variations. Including these factors

significantly lower this value.

49

Using the inter- chip factors and measurement noise will make changes to our

identification scheme[17].Suppose that a PUF wants to authenticate itself as Alice.

Then she server asks the PUF to generate a list of CRPs corresponding to CRP

profile of Alice in server‟s database. If the PUF is indeed Alice, then each generated

response bit differs from the corresponding profile‟s response bit with probability μ .

If the PUF is not who it claims to be, then this probability is equal to the inter-chip

variation ζ(>μ) .

Inter-chip and intra-chip variation(environmental noise) give us new definitions in

identification and authentication process which are false pozitive and false negative.

False positive is probability that PUF A will be authenticated as PUF B when PUF

A produce the same output as PUF B. False negative is probability that a correct

PUF will fail to be authenticated when PUF fail to regenerate a consistent output

[15].

6. SOFTWARE ATTACKS ON ARBITER-BASED PHYSICAL UNCLONABLE

FUNCTION

A software attack is one of the non-invasive attacks. It can be realized using the

lineer programming technique or using machine learning algorithm. In the first case

an adversary can formulate the response of a PUF as a function of challenges and

delay parameters. If the challenge-response model of the PUF circuit is linear, then

an adversary can apply a polynomial number of random challenges and monitor the

response to estimate circuit delay parameters in linear model. If the model can

predict the response of the circuit with error probability lower than the maximum

environmental variation, the adversary can impersonate the original PUF with model.

So the main goal of an adversary must be to find out all delay parameters because in

this case he could calculate response for any input challenges.

Using Simplex method and Matlab program in lineer programming problem we tried

to simulate attacks of an adversary. In this attack, Matlab produces random

challenges and calculate the responses against each 64 bit challenge. In attack using

linear programming approach a certian number of challenge-response pairs or

50

inequalities are used. Simplex algorithm help us to solve for delay parameters. To

analyze the success of this attack we increase the number of input CRPs step by step.

The result of attacks using CRPs collected from PUF on FPGA show us the

consistency between CRPs created by lineer model in Matlab and measured from

PUF on FPGA.

The second attack using support vector machine (SVM) classifier, which is one of

the machine learning algorithm, show us the possibility to predict the response of

challenges in a test set after training the classifier with CRPs in training set. In neural

network the feature vectors with 1 and 0 labels are separated by threshold plane.

In the last part of the chapter we mention about causes of failure in linear modeling.

6.1 Prediction and Calculation Tools

In order to make attacks or to find out the all delay parameters of the system having

only limited number of CRPs we need calculation tools. Having found all parameters

we will able to estimate the response of PUF against each challenge in CRP list of

database. This problem can be solved using classification and optimization methods.

We will talk about Simplex algorithm which can be categorized as one of the widely

used optimization tools for linear programming model.

The other prediction tool that we will use is based on a machine learning algorithm

for classification problem. The classification normally refers to a a procedure that

learns to classify new instances based on learning from a training set of instances

that have been properly labeled by hand with the correct classes. An algorithm that

implements classification, especially in a concrete implementation, is known as a

classifier. One of the most widely used classifiers is support vector machine (SVMs)

classifier [18].

http://en.wikipedia.org/wiki/Training_set

51

6.1.1 Lineer Programming method

A Linear Programming problem is a special case of a Mathematical

Programming problem. More formally, linear programming is a technique for

the optimization of a linear objective function, subject to linear equality and linear

inequality constraints. Linear programs are problems that can be expressed

in canonical form[19]:

Maximize

 object to

where represents the vector of variables (to be determined), and are vectors of

(known) coefficients and is a (known) matrix of coefficients. The expression to be

maximized or minimized is called the objective function (in this case). The

equations are the constraints which specify a convex polytope over which

the objective function is to be optimized. Linear programming can be applied to

various fields of study. It is used most extensively in business and economics, but

can also be utilized for some engineering problems.

Let‟s consider a simple example of linear programming (LP) problem[19]:

Find numbers x1 and x2 that maximize the sum x1 + x2 subject to the constraints

x1 0 , x2 and

In this problem there are two unknowns, and five constraints. The first two

constraints x1 0 , x2 , are special . These are called nonnegativity constraints and

are often found in linear programming problems. The other constraints are then

called the main constraints. The function to be maximized (or minimized) is called

the objective function. Here, the objective function is x1 + x2. We can solve this

problem by graphing the set of point in the plain that satisfies all the constraints and

then finding which point of this set maximizes the value of the objective function.

Each inequality constraint is satisfied by a half-plane of points, and the constraint set

is the intersection of all the half-planes. In the present example, the constraint set is

the five-sided figure shaded in Figure 6.5

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Linear_equality
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Canonical_form
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Polytope

52

Figure 6.5: Example of solving linear programming problem

We seek the point , that achieves the maximum of x1 + x2 as ranges

over this constrain set. Therefore, we seek the line of slope -1 that is farthest from

the origin and still touches the constraint set. This occurs at the intersection of the

lines and , namely (x1 , x2)=(8/3,2/3) . It is easy to see

in general that the objective function, being linear, always takes its maximum (or

minimum) value at a corner point of the constraint set, provided the constraint set is

bounded.

The simplex algorithm, developed by George Dantzig in 1947, solves LP problems

by constructing a feasible solution at a corner of the polytope and then walking along

a path on the edges of the polytope to corners with non-decreasing values of the

objective function until an optimum is reached[20].

 For solving LP problems in MATLAB we need Optimization Toolbox including

LINPROG routine[21].

6.1.2 Lineer Support Vector Machine

Given a set of training examples, each marked as belonging to one of two categories,

an SVM training algorithm builds a model that predicts whether a new example falls

into one category or the other.

Classification is achieved by a linear or nonlinear separating surface in the input

space of the dataset. When the feature vectors of the training set are linearly

http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/George_Dantzig

53

separable by a hyperplane, we can build a linear SVM that uses the structural risk

minimization principle to decrease classification errors.

Here we gives a description of linear SVM. Let‟s suppose that we are given training

data D, a set of n points of the form [22]

 (6-20)

where the is either 1 or −1, indicating the class to which the point belongs.

Each is a p-dimensional real vector. We want to find the maximum-margin

hyperplane that divides the points having = 1 from those having = − 1. Any

hyperplane can be written as the set of points satisfying

 (6-21)

where denotes the dot product. The vector is a normal vector. It‟s perpendicular

to the hyper plane.

We want to choose the w and b to maximize the margin, or distance between the

parallel hyperplanes that as far apart as possible while still separating data. The

hyperplanes can be divided by two equations

 (6-22)

 (6-23)

We find the distance between these two hyper planes is

 . So we want to

minimize ||w|| . In some cases, the dataset can not be classified clearly because of

non-linearity at the boundary of each class. Considering this case, our goal is not

only to make the distance, as large as possible, but also minimize the number of

misclassifications.

http://en.wikipedia.org/wiki/Real_number

54

Figure 6.6: Maximum- margin hyperplane separating classes

This is equivalent to minimizing the cost function[23]

 (6.24)

where is the number of mis-classifications. The parameter is the positive

constant reducing of which give allows more data to lie on the wrong side of hyper

plane and would be treated as outliers which give smoother decision boundary[6].

Lagrangian Support Vector Machines(LSVM) provide fast converging algorithm to

the minimal point of the cost function [2].

6.2.3 Radial Base Functions Support Vector Machine

There may be another situation where the points are clustered such that the two

classes are not linearly separable as shown in the Figure 6.7 . In such cases, one

prefers non-linear mapping of data into some higher dimensional space called

„feature space‟, where it is linearly separable. The original space of data points is

called „input space‟. The hyperplane in „feature space‟ corresponds to a highly non-

linear separating surface in the original input space, in the Figure 6.9 [29].

55

Figure 6.7: Mapping Process

Given a training D set of data point,

the support vector method approach aims at constructing a classifier of the form[30]:

 (6.25)

Where are positive real constant and is a real constant. is a row of

radial basis function and for RBF SVM can be expressed as

 . is also called kernel function and || . || represents a

56

norm that is generally Euclidean. The known data points i=1,2…n are the

center of radial basis functions.

Expensive calculation of dot products in a high-dimensional space can be avoided by

introducing a kernel function.

6.2 Attacks on PUF Circuit Using Linear Programming Aproach

6.2.1 Experiments using data generated by Matlab

In order to test our derived mathematical model for PUF implemented with MUXs ,

we ran a number of tests using MATLAB and the function linprog(f,A,b) included in

optimization tool of Matlab [4]. Let‟s formulate the lineer programming problem

one more:

 such that

 (6.26)

In our case we need x (delay parameter) satisfying constraint inequality ,

where b is zero vector size and A is matrix with row elements expressed in

inequality (6.x). We can take f equal to 0 since objective function is not used in our

case.

Our test were performed for a PUF circuit with n=64 stages. We describe test

procedure step by step as follow:

 First step: We produce 50000 random challenge vectors with 64 bit length

using unifrom distribution1. After application the challenges to the PUF

model programmed in Matlab, obtained responses are saved in a file with

challenges.

 Second step: We read number of CRPs from the file

 Third step: We used these rows to solve for variables. For this

purpose we use the Simplex algorithm supported by Matlab

 Fourth step: We generate Test =25000 numbers of response using saved test

challenges in the file and estimated delay variables. Then we compare the

responses produced by our model and the responses saved in the file. The

percentage of error are given in the Table 6.1 :

57

 Table 6.1: Results of calculation test using linear programming approach for

PUF implemented with MUXs and response generated by the lineer model.

The results are expressed in terms of percentage error for each Ns number of

CRPs

 Number of challenge-response pairs Ns

n=64 32 64 128 256 512 1024 2048 4096 8192

 29.09 15.71 7.38 5.49 4.57 2.91 1.55 0.97 0.49

This test shows that if the relation between response and challenge vector strictly

follows mathematical model an adversary can break scheme based on both PUFs

having only 1024 CRPs. In order to identify a chip the prediction error rate of the

model must be less than the environmental noise, which has maximum value 4.82 %

6.3.2 Experiments using data measured from the PUF on the FPGA

For the test using data measured from the PUF on the FPGA we apply the next

procedure:

 First step: We produce 50000 random challenge vectors with 64 bit length

using uniform distribution. After application the challenges to the PUF

measured responses are saved in a file with applied challenges.

 Second step: We read CRPs from the saved file and apply them to the

mathematical model in order to find A matrix in a linear programming

problem for expression(look at the formula 6.1)

 Third step: We used these CRPs to solve for variables. For this

purpose we use the Simplex algorithm supported by Matlab

 Fourth step: We generate Ts =25000 numbers of response using saved test

challenges in the file and estimated delay variables. Then we compare the

responses produced by our model and the PUF on the FPGA

We apply this test only to the PUF implemented with MUXs. The percentage

of prediction error is given in the Table 6.2 below:

58

Table 6.2: Results of prediction test using linear programming approach for PUF

implemented with MUXs and response measured from the PUF on the

FPGA . The results are expressed in terms of percentage error for each Ns

number of CRPs

 Number of challenge-response pairs Ns

n=64 32 64 128 256 512 1024 2048 4096 8192

 49.36 49.06 48.70 47.99 47.92 47.93 47.93 47.93 47.93

The results in Table 3 show that the relation between input vectors and output bits of

the implemented PUF doesn‟t follow the derived mathematical model, formulated in

6.10

We will talk about the reason of failure in prediction of responses in the last section.

6.3 Attacks on PUF Circuit Using Support Vector Machine Classification

6.3.1 Experiment using data generated by Matlab

We performed test on CRPs generated according to linear model programmed in

Matlab . Our PUF length is n=64 bits . We apply the same test procedure as it has

been done in section 6.3.1 . The one difference is that in step 3 instead of linear

programming technique we are using SVM classifier. As a software I have used

LIBSVM (Library for Support Vector Machines)tool, which is developed by Chang

and Lin[27]. The percentage of prediction error is given in the Table 6.4 below. The

results are almost similar as in Table 6.1. The results show that an adversary having

only 1024 CRPs can break authentication scheme based on PUF

Table 6.4: Results of prediction test using SVM classifier for PUF implemented with

MUXs and response generated by the mathematical model. The results are

expressed in terms of percentage error for each Ns number of CRPs .

 Number of challenge-response pairs Ns

n=64 32 64 128 256 512 1024 2048 4096 8192

 30.20 22.34 19.98 9.96 5.81 2.69 1.99 1.16 0.71

59

6.3.2 Experiments using data measured from the PUF on the FPGA

6.3.2.1 Results of software attack for Lineer SVM classifier

In order to compare the result of prediction for data collected from implemented

PUF on the FPGA we apply the same procedure as in section 6.3.2 Instead of linear

programming tool we use lineer SVM classifier. The percentage of prediction error

is given in the Table 6.5 below:

Table 6.5: Results of prediction test using lineer SVM classification for PUF

implemented with MUXs and response measured from the PUF on the

FPGA . The results are expressed in terms of percentage error for each Ns

number of CRPs

 Number of challenge-response pairs Ns

n=64 32 64 128 256 512 1024 2048 4096 8192

 50.45 50.06 49.9 49.56 49.40 49.37 49.27 48.95 49.42

The differences between the results shows inconsistency between the data collected

from PUF implemented on FPGA and the data generated by Matlab as in section

6.3.2

6.3.2.2 Results of software attack for RBF SVM classifier

In order to compare the result of prediction for data collected from implemented

PUF on the FPGA we apply the same procedure as in previous section. The

percentage of prediction error is given in the Table 6.6 below:

Table 6.6: Results of prediction test using RBF SVM classification for PUF

implemented with MUXs and response measured from the PUF on the FPGA

 Number of challenge-response pairs Ns

n=64 32 64 128 256 512 1024 2048 4096 8192 17600

 52.31 47.75 47.06 47.03 45.96 41.96 32.34 21.76 14.32 9.87

In spite of data inconsistency between real measured data and lineer model of PUF it

possible to predict responses of PUF on FPGA using a lot of CRPs for training of the

machine learning algorithm. In this attack we could not reduce the error rate under

environmental noise rate as it is supposed to be in order to succeed. However, this

60

result verify that PUF can be more vulnerable to more sophisticated software that

may be already exist or will be developed in near future. Variable resistance to

different software attacks is undesirable from the security aspect.

6.4 Reason of Failure in Prediction of PUF Circuit Responses

High error rate in classification problem using lineer SVM and linear programming

approach applied to the data measured from implemented PUF on the FPGA show

inconsistency between responses of linear model and responses from PUF on the

FPGA. The result of analysis made below approve that we could not satisfy the main

condition of symmetry in implementation of PUF circuit on FPGA.

Figure 6.8: Last stage of PUF with cell and connect delays

To identify the critical path in a design and to check whether the timing constraints

could be fulfilled, timing analysis tools are used. This tool uses the difference

between required time and actual path delays. Actual path delays which consist of on

the delay of the design elements and interconnects are read from SDF (Standard

Delay Format) file. If we use approach of statical static timing analysis all the delays

can be described in terms of mean and standart deviations as it is shown on the

Figure 6.9 . Worst case operating condition correspond to the extreme 3σ corners.

So, in worst case timing model any delay can be separated as a static delay

component and a random delay component. Random delay component are caused by

process variation which can reach 3,5 % of nominal (mean) value and refer to 3σ

corner in statistical delay model.

61

For investigation of effect of static delay and random delays on the response of PUF

we can use the figure (6.8). Proceeding from previous knowledge let us write

expressions for delays at point 1 and point 2 as it is done in (6.25) and (6.26). The

result of PUF circuit will depend on the difference ,which is expressed in (6.27)

 (6.27)

 (6.28)

 (6.29)

Figure 6.9: Statistical model of delay capturing process variations between ICs

From the figure 6.8 we can derive expressions for is a function of

,

,

 and

+

 +

 (6.30)

+

 +

 (6.31)

 (6.32)

 (6.33)

In the figure (6.10) the result of assymetry in wiring cause a big differences between

static delays of path 1 and path 2 before the arbiter.. By using these equations and

static or mean delay form timing analysis we can find cumulative delay at point 1

and 2 . The result are graphycally displayed in the figure (6.11) and (6.12). From the

figure (6.11) we find the ratio of static component to random component as

62

 and from the figure(6.12)

 . As it is seen from the

figure (6.11) in direct connection of switch block the response of PUF are not

determined by but since value are considerably more than .

Despite this situation, in the figure (6.12) the value of is less than which

means that our response are completely depends on random process variation. The

last case show that by accident we can satisfy the symmetry condition that enable us

to get the right response.

Figure 6.10: Calculated static delays for last stage of PUF circuit

Figure 6.11: Cumulative delay for last stage of PUF with cross connected

switch block

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Direct pass Cross pass Gate Last path segmt

path1 path2

Static Delays, ns

0,388

0,701

1,031

0,038

0,351

1,035

0

0,2

0,4

0,6

0,8

1

1,2

Cross path Gate Last Path Segmt

path1

path2

Cumulative Delay, ns

63

 Figure 6.12: Cumulative delay for last stage of PUF with direct connected

switch block

7. CONCLUSION

In this thesis we have investigated the security and reliability for arbiter-based PUF

circuit and conducted preliminary experiments. By using authentication method

based on PUF circuit it is possible to store secrets on a chip that is less vulnerable to

invasive attacks than traditional digital methods.

We have implemented arbiter-based PUF using MUX on Xilinx FPGA. Experiment

results have shown that there are enough variation between programmable gates not

only on different FPGA chip but also on the same chip for identification purposes.

The undesired effect of temperature and power supply voltage variations can change

the delay characteristic of PUF circuit making worse the reliability parameter.

Experiments of applying different challenges to PUFs circuit which are in different

0,172

0,485

0,815

0,352

0,665

1,349

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Direct pass Gate Last path segmt

path1

path2

Cumulative delay,ns

64

position across FPGA chip show that not any challenge can be used for identification

purposes. Some of the challenges produce the same outputs in different FPGA

circuits. The assymetry in wiring reduce the numbers of challenges that provide high

inter-chip variations.

We have tested the security of linear model PUF circuit, described by equation in

section 3.5, against software attacks. For this purpose we have used the linear model

the security analysis of linear model created in Matlab suggest that the device could

be vulnerable to model building software attack. In fact, we see that

Our experiments where we use the responses produced by linear model and response

measured from implemented PUF have shown different resistance to software

attacks. In linear model, 1024 CRPs is enough to solve for all delay variable or to

predict the outputs for any next challenges. Hovewer, lineer programming and lineer

SVM haven‟t succeeded in prediction of responses, which bring the fact of

inconsistency between reponses of lineer model and measured from FPGA

responses. Delay analysis report presented by Xilinx Timing Analyzer tool have

shown that in spite of symmetrical position arrangement of MUXs across a chip we

could not achieve desired symmetry in wire delays between switch blocks. It lead to

corruption of responses in PUF on FPGA. In spite of that, application of SVM using

radial based kernel have considerably increased prediction rate up to 90 percent

where we need 17600 CRPs for a training procedure. This fact verify that PUF based

system can be vulnerable to more sophisticated attacks, which is unacceptable from

the security aspect. Especially in case of man in the middle attack . Since

authentication process of PUF occures in untrusted and open environment the

adversary can easily collect the data, which will be used for software attacks. More

authentication process provide him more CRPs. The low intra-chip variation can

complicate the aim of adversary since in this case we need more CRPs to train our

machine learning algorithm.

In order to prevent the predictions of responses, we can employ non-linear arbiters

such as feed-forward arbiter PUFs. It is difficut for an adversary to build an

appropriate software model of these arbiters[1].

65

REFERENCES

[1] Erdinç Öztürk, Ghaith Hammouri and Berk Sunar “Toward Robust Low

Cost Authentication for Pervasive Device” , IEEE computer society ,

2008

[2] Daihyun Lim, “Extracting Secret Key from Integrated Circuits”, April 5, 2005

[3] M. Feldhofer, S. Dominikus, J. Wolkerstorfer, “Strong Authentication for

RFID Systems Using the AES Algorithm”: CHES 2004, LNCS 3156, pp.

357–370, 2004.

 [4] J.-P. Kaps, B. Sunar, “Energy Comparison of AES and SHA-1 for Ubiquitous

Computing”, in: X. Z. et al. (ed.), Embedded and Ubiquitous Computing

(EUC-06) Workshop Proceedings, vol. 4097 of Lecture Notes in

Computer Science (LNCS), Springer, 2006

[5] A. Poschmann, G. Leander, K. Schramm, C. Paar,

"A Family of Light-Weight Block Ciphers Based on DES Suited for RFID

Applications".

Workshop on RFID Security 2006, Graz, Austria. 12.-14. July, 2006.

[6] “IBM 4764 PCI-X Cryptographic Coprocessor Custom Software Interface

Reference Release 3.30” http://www-03.ibm.com/security/cryptocards,

June 11 2009.

[7] Nathan Beckman and Miodrag Potkonjak, “Hardware-Based Public-key

Cryptography with Public Physically Unclonable Functions ”, : IH

2009,LNCS 5806, p-206-220 , 2009 Springer-Verlag Berlin Heilderberg

2009

[8] Blaise Gassend, “Physical Random Functions" M.S. thesis, Massachusetts

Institute of Technology, Jan. 2003.

[9] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas,

“Silicon PhysicalRandom Functions ," in Proceedings of the Computer

and Communication Security Conference,

[10] B.Gassend, D.Clarke,M.van Dijk and S.Devadas. Delay-based Circuit

Authentication and Application. Massachusetts Institute of Technology

,Laboratory of Computer Science Cambridge

http://www-03.ibm.com/security/cryptocards

66

[11] Kharagpur 1,” Lesson 20 : Field Programmable Gate arrays and Applications”,

Design of Embedded Processors Version 2 EE IIT,

www.scribd.com/doc/31436874/FPGA

[12] Virtex-2 Pro and Virtex-2 X Platform FPGAs: Complete Data sheet, November

5, 2007

[13] Volnei A Pedroni, “Circuit Design with VHDL”, pp.1-4, MIT Press

Cambridge, Massachusetts,London, England, 2004

[14]Erdinc Ozturk, Ghaith Hammouri, Berk Sunar, “Physical unclonable functio

n with tristate buffers”. In: Proceedings of the International Symposium

on Circuits and Systems (ISCAS 2008), 18-21 May 2008, Seattle,

Washington, USA, pp. 3194-3197, IEEE, Washington, DC, USA (2008)

[15] Mehmet Soybalı, “Implementation of Reliable RFID Applications”

,Undergraduate thesis,May 2010

[16] Blaise Gassend,Dwaine Clarke,Marten van Dijk and Srinivas Devadas,

“Silicon Physical Random Function”, CCS‟o2 November 18-22, 2002,

Washington DC, USA

[17] Ravikanth Pappu, Ben Recht, Jason Taylor, Neil Gershenfeld,” Physical

One-Way Functions”, VOL 297 SCIENCE, www.sciencemag.org, 20

SEPTEMBER 2002

[18]]”Classification”, Wikipedia

,http://en.wikipedia.org/wiki/Classification_(machine_learning), October

2010

[19] Thomas S.Ferguson,”Linear Programming” ,Electronic Text,

http://www.math.ucla.edu/~tom/

[20] ”Linear Programming”, Wikipedia,

http://en.wikipedia.org/wiki/Linear_programming, December 2010

[21] “Solve Linear Programming Problem”, The MathWorks Inc, 1984-2010

http://www.mathworks.com/help/toolbox/optim/ug/linprog.html

[22] ”Support Vector Machine”,Wikipedia,

http://en.wikipedia.org/wiki/Support_vector_machine, December, 2010

[23] J.P.Lewis, Tutorial on SVM, CGIT Lab, USC, 2004

[24] “PUF Based RFIDs ”http://www.verayo.com/product/pufrfid.html

[25] R. Saleh, “Flip-Flop and Clock Design”, Lecture 6,

www.ece.ubc.ca/~elec579/clockflop.pdf

http://www.sciencemag.org/
http://en.wikipedia.org/wiki/Classification_(machine_learning)
http://www.math.ucla.edu/~tom/
http://en.wikipedia.org/wiki/Linear_programming
http://www.mathworks.com/help/toolbox/optim/ug/linprog.html
http://en.wikipedia.org/wiki/Support_vector_machine,%20December
http://www.verayo.com/product/pufrfid.html
http://www.ece.ubc.ca/~elec579/clockflop.pdf

67

[26] V.Jeyaraman, ”Design ,Characterization and Automation of Ultra-high

Temperature Standard Cell Library for Harsh Environment” , Msc

Thesis, December 2004

[27] Chih-Chung Chang and Chih-Jen Lin,”LIBSVM - A Library for Support Vector

Machines”

[28] Rakesh Chadha, J. Bhasker,”Statistical Static Timing Analysis-A Better

Alternative”, 2/3/2009

[29]K.P.Soman,Y.Ajay,R.Loganathan, ”Machine Learning with SVM and Other

Kernels”, PHI Learning Pvt. Ltd, 2009 ,p.122-124

[30] J.A.K. SUYKENS and J. VANDEWALLE,” Least Squares Support Vector

Machine Classifiers”, Neural Processing Letters 9: 293–300, 1999

http://www.csie.ntu.edu.tw/~cjlin/index.html

68

69

APPENDICES

APPENDIX A.1: Extraction of Expressions for ui and vi Variables in

Equation 3.17

70

APPENDIX A.1

0

1

0

1

0

1

0

1

D
i

m

)(

1

D
i

m

)(

2

D
i

K

)(

11

D
i

K
)

(

12

D i

K

)(

22

D

i

K

)
(21

Figure A.1: Two successive MUX blocks with delay variables

Let’s try to express variable defined in section (3.5) in terms wire delays

,

 ,

,

and upper MUX and lower MUX gate delays which are

, and

,

respectively. We can achieve it by simple substitution of , , , parameters in

terms of wire and gate delays which are shown in Figure A.1 . Comparing two figures 6.x1

and 6.x1 give us the expressions stated below:

 (A.1) (A.1)

 (A.2) (A.2)

 (A.3) (A.3)

 (A.4) (A.4)

 =

 (A.5) (A.5)

=

) (A.6)

71

CURRICULUM VITAE

Candidate’s full name : Zaur TARIGULIYEV

Place and Date of Birth : Baku / AZERBAIJAN, 07.05.1979
Permanent Address : M.Hadi str,23/136, Baku/ AZERBAIJAN
Universities and

Colleges attended :Istanbul Technical University (1998-2002)

