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RELIABILITY AND SECURITY OF ARBITER BASED PHYSICAL 

UNCLONABLE FUNCTION 

 SUMMARY 

Modern cryptographic protocols are based on the premise that only 
authorized participants can obtain secrets keys and access to 
information systems. However, various kinds of tampering methods 
have been devised to extract secret information from smartcards and 
ATMs. From storage of digital secret key in a chip we came to an idea to 
use physical property of nonhomogenious material that make him 
unique . This property make a secret key unclonable and due to this, the 
structure created from this material are called physical unclonable 
function.  First time, this idea was realized using optical micro-structure 
with bubbles. Then, silicon material was used to realize the Arbiter-
based Physical Unclonable Functions (PUFs). This technique exploit 
statistical delay variation of wires and transistors across integrated 
circuits (ICs) in the manufacturing processes to build a secret key unique 
to each IC. We implemented Arbiter-based PUFs in Xilinx FPGA and 
investigated the identification capability, reliability, and security of this 
scheme. Experimental results and theoretical studies show that a 
sufficient amount of variation exists across ICs. This variation enables 
each IC to be identified securely and reliably over a practical range of 
environmental variations such as temperature and power supply 
voltage.   
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FIZIKSEL KOPYALANAMAZ FONKSIYONUN GÜVENLİĞİ VE 

GÜVENİRLİĞİ 

 ÖZET 

Modern kriptografik protokoller sadece yetkili kişilere sistemdeki 

bilgiye ve gizli anahtara erişimini sağlamaktadır. Ancak, smart 

kartlardan ve ATM’lerden gizli bilgileri elde etmek amacıyla değişik 

teknikler geliştirilmiştir.  Gizli anahtarın dijital veri yerine maddenin 

homojen olmayan ve o maddeyi tek yapan fiziksel özelliği ile 

ilişkilendirilmesi fikir olarak sürülmüştür. Bu özellik gizli anahtarın 

kopyalanmasını imkânsız kıldığı için bu maddeden oluşan yapıya 

fiziksel kopyalanamaz fonksiyon adı verilmiştir. Bu fikri önce içinde 

kabarcık olan cam, sonra silikon maddesi kullanılarak hayata 

geçirilmiştir. Bu yöntem her bütünleşmiş devresinin ait tek gizli 

anahatarı oluşturmaktadır. Bunu için bütünleşmiş devrelerin üretim 

sürecindeki oluşan hat ve tranzistorlardaki geçikme varyasyonları 

kullanılmaktadır. Arbiter tabanlı PUF devresi Xilinx FPGA’de 

gerçeklendi. PUF devresi kimlik belirleme yeteneği, güvenirlik ve 

güvenlik açısından incelendi. Deneysel sonuçlar ve teorik çalışmalar 

entegre devre içinde varyasyon yeterli miktarda var olduğunu 

göstermektedir. Bu varyasyonlar her entegre devreyi, ısı ve güç 

kaynağı gerilimin değişimi makul sınırların içinde kalmak kaydıyla, 

güvenilir ve sağlam şekilde tespit edilmesini sağlıyor. 
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1. INTRODUCTON 

Typically, cryptography is used to secure communication between two parties 

connected by an untrusted network[1]. In such communication, each party has 

privately stored key information which allows it to encrypt, decrypt, and authenticate 

the communication. It is implicitly assumed that each party is capable of securing its 

private information. This assumption is reasonable when a party is a military 

installation, or even a person, but breaks down completely for low-cost consumer 

devices. Once a secret key is attained, eavesdropping and impersonation attacks 

become possible[2]. 

In low cost devices such as RFIDs and smartcards is essential that sensitive 

information is safely stored and communicated. However, the inherent power and 

footprint limitations of such devices, prevent us from employing standard 

cryptographic techniques for authentication which were originally designed to secure 

high end systems with abundant power. In practice, the implementation cost of 

cryptographic hash functions is near that of block ciphers which is around 10K logic 

gates [3,4]. For RFIDs the footprint allotted for security is less than 1K gates [5]. 

Public-key cryptography bears significant computational overhead when compared 

to secret key techniques. Furthermore, even if the footprint problem is solved, each 

time an authentication takes place, the device has to transmit large amounts of data 

through the channel to the reader, which will unnecessarily consume the power of 

the device.  

Another issue of secret key technique is resilience against invasive and non-invasive 

physical tampering attacks. Laser cutting, microprobing and power analysis have 

made it possible to extract digitalized secret information from ICs and compromise 

conditional access systems by using illegal copies of the secret information[2]. 

Focusing on the problem of invasive attacks, it is apparent that once a device has 

been opened, the large difference in state between a 0 and a 1 makes it relatively 

easy to read out the device‟s digitally stored secrets. Traditionally, such attacks are 

avoided by detecting intrusion and erasing the key memory when an intrusion is 

detected [6]. However, tamper-sensing environments are expensive to produce and, 

as long as a key is being protected, the intrusion sensors need to be powered, further 



18 
 

increasing costs. In order to resist to the cloning and invasive attacks random 

functions based on the randomness in physical materials were proposed. 

Chronology in development of unclonable artifacts show that the first powerful 

notion of a physical one-way functions (POWF) was introduced by Papu et. al [7].  

In the study of the physical one way functions he used transparent optical medium 

with a 3 –dimensional micro-structure containing bubbles.  The input-challenge of 

the POWF is an incomming laser beam and the output /response is a fixed-length bit 

vector derived from resulting interference patterns. The interference pattern depends 

on the angle and frequency of incoming beam and the speckle pattern in the optical 

medium. After that, Gassend et. al. introduced the concept of a silicon physical 

unclonable function or silicon PUF [8,9]. Modern and future silicon technology-

based integrated circuits may serve as PUFs due to their intrinsic manufacturing 

variability. Essentially, a number of unavoidable physical and chemical phenomena, 

such as silicon lattice imperfection, uneven distribution of dopants, imperfect mask 

alignment, and non-uniform chemical mechanical polishing, result in gates with 

sharply different characteristics.  Already in 45 nanometer technology, it is common 

that the delay of the same gate in different ICs differs by 1/3 from the nominal value 

[7].   Therefore two silicon PUFs, having the same structure and designed to be 

sensitive to circuit delays, implemented on the same IC or different ICs have 

different responses to the same inputs.    

 Since process variation is beyond manufacturers' control, even an adversary who has 

detailed information of the PUF circuit cannot physically clone the silicon PUF of a 

given IC.  So the authentication in PUF circuits are based on hidden delay or timing 

information corresponding to a circuit rather than digitial information [10]. Since 

there are several types of PUFs with different structure and complexities from a 

security point of view(XOR PUF, Feed Forward PUF, Ring Oscilator PUF) we 

consider only basic type called arbiter-based PUF.  

The main purpose of this thesis is to investigate the reliability and resistance of a 

PUF, implemented on FPGA, to software attacks.  Also, we aim to implement PUF 

structures based on MUXs and make analysis on data obtained from them. These 

data enable us to study the characteristics of the PUFs and sensitivity to changes to 

environmental factor such as the ambient temperature and voltage fluctuations.   
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This thesis is structured as follows. Chapter 2 defines physical unclonable functions 

and physical one-way functions, gives an example of one-way mathematical 

function. Furthemore, in this chapter one of the most common application of PUF is 

considered. 

 In Chapter 3 general overview of PUF system and notion of the delays is 

considered. In this we cover the fundamental components containing in the 

differential structure of PUF. Also, we show how delay path can be configured using 

additive property of the delay and underline the conditions that are providing more 

sensitivity to inherit process variation in PUF circuits. We provide a linear model of 

PUF circuit where responses are expressed in terms of challenges and delay 

variables. 

Chapter 4 introduces a detailed circuit implementation of arbiter-based PUF on a 

Xilinx FPGA device using program Xilinx ISE 9.2 . We shortly touches on the 

primitive logic elements that enable us to implement the main components of PUF 

circuit. Furthemore, the hardware description language codes(VHDL) that generate 

these components are also given. In this chapter we show how to adjust “synthesize” 

tool that comes inside Xilinx ISE 9.2 in order to prevent from converting MUX. 

Also with the integrated in ISE environment “Floorplanner ” tool we try to achieve 

symmetrical placement of switch blocks. 

In Chapter 5 the experimental results for PUFs implemented on FPGA are shown. 

We analyze the important, for security and reliability, characteristics of PUFs such as 

the inter-chip variation and environmental noise. 

Chapter 6 studies the vulnerability of the arbiter-based PUFs against possible 

software attack models. Based on the linear model we make attacks using a limited 

number of linear inequalities and linear programming technique. Using this method, 

we try to solve for uknown delay parameters of the circuit. Then we compares the 

responses produced by our theoric model and the model extracted by linear 

programming algorithm. In the second attack we use artificial neural network.  

Providing challenge-response pairs for training of the Supported Vector Machine 

neural networks, the prediction capabilites of these method are investigated. Also, in 

this chapter is told about causes of inconsistency between responses of a lineer 

model of a PUF with the responses obtained from FPGA.  
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Finally, in the last chapter all the parameters that have effects on security of PUF on 

FPGA are summarized.   
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2.  DEFINITION AND APPLICATION OF PHYSICAL UNCLONABLE 

FUNCTIONS  

2.1 Definition of One–Way Function  
Information security requires a mechanism that provides significant asymmetry in 

the effort required to make intended and unintended uses of encoded information. 

Modern cryptographic practice rest on the use of one-way functions(OWF). If    is 

one–way function i.e for any argument it is easy to compute but extremely hard to 

invert, then, even if   and        were made public, it would be nearly impossible 

for a reasonable adversary to compute the password (PW)  from       . Here, a 

reasonable adversary is one that does not have access to exponential computing 

resources.  

Here is the formal definition of one-way functions. 

A function f:{0,1}*{0,1}* is called strongly one-way if the following two 

conditions hold[2]. 

 Easy to compute: There exist a deterministic polynomial time algorithm A 

such that on input x, A outputs       

 Hard to invert: For every probabilistic polynomial time algorithm   , every 

polynomial  , and all sufficiently large    

 

                       
 

    
                                                                       (2.1) 

Saying that a function   is easy to compute means that there exist a P-time algorithm 

  which, given an input   , output     . The second condition means that the 

probability that algorithm    will find an inverse of   under   is negligible[1]. Weak 

one-way functions require only that all efficient algorithms fail with some non-

negligible probability.  
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In order to give an example of OWF candidate let‟s define a function as        

    , where   and   are  -bit primes and   is the regular integer multiplication[2]. 

(So , our domain is the set of pairs of k-bit primes, and             where    is 

the set of  -bit primes, and   is set of    -bit numbers ). So clearly,   is not a 

permutation. And let‟s assume that n=p q, so that               . There‟s no 

known polynomial time algorithm   such that      output values    and    so 

             .  Of course, we can object this claim offering test all the number 

from 2 to    . And propose a program that works like the following: 

For i=2 to    do  

If (i divides n ) then output (i,
 

 
); 

And we would claim that our program runs in time O(    which is polynomial in 

temrs of n[2]. However, keep in mind taht the number n inputted in this algorithm is 

of magnitude roughly      and of size 2k and since                 , this 

algorithm runs in time O(     , which is exponential in terms of input size. Thus this 

algorithm runs in exponential time. And, no algorithm that‟s polynomial in terms of 

k is known that can factor n. Therefore, this function f is easy to compute and 

difficult to invert . 

2.2  Definition of Physical Unclonable Function 

 Instead of using computational complexity of algorithm, we can exploit the physical 

randomness in nature, such as heterogeneous optical medium, electrical noise, and 

process variation in silicon manufacturing, to construct unclonable functions[2]. A 

physical unclonable function has common properties as one way function but 

differently it‟s implemented in a physical device.   

Here is a definition of physical unclonable functions based on the definition of one-

way functions. The term challenge refers to the input to the functions and response 

refers to the output[1]. 
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A physical Random Function is the function embodied by a physical device, and 

maps challenges to responses. A physical unclonable function satisfies the following 

properties: 

 Easy to evaluate: The physical device can easily evaluate the function in a 

short period. 

 Hard to predict: From a polynomial number of physical measurements (in 

particular, determination of chosen challenge – response pairs(CRPs) ), an 

adversary who no longer has the device and can only use a polynomial 

amount of resources (time, matter) can extract only a negligible amount of 

information about the response to a randomly chosen challenge. 

By the tern “easy”, we mean that the function can be computed in polynomial 

time. 

 

2.3 PUF Based RFID Authentication 

PUFs are tiny electrical circuit primitives that exploit the unavoidable IC fabrication 

process variations to generate unlimited number of unique, unpredictable, though 

reliable "secrets" from each chip. These secrets are dynamically generated, using a 

challenge response scheme. A PUF is queried with a challenge vector (input vector) - 

a random 64-bit (or longer) number. It almost instantly generates a unique response 

vector(output) - a 64-bit (or longer) number. 

In the figure 2.1,  an application of PUF based RFID authentication is given[24]. As 

shown in the figure below, a set of challenge response pairs are collected from the 

chip, and stored in a database. This may usually happen at an initial stage in the life 

of the chip, perhaps at a secure location. To authenticate the chip at a later time, one 

of the stored challenges from the database is sent to the chip, the response generated 

is compared against the one initially recorded in the database. If the two match, the 

chip is authentic. Since each chip can have multiple challenge response pairs, each 

challenge response pair is used just once, as a one-time pad. This prevents replay 

attacks on PUF authentication.     
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Figure 2.1: PUF based RFID authentication procedure 
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3. DESCRIPTION AND LINEER MODEL OF PUF CIRCUIT 

3.1 General Description 

An arbiter-based PUF is a {0, 1}
n
 →{0, 1} mapping, that takes a n-bit challenge (a) 

and produces a single bit output (r). The basic idea of a PUF circuit is to create a race 

between two signals which originate challenge (C) as an input and produces a single 

bit output (R). The arbiter based PUF circuit consists of n consecutive MUX blocks. 

Each MUX block consist of two MUXs and has two input and two output bits and a 

control or select bit. If the control bit of a MUX block is logical 0, the two inputs are 

directly passed to the outputs through a straight path. However, if the control bit is 

set to logical 1, the two input signals are switched before being passed to the outputs 

of the MUX block. Based on the control bit of the MUX block, each of the two input 

signals will take one of two possible paths. As can be seen from Figure 3.1, there are 

n MUX blocks where the output of each block is connected to the input of the 

following block. After the last block, the two output signals are connected to an D 

Flip-flop. The two inputs of the first block are connected to each other, and the 

connection is sourced by a pulse generator. 

 

Figure 3.1: Arbiter-based PUF circuit 

Afterwards, a pulse is generated and fed into the inputs of the first block. Since the 

inputs of the first block are connected, the pulses traveling through each of the two 

paths(red and blue lines) are expected to be simultaneous. Although these two paths 

have been supposed to be perfectly symmetrical, manufacturing variations of these 

paths will cause a small mismatch. As the two pulses pass through the consecutive 

MUXs, they will start acquiring a time delay. The arbiter at the end of the delay 
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paths determines which rising edge arrives first and sets its output to 0 or 1 

depending on  which of the pulses comming first .  

3.2 Components of PUF Circuit 

As it‟s seen in the Figure3.1 the main components of PUF circuit are MUX blocks 

and D-type Flip Flop. Due to their functions they can be representated as a switch 

block and an arbiter. In the next chapters MUX blocks and switch blocks are used 

interchangeably. The same is valid for a D-type Flip- flop and an arbiter component.  

So, switches as MUX block have 2 inputs, 2 outputs and control or select pins. 

Applying logic “0” to control pin provide direct connection between input and output 

which means the signal stay on the same path. On the contrary, if control signal is 

logic “1” the connection are cross coupled which means the input signals interchange 

their path.  The described operation of switch block component are shown in the 

Figure 3.2. 

 

Figure 3.2: Operation of MUX blocks or switch block components  

A positive edge-triggered D-type flip-flop or arbiter has two input and 1 output pins 

as it shown in the Figure 3.3. On the positive transition of the clock, the Q outputs 

will be set to the logic states that were set up at the D input. This logic states are hold 

until the next transition of clock input.  
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Figure 3.3: Operation of a D-type Flip-Flop or an arbiter  

Flip – flop have setup and hold time that must be satisfied[25]: 

 

Figure 3.4: Setup and Hold times in a Flip-Flop 

If D will arrives before setup time and is stable after the hold time Flip-Flop will 

work. FF will slow the signal by the setup and “clk to Q” delay in the worst case. In 

a PUF circuit, if the delay difference between signals in G and D pins is more than 

setup time, Tsetup , the output will be logic ”1” ,otherwise the output will be logic ”0”.    
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3.3 Delay Paths in the PUF Circuit 

3.3.1 Switch delay 

CMOS non-linear model let us define the total(switch) delay of a logic gate i.e the 

delay between input of the first gate and the input of the next gate as shown in the 

Figure 3.5.  This model propose us to divide the switch delay in two components as 

cell delay and connect delay which is expressed below by the formula  (3.1) 

                        (3.1)       

The       delay contributed by the MUX gate itself, is typically defined as the 50 

percent input pin voltage to 50 percent output voltage[26]. Cell delay is usually a 

function of both output loading and input transition time. The connect delay          

of an element is the time it takes the voltage at an input pin to charge after the 

driving output pin has made a transition. In brief, it‟s the time neccesary for a 

waveform to travel along a wire. The connect delay are the function of wire 

capacitance, pin capacitance and wire resistance. The wire capacitance and wire 

resistance are related with wire length. 

 

Figure 3.5:   Cell and Connect delays in a PUF circuit 
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3.3.2 Delay path configurations 

Unique delay paths consist of unique delay of MUXs. Different challenges will 

impose different paths on the propagating pulses. In order to see different 

configurations of delay path in PUF circuit we can consider  a circuit that consist of 

two switch components without an arbiter part. In this example we assume that the 

delay behavior‟s of circuit obeys additive delay model[10]. 

 

Figure 3.6:. Delays in a switch block  

 

We label the two paths which the upper signal can take as ai and bi, and for the lower 

signal as di and fi. Paths a1 and f1are chosen when the challenge bit c1 is 0, whereas 

b1 and d1 are chosen when the challenge bit is 1. 

 

Figure 3.7: Configured delay paths with C1=0 and C2=0 control inputs 

 

 

When C1 =0 1.path delay  is a1  

  2. path delay is f1 

When C1 =1 1.path delay  is d1  

  2. path delay is b1 
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Figure 3.8: Configured  delay paths with C1=0 and C2=1 control inputs 

 

 

Figure 3.9: Configured delay paths with C1=0 and C2=0 control inputs 

 

Figure 3.10: Configured delay paths with C1=1 and C2=1 control inputs 

  ,    is the delays of a signal gained at the end of direct passing through switch to 

the input of next switch and   ,    is the delays of a signal gained at the end of cross 

passing through switch to the input of the next switch . 

 For  1. path all set of total delay will be  
 

m11(b)= a1 + a2     (C1=0, C2=0)  (3.1)  

m12(b)= f1 + d2     (C1=0, C2=1) (3.2)  

m13(b)= b1 + d2    (C1=1, C2=1) (3.3)  

 m14(b)= b1 + f2      (C1=1, C2=0) (3.4)  

 For 2. path  all set of total delay will be 

m21(b)= f1 + f2      (C1=0, C2=0) (3.5)                 

m22(b)= a1 + b2    (C1=0, C2=1) (3.6)  

m23(b)= d1 + b2   (C1=1, C2=1)  (3.7) 

m24(b)= b1 + f2    (C1=1, C2=0) (3.8) 

If we set      and        , the delay of path 1 is      f1 + d2 and       a1 + b2. 

So, if the delay difference, δ, between path 2 and path 1 is greater than Tsetup the 
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response will be logic “1” , otherwise the response will be logic “0”as depicted in the 

Figure 3.10 . As we see for n=2 challenges we get 2x2
2 

 different  configurations or 

equations for 1 and 2 path.  So if we generalize n challenge bits lead to 2
n 

 equations 

for each path with 4n unknow delay variables. 

 

 

 

Figure 3.11: Arbiter operation in the example with m1 and m2 delay paths 

 

3.4 Symmetrical Structure of PUF circuit 

 

Analyzing the PUF circuit, which is shown in the Figure 3.1, and path delays, which 

are described in previous section, allow us to propose more general structure of PUF 

as shown in the Figure 3.11, below: 

 

 

 Figure 3.12: More general structure of arbiter based PUF 
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The delay pathes are configured by using n-bit challenge vectors.  These challenges 

select different routing for signals. The signal travelling on this route passing 

through different switches or MUXes. So, the total delay of signal1 and signal2 at 

the end of delay paths is sum expression where each entry belongs to unique 

combination of unique delays.   In order to find more general expression for the total 

delay path 1 and 2 we adds up all the switch delays that signal passing through. After 

that we separate all switch delays to cell and connect delays components. All this 

operation are reflected in the formula 3.9 and 3.10. The arbiter gives the output 

according to measured  differences between these delay paths. Formula 3.11 gives 

the general expression for these difference. 

  =        
   

   
   
           

      
                

         (3.9)      

  =        
   

   
   
           

      
                

   
                                           (3.10)    

    -  =       
      

             
                   

                
       ) (3.11) 

The last expression show that if difference connect delay components are much more 

than difference of cell delay component and setup time of D Flip-flop then the 

response of PUF circuit are biased to logic”1” or logic “0”. As a result the circuit 

become insensitive to process variations in silicon. That is why we need to reduce 

the contribution of a connect delay. From section 3.3.1 we know that connect delays 

are mainly the function of wire length. That‟s why the only way to do it is to make 

the structure of PUF symmetric i.e make wire length connecting the MUXs equal. 

Figure 3.12 help us to depict our statement 

 

Figure 3.13: The symmetrical wiring between two switch blocks 

The symmetrical structure must be maintaned through all PUF circuit in order to 

produce random responses against random challenge vectors.  
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3.5 Lineer Model of an Arbiter-based PUF 

 

In this section we derive a linear model for arbiter based PUF [1].  

 

 Figure 3.14: PUF circuits represented with switch blocks and switch delays 

To compute the total delay, the path of the upper signal is followed from the initial 

input pulse. The signal will start traveling in a separate path to get to the first switch. 

Let us label this initial delay as a0. For the signal going through the lower path we 

label this delay as f0. In the first switch the delay of the signal 1 will be (  1a1 + c1b1), 

where   1 is the complement of c1. The delay in the second switch will depend on 

whether the signals switched paths in the first stage or not. For signal 1 if it doesn‟t 

change path ( c1 =0) the delay at switch2 will be   1(  2a2 + c2b2). If it changes (c1 =1) 

the delay at switch will be c1(  2f2 + c2d2) . So, the total delay of signal 1 at switch 2 

will be   1(  2a2 + c2b2) + c1(  2f2 + c2d2) . Let‟s specify a new variable xi which 

represents the parity of the first i−1 challenge bits, and will signify if the signal 

starting at the upper path stays in that path or moves to the lower path after i − 1 

switches. The expression for xi is  

                (3.12)      

So the delay of i th switch can be denoted as   i(  iai + cibi) +xi(  ifi + cidi) 

. The total delay in the pulse of signal 1 is  

          
 
                                  (3.13)    
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Similarly the delay for the signal 2 initiated in lower path can be derived to be equal 

to 

          
 
                                  (3.14)             

The difference between these two delays δ is the main variable for our model. This 

difference will decide whether the output of the PUF is 0 or 1. Since we do not know 

which of the two signals will end up in the upper path, we will need to incorporate 

the parity of all the challenge bits which we label P. The difference between the two 

delays becomes 

                                

 

   

                            

                (3.15)                  

             

 

   

                            

               (3.16)                          

Finally , we define     
               

 
 and     

               

 
  for  

i=1...n and            . We define the parity of the challenge bits from a reverse 

order as                      . The delay equation becomes:  

            
                                                   + 

           (3.17)         

Since connection delays in direct and cross wiring between two following switch 

boxes ideally suppose to be equal, due to symmetry, we can conclude that the 

defined variable ui must be close to zero. Extracted expressions for ui  and    variable 

are given in appendix A. So,  in the above expression for   (delay difference) we can 

omit the parameter ui . Note that p1=P, and that            .  After defining yi=νi-1 

the final delay equation becomes  

           
              (3.18)            

Equation 1 uses only n+1 rather than 2n+1 variables to desribe the delay between the 

upper and lower signal paths.  It‟s important to note that the delay variation yi will 

depend on the fabrication process of the PUF circuit. Therefore, one would expect 

these variable to follow a normal distribution. Without loss of generality, we can 
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normalize these values and assume they belong to a normal distribution of mean 0 

and variance 1.  We invoke the arbiter condition for the response bit R. We have  

δ> Ts   R=1 (3.19)              

δ< Ts  R=0 (3.20)         

Where Ts is the setup time for the arbiter.. Finally , we can use Equation to write 

response equation. 

             
                 (3.21)     

Equation (3.21) is an inequality relating the challenge vector C which consist of n 

input bits Ci  to the output bit R. This inequality has n+1  variables which 

characterize the  PUF circuit. So, for a single PUF, we may form the following linear 

equation: 

δ j =      
   

y1 +   +        
   

   + ... +       
   

    +                  (3.22) 

Using Equation 2 we may write the following linear inequalitiy 

     
   

[      
   

          
   

         
   

    Y < 0  (3.23)  

where   Y=              

 

 

 

4. IMPLEMENTATION OF A PHYSICAL UNCLONABLE FUNCTION ON 

AN FPGA 

4.1 Introduction to a FPGA 

For implementation of PUF circuit we preferred FPGA Virtex2Pro designed and 

produced by Xilinx Corporation. FPGA devices are preffered to custom IC because 

of some advantages such as flexibility in reprogrammability and short amount of 

time for implementation of circuits [11].  

FPGAs contain programmable logic components called "configurable logic blocks", 

and a hierarchy of reconfigurable interconnects that allow the blocks to be "wired 

together", somewhat like a one-chip programmable breadboard. Logic blocks can be 

http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard
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configured to perform complex combinational functions, or merely simple logic 

gates like AND and XOR. In most FPGAs, the logic blocks also include memory 

elements, which may be simple flip-flops or more complete blocks of memory[12].  

CLB resources include four slices and two 3-state buffers. Each slice is equivalent 

and contains:  

 Two function generators (F&G) 

 Two storage elements 

 Arithmetic logic gates 

 Large multiplexers 

 Fast carry look-ahead chain 

 Horizontal cascade chain (OR gates) 

The function generators F & G are configurable as 4-input look-up tables (LUTs), as 

16 bit shift registers, or as 16-bit distributed SelectRAM+ memory. In addition , the 

two storage elements are either edge-triggered D type flip flops or level-sensitive 

latches. Each CLB has fast internal interconnect and connects to a switch matrix to 

access general routing resources [12]. 

4.2 Implementation of PUF components 

Xilinx ISE 9.2 is the one of  a software tool produced by Xilinx for synthesis and 

analysis of HDL designs, which enables the developer to synthesize  their designs, 

perform timing analysis, examine RTL diagrams, simulate a design's reaction to 

different stimulus, and configure the target device with the programmer. In order to 

synthesize a component and implement it on FPGA we should know the VHDL 

design flow and understand VHDL codes [13] Any primitive logic are implemented 

in FPGA by using function generators or look-up tables(LUTs)[12]. 

4.2.1 Switch implemented with MUX 

 

The structure of this switch unit is shown on the Figure 4.1. Each switch unit 

includes two MUX elements. So this structure enable us to connect  directly or cross 

connect inputs  “dI0” and “dI1”  to outputs “dQ0” and “dQ1”   depending on a 

challenge input bit    . 

http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Programmer_(hardware)
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Figure 4.1: A Switch block implemented with a MUX 

For synthesis of MUX switch we need to define the entity with three inputs (one of 

them is challenge bit) and two outputs. Inside of the entity we describe the MUX 

unit and how they connected. In the architecture part of VHDL codes we define the 

loop statement  “                         ” ,which is necessary to obtain  a chain of 

serially connected MUX switch[15] .   spesifies the number of switches and the size 

of input vector of challenge bits. The VHDL codes for implementation of switch 

blocks on FPGA are given in the CD, which is attached with the thesis. As a result of 

synthesizing this code we get RTL schematic as shown on Figure 4.2. 

A Synthesizer integrated in ISE tool always try to optimize the logic. There are 

usually many ways to implement logic with a given functionality. If the 

synthesis/mapping/place & route tools recognize that certain blocks do not fulfil a 

timing requirement, these blocks may be optimized in terms of placement and  

logic design, possibly at the cost of an increased area or slow speed. That is why as 

the result of synthesis the MUX gate are simplified and the routing between gates are 

not as shown in the figure 3.1. To avoid it we must change the constraints of 

synthesizer as it shown on the figures 4.7, 4.8. 
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Figure 4.2 : RTL schematic of a switch implemented with a MUX 

   

 

 

 

 

Figure 4.7: Access the “Property” option of a synthesize process  
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Figure 4.8: Setting “Keep Hierarchy” parameter to “YES” value 

 

 

4.2.2 Arbiter  

 

For an arbiter we use pozitive edge triggerred D type Flip Flop. Unwilling wiring of 

clock input of flip flop to an internal system clock signal done by synthesizer make 

us to implement own D type flip flop. The schematic of the Flip flop are shown on 

the figure 3.10 [15] 
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Figure 4.10: The D type edge-triggered flip flop 

 

The operation of D Flip- flop are illustrated in the Figure 3.3. 

As the rising edge of D comes earlier than that of G, an ideal arbiter output must be 

1. However, if the time differnece between two signals is less than the setup time of 

the Flip-flop , an output remains at „0‟ instead of being switched to „1‟. This property 

introduces an skew factor or imbalance in ratio of numbers of 1 and 0 at the output. 

The desiring probability of comming „1‟ or „0‟ at the output must be the same and 

equal to 0,5. Frequently most of flip flops favor the path to output „0‟. So, to 

compensate for the skews we fix some of the most significant challenge to 

effectively lengthen the delay path connected to a gate input[2]. Also, in the 

graduation project[15] the number of switch blocks or challenge bits, n, giving 

almost equal rate of logic „1‟ and logic‟0‟ in response, has been determined 

experimentally. In this experiment, the responses has been measured against 

randomly generated challenge vectors. Implementing PUF with n= 64 switch blocks  

almost solve our skew problem. In our experiments, with 64 switch blocks we obtain 

the rate as 61 %. 

  The two signals emitted from the source at the same time after passing through 

switch blocks arrives to data and clock input of the arbiter.  . For implementation of 
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the flip-flop shown in figure 4.10 we need a primitive NAND gates. That can be 

accomplished by configuration of LUT as result of synthesizing the next code: 

LUT2_inst : LUT2 

   generic map ( 

              INIT => X"7") 

           port map (  O => O,   -- LUT general output 

            I0 => I0, -- LUT input 

          I1 => I1  -- LUT input 

            ); 

4.3 Placement of Switch Box 

 

In order to maximize the inter-chip variation, the delay path must be placed and 

routed as symmetrically as possible so as to minimize the delay differences between 

two paths[1]. Since Xilinx ISE places the gates automatically not considering the 

wire length or wire delay, the implemented PUF always gives response that biased to 

logic „1‟ or logic ‟0‟. So symmetrical placement of switch box minimizing the wire 

delay shown on the figure 4.12 For that placement we should manually drag and 

place the MUXs in the according slices that contains this logic gates in Xilinx 

Floorplanner tool. Having done this placement the tool automatically  write this 

constraint into “ucf” file,which is designated for defining pozition, time, connection 

constraints. In this file must be inserted the constraints that fix upper and lower 

MUXs. In order to keep them close one of them are placed in F LUT the other in G 

LUT in the according slices. For that we must enter the following codes in “ucf” file 

shown on the figure 4.13: 
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Figure 4.12: The placement of MUX switches in Floorplanner 

 

Figure 4.13: Constraints in “UCF” file to select LUT F and LUT G for placement of MUXs 
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5. ANALYSIS AND CHARACTERIZATION OF ARBITER-BASED PUF 

 

In this section we present the primary characteristics of arbiter-based PUF such as 

inter-chip variation, measurement noise, and environmental variations, which have 

an important effects on identification process between different PUFs. 

5.1 Inter-chip Variation  

5.1.1 Information –bearing challenges 

 

Information –bearing challenges can be defined as the challenges whose responses in 

a number of different PUFs are not equal. In order to identify a large amount of  PUF 

on FPGA we need considerable numbers of information-bearing challenges. In an 

experiment where we applied 2000 randomly chosen challenges to 37 chips we could 

define the ratio of information bearing challenges. Due to the lack of so many 

FPGAs in our laboratory I decided to make experiments on available two FPGA 

chips but with different positions of PUF circuit across the FPGA chip wafers.  The 

results of measurements done in another graduation project [2] approve our decision. 

The results obtained there shows that the variations across different wafers is similar 

to the variations across one wafer.  

Putting the obtained data in matrix form enable us to facilitate some manipulations 

over data. The entries Ri,j  in this matrix are the PUF function F
(j)

 (corresponding to j 

FPGA chip) 
  
which takes C

(i) 
as an input vector.  

For each challenges, we have calculated the probability of a response being 1 as 

follows, in other words we count the occurence of 1 across a row and divide it by the 

number of tested FPGA chips or j.  
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Table 5.1:  Table form of  PUF responses, indexed with j , against randomly chosen 

i challenges 

 Response of each PUF, F
(j) 

Challenges, 

C
(i)

  

F
(1) 

F
(2)

 F
(3)

 ... F
(h)

 

C
(1) 

R1,1 R1,2 R1,3 R1,... R1,h 

C
(2)

 R2,1 R2,2 R2,3 R2,... R2,h 

... Ri,1 Ri,2 Ri,3 Ri,j Ri,h 

C
(v) 

Rv,1 Rv,2 Rv,3 Rv,j Rv,h 

 

            
        

 

  
       (5.1)      

where k is the number of PUFs that output 1 against each challenge vector     , 

            and            . Figure 5.1 shows the density function of the 

random variable pi for 2000 challenges. When   =0 or   =1 , the challenge does not 

generate any information since all PUF response are equal. Except for the cases 

when   =0,   =1 , more than 84 % of the total challenges are information-bearing 

challenges.  

 

Figure 5.1: The density function of the random variable                   

The changes in responses of PUFs across a row in the table[2]are resulted from 

differences in a process variation.  The changes in responses of PUFs across a 

column are arised from different challenges. 
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5.1.2 Definition and evaluation of inter-chip variation  

 

Here we define the inter-chip variation between two different PUFs as below . For 

two different PUF responses     (  ) and     (  ) to a challenge    we can define a 

function  that compare the responses  which are the inputs to this function . This 

function behaves like XOR logic function. 

Dm, p = XOR(    (    ), Ri, p(    ))=                  
    (5.2) 

where m           , p          , i           

Simply by this formula we estimate the Hammming distance between responses of 

two different FPGAs. 

Inter-chip variation is one of the basic functions tha make the PUF ouputs unique. It 

is very important for security of PUF based identification. If the PUF produces 

uniformly distributed independent random bits, the inter-chip variation should be 50 

% on average[2].  

For a random challenge set C, we define the inter-chip variation yi,j  between PUF i 

and j  as 

     
 

      
       

     (5.3)        

For convenience, we denote the inter-chip variation by (100*     ) 

Let „s assume that our responses from different FPGAs are in matrix or table form as 

it‟s shown in the table 1.  Finding inter-chip variations between PUF
i 
snd PUF

j 
 is 

equvalent to finding  the hamming distance between two columns that corresponds 

to FPGA with i index and  FPGA with j index. 

We have evaluated yi,j  from 91 arbiter-based PUF pairs using a random challenge set 

C, where |C|=20000. Figure 5.2 shows the density function of 91 evaluated inter-chip 

variation. Our test-chips have 34% inter-chip variation on average, and the minimum 

inter-chip variation is 2%. So minimum value of inter-chip is not allowable since it is 

less than our environmental noise, which will be described in the next section. It 

means that we can not distinguish any of two different FPGA using this challenges. 

This PUF based system is vulnerable to impersonation attacks.    
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Figure 5.2 : The density of the inter-chip variation yi,j for a number of PUF pairs. 

 

5.2 Environmental Variations 

 

Environmental or intra-chip variation is the property that make outputs of a PUF 

reproducibile. It is important for reliability in applications based on PUFs. We desire 

0 % intra-chip variation[15].  

Noise, which may cause unreliability in measured PUF responses are arised from 

temperature and power supply variation[16]. 

Temperature or power supply voltage variations can significantly change circuits 

delay and lead to unreliable responses. Since we exploit relative delay measurement, 

arbiter-based PUFs are robust to such environmental variations. Figure 5.3 shows the 

amount of environmental variation introduced by temperature (μt) and voltage 

variation (μv) . The reference responses are measured at 27 °C and 1,8 V power 

supply voltage [2]. In this experiments 10000 challenges are used to estimate 

environmental variations. Even if the temperature increases more than 40 degrees to 

70 °C , μt   4,82 %[2]. Also with ± 2% power supply voltage variation , μv   3,74% 

.Both μt and μv are below the average inter-chip variation. 
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Figure 5.3: The variation of PUF responses due to temperature and power supply 

changes[2] 

5.3 Identification/Authentication Abilites 

 

When we use PUFs for the identification of registered users , there exists  the server 

that stores CRP profile of N registrered PUFs in the database . Each CRP profiles 

has k CRPs. When a user  present a PUF to the server , the server generates CRPs 

using the presented PUF  and compare it with all CRP profiles of the registered users 

in the database. The server identifies the user by finding the minimum distance CRP 

profile from generated CRPs of the presented PUF. 

In this identification scheme we are trying to find the number k that enable us to 

identify N=10
9 

 different chips with the negligible error probability. It‟s apparent that 

before finding the sufficient challenge number k we need to calculate the number of 

information bits or delay stages of PUF to distinguish between 1 billion components.  

The birthday phenomenon will guide us to the right answer. It „s so named because 

the problem of finding two random challenges which gives the same response value 
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is identical to finding two people in a group of people who share the same birthday 

with probability greater than a certain threshold.  The probability of one collision is 

expressed in the next inequality [17] 

P>1  
       

   

where n - the number of evaluation, m-possible outputs (m=2
l
 , l –is the number of 

information bits)  

If we require that the probability of a collision be greater than 0.5, all we have to do 

is to find that value n in terms of m which makes it happen. We found that n 

approximately equal to  
 
   . This solution say that in the set of m possible outputs 

after n times evaluation the ouput will repeat with the probability more than 0,5. 

Therefore n is the maximum number of times when we can get different output. 

Similarly in our problem of finding l information bits to distinguish 1 billion 

components we need m (the number of all possible challenges)   which is equal to n
2
 

. So the number of all possible challenges  is 10
18

 which is aproximately equal to 2
60

 

. Thus to distinguish 10
9
 chips we need more than 60 information bits.  

In the master  thesis[1] identification/authentication  capability of arbiter-based PUFs 

based on inter-chip variation ζ and noise probability μ have been  studied. Using 

ζ=0.22 and  μ=0.048  the number of sufficient challenges k is calculated as 443 with 

error probability pe  <
 

 
=10

-9
 . The conclusion that using less than 450 CRPs we can 

authenticate 1 billions of  PUF with negligible probability[2]. 

To imagine how many combinations can be created with the responses to  450 

challenges where the ratio of 1‟s in 450 bit output vector  is 50 %  we solve the 

combination problem where we try to place 225 numbers of 1 in 450 cells. Our 

expected expression will be  

   
     

        
 

The maximum number of components    that can be distinguished by 450 

challenges is approximately equal to 10
134 

.
 
In this expression we don‟t consider 

inter-chip variations and environmental variations.  Including these factors 

significantly lower this value.  
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Using the inter- chip factors and measurement noise will make changes to our 

identification scheme[17].Suppose that a PUF wants to authenticate itself as Alice. 

Then she server asks the PUF to generate a list of CRPs corresponding to CRP 

profile of Alice in server‟s database. If the PUF is indeed Alice, then each generated 

response bit differs from the corresponding profile‟s response bit with probability μ . 

If the PUF is not who it claims to be, then this probability is equal to the inter-chip 

variation ζ(>μ) .  

Inter-chip and intra-chip variation(environmental noise) give us new definitions in 

identification and authentication process which are false pozitive and false negative. 

False positive is probability that PUF A  will be authenticated as PUF B when PUF 

A produce the same output as PUF B. False negative is probability that a correct 

PUF will fail to be authenticated when PUF fail to regenerate a consistent output 

[15]. 

 

6. SOFTWARE ATTACKS ON ARBITER-BASED PHYSICAL UNCLONABLE 

FUNCTION  

 

A software attack is one of the non-invasive attacks. It can be realized using the 

lineer programming technique or using machine learning algorithm. In the first case 

an adversary can formulate the response of a PUF as a function of challenges and 

delay parameters. If the challenge-response model of the PUF circuit is linear, then 

an adversary can apply a polynomial number of random challenges and monitor the 

response to estimate circuit delay parameters in linear model. If the model can 

predict the response of the circuit with error probability lower than the maximum 

environmental variation, the adversary can impersonate the original PUF with model. 

So the main goal of an adversary must be to find out all delay parameters because in 

this case he could calculate response for any input challenges.   

Using Simplex method and Matlab program in lineer programming problem we tried 

to simulate attacks of an adversary. In this attack, Matlab produces random 

challenges and calculate the responses against each 64 bit challenge. In attack using 

linear programming approach a certian number of challenge-response pairs or 
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inequalities are used. Simplex algorithm help us to solve for delay parameters. To 

analyze the success of this attack we increase the number of input CRPs step by step. 

The result of attacks using CRPs collected from PUF on FPGA show us the 

consistency between CRPs created by lineer model in Matlab and  measured from 

PUF on FPGA.   

The second attack using support vector machine (SVM) classifier, which is one of   

the machine learning algorithm, show us the possibility to predict the response of 

challenges in a test set after training the classifier with CRPs in training set. In neural 

network the feature vectors with 1 and 0 labels are separated by threshold plane.  

In the last part of the chapter we mention about causes of failure in linear modeling. 

 

6.1 Prediction and Calculation Tools 

 

In order to make attacks or to find out the all delay parameters of the system having 

only limited number of CRPs we need calculation tools. Having found all parameters 

we will able to estimate the response of PUF against each challenge  in CRP list of 

database. This problem can be solved using classification and optimization methods.  

We will talk about Simplex algorithm which can be categorized as one of the widely 

used optimization tools for linear programming model.  

The other prediction tool that we will use is based on a machine learning algorithm 

for classification problem. The classification normally refers to a  a procedure that 

learns to classify new instances based on learning from a training set of instances 

that have been properly labeled by hand with the correct classes. An algorithm that 

implements classification, especially in a concrete implementation, is known as a 

classifier. One of the most widely used classifiers is support vector machine (SVMs) 

classifier [18].  

 

 

 

http://en.wikipedia.org/wiki/Training_set
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6.1.1 Lineer Programming method 

A Linear Programming problem is a special case of a Mathematical 

Programming problem. More formally, linear programming is a technique for 

the optimization of a linear objective function, subject to linear equality and linear 

inequality constraints. Linear programs are problems that can be expressed 

in canonical form[19]: 

Maximize         

 object to        

where   represents the vector of variables (to be determined),   and   are vectors of 

(known) coefficients and   is a (known) matrix of coefficients. The expression to be 

maximized or minimized is called the objective function (    in this case). The 

equations        are the constraints which specify a convex polytope over which 

the objective function is to be optimized. Linear programming can be applied to 

various fields of study. It is used most extensively in business and economics, but 

can also be utilized for some engineering problems.  

Let‟s consider a simple example of linear programming (LP) problem[19]: 

Find numbers x1  and x2 that maximize the sum x1 + x2 subject to the constraints 

x1 0 , x2   and  

                     
           
           
 

In this problem there are two unknowns, and five constraints. The first two 

constraints x1 0 , x2   , are special . These are called nonnegativity constraints and 

are often found in linear programming problems. The other constraints are then 

called the main constraints. The function to be maximized (or minimized) is called 

the objective function. Here, the objective function is x1 + x2. We can solve this 

problem by graphing the set of point in the plain that satisfies all the constraints and 

then finding which point of this set maximizes the value of the objective function. 

Each inequality constraint is satisfied by a half-plane of points, and the constraint set 

is the intersection of all the half-planes. In the present example, the constraint set is 

the five-sided figure shaded in Figure 6.5  

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Linear_equality
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Canonical_form
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Polytope
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Figure 6.5: Example of solving linear programming problem  

We seek the point        , that achieves the maximum of x1 + x2 as         ranges 

over this constrain set. Therefore, we seek the line of slope -1 that is farthest from 

the origin and still touches the constraint set. This occurs at the intersection of the 

lines            and         , namely (x1 , x2 )=(8/3,2/3) . It is easy to see 

in general that the objective function, being linear, always takes its maximum (or 

minimum) value at a corner point of the constraint set, provided the constraint set is 

bounded. 

The simplex algorithm, developed by George Dantzig in 1947, solves LP problems 

by constructing a feasible solution at a corner of the polytope and then walking along 

a path on the edges of the polytope to corners with non-decreasing values of the 

objective function until an optimum is reached[20]. 

 For solving LP problems in MATLAB we need Optimization Toolbox including 

LINPROG routine[21].  

6.1.2 Lineer Support Vector Machine 

 

Given a set of training examples, each marked as belonging to one of two categories, 

an SVM training algorithm builds a model that predicts whether a new example falls 

into one category or the other. 

Classification is achieved by a linear or nonlinear separating surface in the input 

space of the dataset. When the feature vectors of the training set are linearly 

http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/George_Dantzig
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separable by a hyperplane, we can build a linear SVM that uses the structural risk 

minimization principle to decrease classification errors.  

Here we gives a description of linear SVM. Let‟s suppose that we are given training 

data D, a set of n points of the form [22] 

           
                            

                              (6-20) 

where the      is either 1 or −1, indicating the class to which the point      belongs. 

Each       is a p-dimensional real vector. We want to find the maximum-margin 

hyperplane that divides the points having      = 1 from those having      = − 1. Any 

hyperplane can be written as the set of points   satisfying 

                                                              (6-21) 

where   denotes the dot product. The vector   is a normal vector. It‟s perpendicular 

to the hyper plane.  

We want to choose  the w and b to maximize the margin, or distance between the 

parallel hyperplanes that as far apart as possible while still separating data. The 

hyperplanes can be divided by two equations 

                                                              (6-22) 

                                                              (6-23) 

We find the distance between these two hyper planes is 
 

     
 . So we want to 

minimize ||w|| .  In some cases, the dataset can not be classified clearly because of 

non-linearity at the boundary of each class. Considering this case, our goal is not 

only to make the distance, as large as possible, but also minimize the number of 

misclassifications. 

 

 

http://en.wikipedia.org/wiki/Real_number
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Figure 6.6: Maximum- margin hyperplane separating classes 

This is equivalent to minimizing the cost function[23]  

            
 

 
             (6.24)      

where    is the number of mis-classifications. The parameter   is the positive 

constant reducing of which give allows more data to lie on the wrong side of hyper 

plane and would be treated as outliers which give smoother decision boundary[6]. 

Lagrangian Support Vector Machines(LSVM) provide fast converging algorithm to 

the minimal point of the cost function [2]. 

6.2.3 Radial Base Functions Support Vector Machine 

 

There may be another situation where the points are clustered such that the two 

classes are not linearly separable as shown in the Figure 6.7 . In such cases, one 

prefers non-linear mapping of data into some higher dimensional space called 

„feature space‟, where it is linearly separable. The original space of data points is 

called „input space‟. The hyperplane in „feature space‟ corresponds to a highly non-

linear separating surface in the original input space, in the Figure 6.9 [29]. 
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Figure 6.7: Mapping Process 

 

Given a training D set of   data point,            
                            

  

the support vector method approach aims at constructing a classifier of the form[30]: 

             
 
          

        (6.25) 

Where    are positive real constant and   is a real constant.            is a row of 

radial basis function and for RBF SVM can be expressed as           

               
 
    .        is also called kernel function and || . || represents a 
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norm that is generally Euclidean. The known data points          i=1,2…n are the 

center of radial basis functions. 

Expensive calculation of dot products in a high-dimensional space can be avoided by 

introducing a kernel function. 

6.2 Attacks on PUF Circuit Using Linear Programming Aproach  

6.2.1 Experiments using data generated by Matlab 

 

In order to test our derived mathematical model for PUF implemented with MUXs , 

we ran a number of tests using MATLAB and the function linprog(f,A,b) included in 

optimization tool of Matlab [4]. Let‟s  formulate the lineer programming problem 

one more: 

          such that 
        

       
 

       (6.26) 

In our case we  need x (delay parameter) satisfying  constraint inequality           , 

where b is zero vector size and A  is matrix with row elements expressed in 

inequality (6.x). We can take f equal to 0 since objective function is not used in our 

case.  

Our test were performed for a PUF circuit with n=64 stages. We describe test 

procedure step by step as follow: 

  First step: We produce 50000 random challenge vectors with 64 bit length 

using unifrom distribution1. After application the challenges to the PUF 

model programmed in Matlab, obtained responses are saved in a file with 

challenges.  

 Second step: We read    number of CRPs from the file  

 Third step: We used these    rows to solve for       variables. For this 

purpose we use the Simplex algorithm supported by Matlab 

 Fourth step: We generate Test =25000 numbers of response using saved test 

challenges in the file and estimated delay variables. Then we compare the 

responses produced by our model and the responses saved in the file. The 

percentage of error are given in the Table 6.1 : 
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 Table 6.1:  Results of calculation test using linear programming approach for 

PUF implemented with MUXs and response generated by the lineer model. 

The results are expressed in terms of percentage error for each Ns number of 

CRPs  

 Number of challenge-response pairs Ns 

n=64 32 64 128 256 512 1024 2048 4096 8192 

 29.09 15.71 7.38 5.49 4.57 2.91 1.55 0.97 0.49 

 

 

This test shows that if the relation between response and challenge vector strictly 

follows mathematical model an adversary can break scheme based on both PUFs 

having only 1024 CRPs. In order to identify a chip the prediction error rate of the 

model must be less than the environmental noise, which has maximum value 4.82 %  

 

6.3.2 Experiments using data measured from the PUF on the FPGA 

 

For the test using data measured from the PUF on the FPGA we apply the next 

procedure: 

 First step: We produce 50000 random challenge vectors with 64 bit length 

using uniform distribution. After application the challenges to the PUF 

measured responses are saved in a file with applied challenges. 

 Second step: We read    CRPs from the saved file and apply them to the 

mathematical model in order to find A matrix in a linear programming 

problem for      expression(look at the formula 6.1) 

 Third step: We used these    CRPs to solve for       variables. For this 

purpose we use the Simplex algorithm supported by Matlab 

 Fourth step: We generate Ts =25000 numbers of response using saved test 

challenges in the file and estimated delay variables. Then we compare the 

responses produced by our model and the PUF on the FPGA 

We apply this test only to the PUF implemented with MUXs. The percentage 

of prediction error is given in the Table 6.2 below: 
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Table 6.2: Results of prediction test using linear programming approach for PUF 

implemented with MUXs and response measured from the PUF on the 

FPGA . The results are expressed in terms of percentage error for each Ns 

number of CRPs 

 Number of challenge-response pairs Ns 

n=64 32 64 128 256 512 1024 2048 4096 8192 

 49.36 49.06 48.70 47.99 47.92 47.93 47.93 47.93 47.93 

 

The results in Table 3 show that the relation between input vectors and output bits of 

the implemented PUF doesn‟t follow the derived mathematical model, formulated in 

6.10 

We will talk about the reason of failure in prediction of responses in the last section. 

  

6.3 Attacks on PUF Circuit Using Support Vector Machine Classification 

6.3.1 Experiment using data generated by Matlab 

 

We performed test on CRPs generated according to linear model programmed in 

Matlab . Our PUF length is n=64 bits . We apply the same test procedure as it has 

been done in section 6.3.1 . The one difference is that in step 3 instead of linear 

programming technique  we are using SVM classifier. As a software I have used  

LIBSVM (Library for Support Vector Machines)tool, which is developed by Chang 

and Lin[27]. The percentage of prediction error is given in the Table 6.4 below. The 

results are almost similar as in Table 6.1. The results show that an adversary having 

only 1024 CRPs can break authentication scheme based on PUF 

Table 6.4: Results of prediction test using SVM classifier for PUF implemented with 

MUXs and response generated by the mathematical model. The results are 

expressed in terms of percentage error for each Ns number of CRPs . 

 Number of challenge-response pairs Ns 

n=64 32 64 128 256 512 1024 2048 4096 8192 

 30.20 22.34 19.98 9.96 5.81 2.69 1.99 1.16 0.71 
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6.3.2 Experiments using data measured from the PUF on the FPGA 

 

6.3.2.1 Results of software attack for Lineer SVM classifier 

 

In order to compare the result of prediction for data collected from implemented 

PUF on the FPGA  we apply the same procedure as in section 6.3.2  Instead of linear 

programming tool we use lineer SVM classifier. The percentage of prediction error 

is given in the Table 6.5 below: 

Table 6.5: Results of prediction test using lineer SVM classification for PUF 

implemented with MUXs and response measured from the PUF on the 

FPGA . The results are expressed in terms of percentage error for each Ns 

number of CRPs  

 Number of challenge-response pairs Ns 

n=64 32 64 128 256 512 1024 2048 4096 8192 

 50.45 50.06 49.9 49.56 49.40 49.37 49.27 48.95 49.42 

 

The differences between the results shows inconsistency between the data collected 

from PUF implemented on FPGA and the data generated by Matlab as in section 

6.3.2 

6.3.2.2 Results of software attack for RBF SVM classifier 

In order to compare the result of prediction for data collected from implemented 

PUF on the FPGA we apply the same procedure as in previous section. The 

percentage of prediction error is given in the Table 6.6 below: 

Table 6.6: Results of prediction test using RBF SVM classification for PUF 

implemented with MUXs and response measured from the PUF on the FPGA 

 Number of challenge-response pairs Ns 

n=64 32 64 128 256 512 1024 2048 4096 8192 17600 

 52.31 47.75 47.06 47.03 45.96 41.96 32.34 21.76 14.32 9.87 

 

In spite of data inconsistency between real measured data and lineer model of PUF it 

possible to predict responses of PUF on FPGA using a lot of CRPs for training of the 

machine learning algorithm. In this attack we could not reduce the error rate under 

environmental noise rate as it is supposed to be in order to succeed. However, this 
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result verify that PUF can be more vulnerable to more sophisticated software that 

may be already exist or will be developed in near future. Variable resistance to 

different software attacks is undesirable from the security aspect. 

 

6.4 Reason of Failure in Prediction of PUF Circuit Responses    

 

High error rate in classification problem using lineer SVM and linear programming 

approach applied to the data measured from implemented PUF on the FPGA show 

inconsistency between responses of linear model and responses from PUF on the 

FPGA. The result of analysis made below approve that we could not satisfy the main 

condition of symmetry in implementation of PUF circuit on FPGA.  

 

Figure 6.8: Last  stage of PUF with cell and connect delays 

To identify the critical path in a design and to check whether the timing constraints 

could be fulfilled, timing analysis tools are used. This tool uses the difference 

between required time and actual path delays. Actual path delays which consist of on 

the delay of the design elements and interconnects are read from SDF ( Standard 

Delay Format) file. If we use approach of statical static timing analysis all the delays 

can be described in terms of mean and standart deviations as it is shown on the 

Figure 6.9 .  Worst case operating condition correspond to the extreme 3σ corners. 

So, in worst case timing model any delay can be separated as a static delay 

component and a random delay component. Random delay component are caused by 

process variation which can reach 3,5 % of nominal (mean) value and refer to 3σ 

corner in statistical delay model.  
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For investigation of effect of static delay and random delays on the response of PUF 

we can use the figure (6.8). Proceeding from previous knowledge let us write 

expressions for delays at point 1 and point 2 as it is done in (6.25) and (6.26). The 

result of PUF circuit will depend on the difference    ,which is expressed in (6.27)  

               (6.27)  

               (6.28)  

                       (6.29)          

 

Figure 6.9: Statistical model of delay capturing process variations between ICs 

From the figure 6.8 we can derive expressions for                      is a function of 

    
     

,     
     

,     
    

 and      
   

  

              
     

+       
     

 +     
    

       
   

   (6.30)     

               
     

+       
     

 +     
    

       
   

 (6.31)     

          
   

 (6.32)         

          
   

 (6.33) 

In the figure (6.10) the result of assymetry in wiring cause a big differences between 

static delays of path 1 and path 2 before the arbiter.. By using these equations and 

static or mean delay form timing analysis we can find cumulative delay at point 1 

and 2 . The result are graphycally displayed in the figure (6.11) and (6.12). From the 

figure (6.11) we find the ratio of static component to random component as 
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     and from the figure(6.12) 

   
   
     . As it is seen from the 

figure (6.11) in direct connection of switch block the response of PUF are not 

determined by     but     since     value are considerably more than    . 

Despite this situation, in the figure (6.12) the value of     is less than     which 

means that our response are completely depends on random process variation. The 

last case show that by accident we can satisfy the symmetry condition that enable us 

to get the right response.        

 

Figure 6.10: Calculated static delays for last stage of PUF circuit 

     

 
Figure 6.11: Cumulative delay for last stage of PUF with cross connected 

switch block  
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 Figure 6.12: Cumulative delay for last stage of PUF with direct connected 

switch block 

      

 

7. CONCLUSION 

 

In this thesis we have investigated the security and reliability for arbiter-based PUF 

circuit and conducted preliminary experiments. By using authentication method 

based on PUF circuit it is possible to store secrets on a chip that is less vulnerable to 

invasive attacks than traditional digital methods.   

We have implemented arbiter-based PUF using MUX on Xilinx FPGA. Experiment 

results have shown that there are enough variation between programmable gates not 

only on different FPGA chip but also on the same chip for identification purposes. 

The undesired effect of temperature and power supply voltage variations can change 

the delay characteristic of PUF circuit making worse the reliability parameter. 

Experiments of applying different challenges to PUFs circuit which are in different 
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position across FPGA chip show that not any challenge can be used for identification 

purposes. Some of the challenges produce the same outputs in different FPGA 

circuits. The assymetry in wiring reduce the numbers of challenges that provide high 

inter-chip variations. 

We have tested the security of linear model PUF circuit, described by equation in 

section 3.5, against software attacks. For this purpose we have used the linear model 

the security analysis of linear model created in Matlab suggest that the device could 

be vulnerable to model building software attack. In fact, we see that  

Our experiments where we use the responses produced by linear model and response 

measured from implemented PUF have shown different resistance to software 

attacks. In linear model, 1024 CRPs is enough to solve for all delay variable or to 

predict the outputs for any next challenges. Hovewer, lineer programming and lineer 

SVM haven‟t succeeded in prediction of responses, which bring the fact of 

inconsistency between reponses of lineer model and measured from FPGA 

responses. Delay analysis report presented by Xilinx Timing Analyzer tool have 

shown that in spite of symmetrical position arrangement of MUXs across a chip we 

could not achieve desired symmetry in wire delays between switch blocks. It lead to 

corruption of responses in PUF on FPGA.  In spite of that, application of SVM using 

radial based kernel have considerably increased prediction rate up to 90 percent 

where we need 17600 CRPs for a training procedure. This fact verify that PUF based 

system can be vulnerable to more sophisticated attacks, which is unacceptable from 

the security aspect. Especially in case of man in the middle attack . Since 

authentication process of PUF occures in untrusted and open environment the 

adversary can easily collect the data, which will be used for software attacks. More 

authentication process provide him more CRPs. The low intra-chip variation can 

complicate the aim of adversary since in this case we need more CRPs to train our 

machine learning algorithm. 

In order to prevent the predictions of responses, we can employ non-linear arbiters 

such as feed-forward arbiter PUFs. It is difficut for an adversary to build an 

appropriate software model of these arbiters[1].  
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APPENDICES 

 

APPENDIX A.1: Extraction of Expressions for ui and vi Variables in 

Equation 3.17 
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APPENDIX A.1 
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Figure A.1: Two successive MUX blocks with delay variables  

Let’s try to express   variable defined in section (3.5) in terms wire delays     
   

,      
   

 , 

     
   

,      
   

and upper MUX and lower MUX gate delays which are     
   

,  and     
   

, 

respectively. We can achieve it by simple substitution  of   ,   ,   ,      parameters  in 

terms of wire and gate delays which are shown in Figure A.1 . Comparing two figures 6.x1 

and 6.x1 give us the expressions stated below: 
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