[|
'tU technische universitat 'h fakultat fur informatik
dortmund informatik 12

(Introduction to)
Embedded Systems

W

4

200

4
5a000qfT

!
Ay

Peter Marwedel
TU Dortmund,
Informatik 12

preface 2010/09/20

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Motivation for Course (1)

According to forecasts, future of IT
characterized by terms such as

= Disappearing computer,

= Ubiquitous computing,

= Pervasive computing,

= Ambient intelligence,

= Post-PC era,

= Cyber-physical systems.
Basic technologies:

= Embedded Systems

= Communication technologies

technische universitat " fakultat fur © p. marwedel, 2
dortmund informatik informatik 12, 2010 e

Motivation for Course (2)

“Information technology (IT) is on the verge of another
revolution.

networked systems of embedded computers ... have the
potential to change radically the way people interact with their
environment by linking together a range of devices and
sensors that will allow information to be collected, shared, and
processed in unprecedented ways. ...

The use ... throughout society could well dwarf previous
milestones in the information revolution.”

National Research Council Report (US)
Embedded Everywhere, 2001

technische universitat = fakultat far © p. marwedel, 3
dortmund informatik informatik 12, 2010 9T

Motivation for Course (3)

\gf 2\
_AWL
= (
a “““((“\ C

« The future iIs embedded,
embedded is the future

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

Embedded Systems & Cyber-Physical Systems

"Dortmund” Definition: [Peter Marwedel]

Embedded systems are information
processing systems embedded into a
larger product

= Definition: Cyber-Physical (cy-phy)
Systems (CPS) are integrations of
computation with physical processes [Edward
Lee, 2006].

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

Extending the motivation:
Embedded systems and ubiquitous computing

Ubiquitous computing: Information anytime, anywhere.
Embedded systems provide fundamental technology.

Communication > < Embedded
Technology > Systems
Optical networking | © 0 D (R:ob:)tsl t
etwork management |2 8 ET Fontro syst emtis)
Distributed applications | S £ = 2 calure extractic
Service provision |© ? Lo and recognition
UMTS, DECT, Hiperlan, ATM Sensors/actuajors
A/D-convertefs

Pervasive/Ubiquitous computing
Distributed systems
Embedded web system

technische universitat = fakultat far © p. marwedel, © European Commission
dortmund informatik informatik 12, 2010 P

Growing importance of embedded systems (1) §

the global mobile entertainment industry is now worth some $32

bin...predicting average revenue growth of 28% for 2010
[www.itfacts.biz, July 8th, 2009]

..., the market for remote home health monitoring is expected to
generate $225 min revenue in 2011, up from less than $70 min in
2006, according to Parks Associates. . [www.itfacts.biz, Sep. 4th, 2007]

According to IDC the identity and access management (IAM) market
in Australia and New Zealand (ANZ) ... is expected to increase at a
compound annual growth rate (CAGR) of 13.1% to reach $189.3 min
by 2012 [www.itfacts.biz, July 26th, 2008].

Accessing the Internet via a mobile device up by 82% in the US, by
49% in Europe, from May 2007 to May 2008 [www.itfacts.biz, July
29th, 2008]

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

Growing importance of embedded systems (2)

.. but embedded chips form the backbone of the
electronics driven world in which we live ... they are part
of almost everything that runs on electricity

[Ryan, EEDesign, 1995]

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

'tLj technische universitat
dortmund

Application areas
and examples

1.1 Application areas and examples

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Automotive electronics

Functions by embedded Multiple networks
processing: = Body, engine, telematics,
= ABS: Anti-lock braking media, safety, ...
systems Multiple networked
= ESP: Electronic stability Processors
control = Up to 100
= Airbags
= Efficient automatic
gearboxes -
= Theft prevention with smart
keys

= Blind-angle alert systems

= ...etc...
© Jakob Engblom

technische universitat = fakultat far © p. marwedel, 10
dortmund informatik informatik 12, 2010))

AvIiOonics

= Flight control systems,

= anti-collision systems,

= pilot information systems,
= power supply system,

= flap control system,

= entertainment system,

Dependability is of outmost
Importance.

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 11 -

Railways

= Safety features
contribute significantly
to the total value of
trains, and dependabillity
IS extremely important

technische universitat " fakultat far
dortmund informatik

© p. marwedel,
informatik 12, 2010

- 12 -

Telecommunication

Mobile phones have been one
of the fastest growing markets
In the recent years,

Geo-positioning systems,
Fast Internet connections,

Closed systems for police,
ambulances, rescue staff.

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 13-

Medical systems

For example:
Artificial eye: several

approaches, e.g.:

Camera attached to
glasses; computer worn at
belt; output directly
connected to the brain,
“pioneering work by William

Dobelle”. Previously at
[www.dobelle.com]

Translation into sound; claiming

much better resolution.
[http://www.seeingwithsound.com/etumble.htm]

; | technische universitat " fakultat fir © p. marwedel,

% & dortmund | % informatik informatik 12, 2010

Authentication systems

= Finger print sensors

= Access control
Airport security systems

Smartpen®
Smart cards

[tomsguide.com]

technische universitat
dortmund

" fakultat far
informatik

© p. marwedel,
informatik 12, 2010

- 15 -

Capacitive sensor
for fluid level

Contact less
transmission

© Jakob Engblom

technische universitat

dortmund

of power and
readings

Smart Beer Glass

Integrates several technologies:
Radio transmissions

— Sensor technology

Magnetic inductance for

8-bit processor power

_— Computer used for

- / calibration

Impossible without the computer

Meaningless without the
electronics

Inductive coil for RF
ID activation &
power

CPU and reading coil in the table.
Reports the level of fluid in the glass,
alerts servers when close to empty

= fakultat far © p. marwedel, . 16 -

informatik informatik 12, 2010

Industrial automation

Examples
liquid
computer
[]
o —
Sensor
valve w

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010

- 17 -

Forestry Machines

Networked computer
system

= Controlling arms &
tools

harvested

= Crucial to efficient
work

“Tough enough to be ou
iIn the woods”

= Navigating the forest
= Recording the trees

t

technische universitat

“ % dortmund

" fakultat far
informatik

© p. marwedel,
informatik 12, 2010 © Jakob Engblom

- 18 -

Smart buildings

Examples

= |ntegrated cooling,
lightning, room
reservation, emergency
handling, communication

= Goal: “Zero-energy
building”
= EXpected contribution to

fight against global
warming

Show movie

technische universitat " fakultat far
dortmund informatik

© p. marwedel,
informatik 12, 2010 2003/keynotes/index.htm

- 19 -

http://www.date-conference.com/conference/
http://www.date-conference.com/conference/
http://www.date-conference.com/conference/

Logistics

Applications of embedded/cyber-physical system

technology to logistics:

Radio frequency identification (RFID) technology provides
easy identification of each and every object, worldwide.

Mobile communication allows unprecedented interaction.

The need of meeting real-time constraints and scheduling
are linking embedded systems and logistics.

The same is true of energy minimization issues

technische universitat = fakultat far © p. marwedel, 20
dortmund informatik informatik 12, 2010))

'tLj technische universitat
dortmund

Educational

From the preface of the book

concept

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Broad scope avoids problems with narrow perspectives
reported in ARTIST curriculum guidelines

“The lack of maturity of the domain results in a large variety
of industrial practices, often due to cultural habits”

“curricula ... concentrate on one technique and do not
present a sufficiently wide perspective.”

“As a result, industry has difficulty finding adequately
trained engineers, fully aware of design choices.”

Source: ARTIST network of excellence:
Guidelines for a Graduate Curriculum on Embedded Software and Systems,
http://www.artist-embedded.org/Education/Education.pdf, 2003

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 22

Scope consistent with ARTIST guidelines

"The development of ES cannot ignore
the underlying HW characteristics.
Timing, memory usage, power
consumption, and physical failures are
Important.”

"It seems that fundamental bases are
really difficult to acquire during
continuous training if they haven’t been
initially learned, and we must focus on
them."

technische universitat = fakultat far © p. marwedel, 23
dortmund informatik informatik 12, 2010))

Textbook(s)

Peter Marwedel, “Embedded System Design”, Kluwer
Academic Publishers, 2003.

Peter Marwedel, “Embedded System Design:
Embedded Systems Foundations of Cyber-Physical
Systems”, Springer, 2011.

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer,
Gunar Schirner, “Embedded System Design: Modeling,
Synthesis and Verification”, Springer 2009.

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 24 -

Slides, References, ...

= Slides are available at:
http://www?2.itu.edu.tr/~orssi/

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 COUrse announcements - 25 -

'tLj technische universitat
dortmund

Common
characteristics

1.2 Common characteristics

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Dependability

ES Must be dependable, @
Reliability R(t) = probability of system working
correctly provided that is was working at t=0
Maintainability M(d) = probability of system working ~(
correctly d time units after error occurred.

Availability A(t): probability of system working at time t

Safety: no harm to be caused

Security: confidential and authentic communication ‘
Even perfectly designed systems can falil if the
assumptions about the workload and possible errors turn

out to be wrong.
Making the system dependable must not be an after-
thought, it must be considered from the very beginning

—

IL

technische universitat = fakultat far © p. marwedel, 27
dortmund informatik informatik 12, 2010))

Efficiency

ES must be efficient
Code-size efficient

(especially for systems on a chip)

Run-time efficient
Weight efficient
Cost efficient
Energy efficient

technische universitat " fakultat far
dortmund _ informatik

© p. marwedel,
informatik 12, 2010

- 28 -

Embedded System Hardware

Embedded system hardware is frequently used in a I00p
(“hardware in a loop*): —

A/D converter || information }d'ip'ay
le—and—hold processing

SampIe—ant—ho — | D/A converter
T | v

sensors |< (physical) actuators

environment

2L D57

& cyber-physical systems

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 - 29 -

Real-time constraints

Many ES must meet real-time constraints
A real-time system must react to stimuli from the
controlled object (or the operator) within the time
Interval dictated by the environment.
For real-time systems, right answers arriving too late
are wrong.
“A real-time constraint is called hard, if not
meeting that constraint could result in a
catastrophe® [Kopetz, 1997].
All other time-constraints are called soft.
A guaranteed system response has to be explained
without statistical arguments

technische universitat = fakultat far © p. marwedel, 30
dortmund informatik informatik 12, 2010))

Real-Time Systems

Embedded and Real-
Time Synonymous?

= Most embedded
systems are
real-time

= Most real-time
systems are
embedded

© Jakob Engblom

embedded

real-time

technische universitat " fakultat far
dortmund informatik

© p. marwedel,
informatik 12, 2010

- 31 -

Reactive & hybrid systems

Typically, ES are reactive systems:

“A reactive system is one which is in continual
Interaction with is environment and executes
at a pace determined by that environment*
[Berge, 1995]

Behavior depends on input and current state.

Hybrid systems
(analog + digital parts).

"

technische universitat = fakultat far © p. marwedel, 32
dortmund informatik informatik 12, 2010))

Dedicated systems

Dedicated towards a certain
application

Knowledge about behavior at
design time can be used to
minimize resources and to
maximize robustness

Dedicated user interface
(no mouse, keyboard and screen)

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 33 -

'tU technische universitat
dortmund

Challenges in ES
Design

Peter Marwedel
TU Dortmund,
Informatik 12

2010/09/20

1J

[|
'h fakultat fur informatik
informatik 12

3530000/

10T

Q0110 3} |
68 U 029 A O ONET 21 00(
il 1
ﬁ o) ASTgESh
OBeA111 ;:‘-YLL“ =
3 = e

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply.

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Quite a number of challenges, e.g. dependability

Dependability? @

Non-real time protocols used for real-time applications

(e.g. Berlin fire department) ﬁ

= .

Over-simplification of models 3
(e.g. aircraft anti-collision system) <

Using unsafe systems for safety-critical missions
(e.g. voice control system in Los Angeles; ~ 800
planes without voice connection to tower for > 3 hrs

technische universitat = fakultat far © p. marwedel, 35
dortmund informatik informatik 12, 2010))

Importance 1000

of Energy oy

_ e P
Efficiency 100 e
\\ “ .‘. : .--"‘-’ DGP\
0% ieo” SO
. n\ef©) L
| “\(\‘(}e- G(\O\J ° g il M:
10 G“\O\ "‘r :
- \ ”/ + .

Efficient software | © 1 [+ — PR B
design needed, PEg x
otherwise, the T A Wl %,

price for software 0.1 7 -7 Qoo

. . _- 9
flexibility cannot +0 00U O@Owoo
- o*O T+ 88y, *o0 +RISC
be paid. +40_ “%Bo0 P
o l-g” °8 4 0
0.01 o O ——_=" o)
.- + " ASIC x cell
- o FPGA © MPU
0.001 0 A DSP + RISC

© Hugo De Man, > S S S =

IMEC, Philips, 2007 Sk © 8 & &
technische universitat = fakultat far © p. marwedel,

| Y dortmund | % informatik informatik 12, 2010

- 36 -

It Is not sufficient to consider ES
just as a special case of software engineering

EE knowledge must be available,
Walls between EE and CS must be torn down

CS

The same for walls to other disciplines and more challenges

y technische universitat = fakultat fur © p. marwedel,
< dortmund | % informatik informatik 12, 2010

- 37 -

Tl

tu

technische universitat
dortmund

Design flows

1.3 Design flows

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Hypothetical design flow

[Specification

[ES-hardware

System software
(RTOS,
middleware, ...)

~
| Design r _
(o » Design }
repository) L
T Test *
Application
mapping
(Optimization _‘ * Could be
integrated
Evaluation & Validation into loop
(energy, cost,
performance, ...)

Generic loop: tool chains differ in the number and type of iterations

technische universitat
dortmund

" fakultat far
informatik

© p. marwedel, 39
informatik 12, 2010))

Evolution of Design Flow

* Three evolutionary design flows

« Capture and Simulate
— Designers complete design and validate through simulation

« Describe and Synthesize

— Introduction of design synthesis

— For given functionality, design structure generated by tools
« Specify-Explore-Refine

— System design flow extended to four levels

— Large number of levels and metrics for validation

— Design flow performed in several steps

— Each step follows describe-and-synthesize concept

Embedded System Design I <o Chapter 1: Introduction 7/8/2009
© 2009: Gajski, Abdi, Gerstauer, Schimer i |

17

Capture-and-Simulate Design Flow

. Capture &
« System designers generate Simulate
« Preliminary specification
« Basic algorithms Specs
- No software desin -
+ HW designers generate Adonfime
« Architecture, RTL, Logic System Gap SW?
« Logic-level netlist for simulation ' |
« Simulate and optimize Design
+ System gap betweenSWandHW [s
Simulate
« Simulation at the end of design R S
Physical

 Manual design, no automation

Manufacturing

1960's

Embedded System Design | . - Chapter 1: Introduction 7/8/2009

© 2009: Gajski, Abdi, Gersauer, Schimer | |

18

Describe-and-Synthesize Design Flow

- System designers generate Describe &

« Preliminary specification Synthesize
« Basic algorithms
- SW design after HW design

« HW designers generate
- Architecture, RTL, Logic behavior

« Logic synthesis tools generate logic

SW?
- Designers simulate and optimize
+ Simulation before and after synthesis pescibe | Design
» Designers describe just functionality, smuae | Logic
tools synthesize structure Physical
« System gap still persists
| Manufacturing

1980's

Embedded System Design | . - Chapter 1: Introduction 7/8/2009 19

© 2009: Gajski, Abdi, Gerstauer, Schimer & | |

Specify-Explore-Refine Design Flow

Application des.lgntlars generate Specify, Explore
« EXxecutable specification & Refine
« Application algorithms

Executable Functionality
« Platform model for application/platform optimization «
« System designers generate _ Algorithms
. : Algorithms -
« Detailed architecture and network
- SW and HW components Architecture | “QY
- Logic and layout B
 Many design levels and models Performance
« Many metrics for validation < mng
« Solution: Step-by-step strategy Physical
« For each model explore design decisions
« Refine model after exploration
« Refined model = specification for the next level
2000's
N wrw |
e Chapter 1: Introduction 7/8/2009 20

© 2009: Gajski, Abdi, Gerstlauer, Schimer § | |

Example:

lterative design (1)
- After unrolling loop -

SpecC

tools
model

Specification

technische universitat
dortmund

Architecture

model
c
S 5
T ®
—
s o B
-— O
T 2 g
S ((b]
E 0
» 3 g
& —
QO 4]
= 32
c g
4N @
* fakultat fur

informatik

Communic. Implementat.
model model
o
w
(]
il c c
c O c - 8
::'_‘ - O -
© = o @
s 7 T 6 & £ 3
g ¢ S T 2 3 ¢ o
S 8 S E ¢ S
E g _ E 8 g _ 2
? £ 0O » Q0 5 0O ®
=5 -+ 4y] — -+ Y—
£ S = 25 2
£ 5 £ g
&) (¥ _C v O
© p. del,
p. marwede 44 -

informatik 12, 2010

Y Chart

« 3 design views

L]

L]

L]

Behavior (functionality)
Structure (netlist)
Physical (layout)

(Function)

4 abstraction levels

L]

L]

L]

L]

Circuit
Logic
Processor
System

« 5 component libraries

L]

L]

L]

L]

L]

Embedded System Design
© 2009: Gajski, Abdi, GersHauer, Schimer

Transistor

Logic (standard cells)

RTL (ALUs, RF, Memories,...)
Processor (standard, custom)
System (multi-cores with NoCs)

[

Chapter 1:

Behavior

Structure
System (Netlist)
Processor

Logic CF_{.____}:J
Circuit - | oo
I“---—gl—---""
-——_—
F(...)
CH
“-E-—-"
-
F(...)
=3
-
Physical 3
(Layout) —
Introduction 7/8/2009

Motivation for considering specs

Why considering specs?

If something is wrong with the specs, then it
will be difficult to get the design right,
potentially wasting a lot of time.

Typically, we work with models of the
system under design (SUD)

What is a model anyway?

technische universitat = fakultat far © p. marwedel, 46
dortmund informatik informatik 12, 2010))

Requirements for specification techniques (5)

Presence of programming elements
Executability (no algebraic specification)

Support for the design of large systems (= OO)
Domain-specific support
Readability

Portability and flexibility @
Termination \
Support for non-standard I/O devices
Non-functional properties

Support for the design of dependable systems
No obstacles for efficient implementation X%

Adequate model of computation 06
What does it mean “to compute™?

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 47 -

Models

Definition: A model is a simplification of another entity,
which can be a physical thing or another model. The model
contains exactly those characteristics and properties of the
modeled entity that are relevant for a given task. A model
IS minimal with respect to a task if it does not contain any
other characteristics than those relevant for the task.

[Jantsch, 2004].

Which requirements do we have for our models?

technische universitat = fakultat far © p. marwedel, 48
dortmund informatik informatik 12, 2010))

Models and Architectures

« The system = collection of simpler subsystems or pieces
« There are different methods of decomposing functionality
« A particular method = a model

- 49 -

il

Model Taxonomy

. State Oriented (state diagram)

for control systems = temporal behavior

. Activity Oriented (dataflow graph)

for transformational systems like digital signal
processing

Structure Oriented (block diagram)

Data Oriented (entity relationship diagram)
for information systems lik databases
Heterogeneous

- 50 -

Processor Abstraction Level

* Processor level generates system components

« Computation components
— Standard processors
— Custom processor
— Custom functions
— Controllers
— Memories

« Communication components
— Arbiters
— Bridges and transducers
— Controllers (interrupt, memory, DMA,)
— Interfaces

* Processor-level synthesis
- Behavior specification (FSMD, CDFG, IS)
- Component structure
« Synthesis on processor level

Embedded System Design r—_“ . :
© 2009: Gajski, Abdi, Gerstlauer, Schimer _]] Chapter 1: Introduction

7/8/2009

5

FSMD Model

x=al:y = b §&) x=(a”b)+2

S1 S2

S3

z = max(xy) € : FSM

- FSM

« Set of states and transitions
« Transition executed under conditional statements of input variables

- FSMD

« FSM + Set of variable statements executed in each state
* No timing, could be assumed

Embedded System Design r ‘!|
© 2009: Gajski, Abdi, Gerstlauer, Schimer § |

Chapter 1: Introduction 7/8/2009 6

Views of an Elevator Controller

If the elevator is stationary and the floor requested loop

Is equal to the current floor, then the elevator - —

remains idle. If (_req__floo.r = curr_floor) then

If the elevator is stationary and the floor requested direction := idle;

is less than the current floor, then lower the elsif (req_floor < curr_floor) then
elevator to the requested floor. direction := down:

If the elevator is stationary and the floor requested

is greater than the current floor, then raise the elsif (req_floor > Curr_floor) then

elevator to the requested floor. direction := up;
end if;
end loop;
req_floor < curr_floor req_floor = curr_floor req_floor > curr_floor
direction := down direction :=idle direction := up
req_floor < curr_floor req_floor = curr_floor
direction := down direction :=idle
Dow/ Idle Up
req_floor = curr_floor req_floor > curr_floor
direction :=idle direction := up

- B3 -

Finite State Machine

ri/n r2/n

ri/d1

r2/ul
r3/u2 r3/u

r1/d2

r3/n

- 54 -

Finite State Machine

States
A set of transitions
A set of actions
<S5, 1,0, f:Sxl =25, h:Sx| >0>
Set of states : S={s,,S,,...,S.}
Set of inputs : I={i,l5,...,1.}
Set of outputs : O={0,,0,,...,0,}
Next state function : f
Output function : h

- B -

Meally and Moore Machines

Transition based (Mealy) :h:S x| >0
State based (Moore) :h:S - O

- 56 -

FSM with Data Path

Curr_floor!=req_floor/output:=req_floor-curr_floor;
curr_floor:=req_floor

start
Curr_floor=req_floor/output:=0

<S, | U STAT, OUA, f, h>

*A set of storage variables : VAR

*A set of expressions : EXP={f(x, y,z, ...)| X, ¥, Z, ... €
VAR }

A set of storage assignments : A={ X«<=e | X € VAR, e ¢
EXP}

*A set of status expressions : STAT={ Rel(a, b) | a, b €
EXP}

of : Sx (U STAT) > S

*h: Sx (Iu STAT) > (OUA)

- 57 -

Problems with FSM and FSMD models

*Neither the FSM nor the FSMD model is suitable for
complex systems |
*Neither one supports concurrency and hierarchy

- 58 -

Requirements for specification techniques:
Hierarchy

Hierarchy

Humans not capable to understand systems
containing more than ~5 objects.

Most actual systems require more objects / \

< Hierarchy

proc

Behavioral hierarchy proc
Examples: states, processes, procedures. proe

Structural hierarchy "
Examples: processors, racks, I
printed circuit boards =

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 - 59 -

Hierarchical Conc

urrent Finite State Machine
(HCFSM)

"Each set can be decomposed into a set of
substates : hierarchy

sEach set can be d

ecomposed into a set of

concurrent substates : execute in parallel
*[anguage for HCFSM : Statecharts

- 60 -

Statechart Notation

Transitions

 |f event E occurs In state S and condition C holds then
make the transition to state T.

S}:E(C){T w

« Actions to be carried out when event E occurs in state S are
normally put into an event-action table rather than part of
the diagram. The actions could be lengthy and detailed.

- 61 -

Hierarchical statecharts

FSMs are flat. They provide no facility to
represent hierarchies.
Details sometimes can to be hidden to portray
higher level abstraction.
Because the arrows go inside node S, events A
and B indicate that there is more detail in state
S.
When in state S it is also in either state P or
Q.
When in state S, move from P to Q on event
C
When in state T move to state S and within S
to P on event B.
Regardless of states P or Q, on event E,
moveto T
Move to T from Q and S on event A

- 62 -

Clustering

» Clustering is another form of hierarchy.

« The advantage is the reduction in the number of arrows.
« Likely states P and Q are abstractly different from T.

- 63 -

Three modes of a digital watch

¢ b/m ++
REES
b/h3}
d —
b/Di}
: b/Mi3
100
htme_Alarm Set
R Undete -

Fiunre 415 Three modes of the watch.

Start and Stop States

Start states are the simple large dots.

Stop states are the encircled dots.

A nested statechart should have a start point indicated and
a stop state if it's not obvious.

Rt
C T

o

- 65 -

History mechanism

€ \When entering a state that has a
nested statechart, you may want to
resume where you left off when you left
the enclosing state. The encircled H as
the entry point as below means to start
In the state within that was exited.

€ Each level can have its own history
mechanism. Each history variable
would be initialized to the start state of
the level.

€ The encircled H can have an asterisk
attached to indicate that the history
mechanism is to be used at all levels of
the hierarchy.

Concurrency

€ Concurrency refers to the ability to manage more than one state
simultaneously.

€ If a simple FSM is used, the number of states needed is the product of
the number of states that can be represented in each group separately.
€ Example: Consider the 3 style types -- bold, italics and

underline. These styles can be used in any combination. Bold is on or
off, italics is on or off, underline is on or off. The total number of states is
2*2*2 = 8 and the number of transitions is nearly as bad.

& Instead, keep each style type as a separate statechart (bold on or off),
(italics on or off) and (underline on or off). Each statechart is a simple
pair of states.

€ Example: Consider the 4 paragraph positions -- left, center, right and
justified. These types are mutually exclusive but the number of transition
arcs is 10 (=4*5/2).

- 67 -

Concurrency

EERE
© 583

Requirements for specification techniques (2):
Component-based design

Systems must be designed from
components

Must be “easy” to derive behavior from
behavior of subsystems

Work of Sifakis, Thiele, Ernst, ...

Concurrency
Synchronization and communication

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 69 -

Structure oriented models : Component-
connectivity diagram

« Models systems structural view
« Often used in the later phases of the design process

Processor

7771 components
Program Data
memory memory
System bus
Applicatio | | .

/0 npsgecific 1 Connections :
coprocessor i '

P hardware . buses, wires

System block diagram

- 70 -

CCD

Left Right
Bus Bus /|A\
« Register file >
— I
LIR RIR

Y

RT-level schematic

Gate-level schematic

- 71 -

Data-Oriented Models: Entity
relationship diagram

Generally used in the design of information systems

Supplier

customer

\‘ Might be the name
. and address

Availability

P.O.
instance_-

entity

Order

. Relationship : fact
. relevant to its
g entities

- 72 -

Requirements for specification techniques (3):
Timing

Timing behavior :ﬂ%
Essential for embedded systems!
Additional information (periods, dependences,

scenarios, use cases) welcome

Also, the speed of the underlying platform must be
known

Far-reaching consequences for design processes!

“The lack of timing in the core abstraction (of computer

science) Is a flaw, from the perspective of embedded
software” [Lee, 2005]

technische universitat = fakultat far © p. marwedel, 73
dortmund ! informatik informatik 12, 2010))

Requirements for specification techniques (3):
Timing (2)

4 types of timing specs required, according to Burns, 1990:
1. Measure elapsed time 4
Check, how much time has elapsed since last call @

execute

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 - (4 -

Requirements for specification techniques (3)
Timing (3)

3. Possibility to specify timeouts
Stay in a certain state a maximum time.

a

4. Methods for specifying deadlines
Not available or in separate control file.

\l/
4..
| o O
execute _/M
- 1

technische universitat = fakultat far © p. marwedel,
. % dortmund | % informatik informatik 12, 2010

Dependence graph
Definition

Sequence
constraint"""""'-~-~--A...._A ®\
Nodes could be programs
@ or simple operations

« Def.. Adependence graph is a directed graph G=(V,E) Iin
which E — V x V is a partial order.

« If (vl, v2) € E, then vl is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

e Suppose E* is the transitive closure of E.
If (v1, v2) € E*, then vl is called a predecessor of v2 and

v2 is called a successor of v1.

technische universitat = fakultat far © p. marwedel, 76
dortmund informatik informatik 12, 2010))

Dependence graph
Timing information

Dependence graphs may contain additional information,
for example: Timing information

Arrival time deadline

T~ /
(0,7] (1,8] (3,10]

» @® @

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 77 -

technische universitat
dortmund

Dependence graph
I/O-information

= fakultat far © p. marwedel,
informatik informatik 12, 2010

- 78 -

Dependence graph
Shared resources

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 - 19 -

Dependence graph
Periodic schedules

A job is single execution of the dependence graph
Periodic dependence graphs are infinite

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 80 -

technische universitat
dortmund

Dependence graph
Hierarchical task graphs

D
@

= fakultat far © p. marwedel,
informatik informatik 12, 2010

- 81 -

Models of communication

= Shared memory

pd

N
Y

Y

Comp-1 memory Comp-2

Variables accessible to several tasks.

Model is useful only for local systems.

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

Shared memory t;‘

Potential race conditions (<" inconsistent results possible)
< Critical sections = sections at which exclusive access
to resource r (e.g. shared memory) must be guaranteed.

process a{ process b { Race-free access
P(S) //obtain lock P(S) /lobtain lock | | t© Shared memory
// critical section ../l critical section | | protected by S

V(S) /lrelease lock V(S) /lrelease lock | | possible
} }

This model may be supported by:
= mutual exclusion for critical sections
= cache coherency protocols

technische universitat = fakultat far © p. marwedel, 83
dortmund informatik informatik 12, 2010))

Non-blocking/asynchronous message passing

Sender does not have to wait until message has arrived,
potential problem: buffer overflow

.0 Q
sendd) receive ()

\ 4

s —O

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

Blocking/synchronous message passing
rendez-vous

Sender will walit until receiver has received message

O Q
sendd) receive ()

® 'S

technische universitat = fakultat far © p. marwedel,

dortmund informatik informatik 12, 2010 - 85-

Extended rendez-vous

Explicit acknowledge from receiver required.

Receiver can do checking before sending
acknowledgement.

O Q
sendd) receive ()
ack
technische universitat = fakultat far © p. marwedel,

Y dortmund _ informatik informatik 12, 2010

- 86 -

Combined models
- languages presented later in this chapter -

SDL
FSM+asynchronous message passing

StateCharts
FSM+shared memory

CSP, ADA

von Neumann execution+synchronous message passing

See also
= Work by Edward A. Lee, UCB
= Axel Jantsch: Modeling Embedded Systems and Soc's: Concurrency and
Time in Models of Computation, Morgan-Kaufman, 2004

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 87 -

Ptolemy

Ptolemy (UC Berkeley) is an environment for simulating
multiple models of computation.

http://ptolemy.berkeley.edu/

Avallable examples are restricted to a subset of the
supported models of computation.

Newton‘s craddle

| |
i1 |
‘\ | i
o\ |
| |
FLU

| | a@aa

technische universitat = fakultat far © p. marwedel, _ _
dortmund . L informatik informatik 12, 2010 © Ptolemy simulations

- 88 -

Facing reality

No language that meets all language requirements
= using compromises

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 89 -

Summary

Search for other models of computation =
models of components

finite state machines (FSMs)
data flow,
models for communication

Shared memory
Message passing

technische universitat = fakultat far © p. marwedel,
dortmund informatik informatik 12, 2010

- 90 -

