Investigation of New Operators for a Diploid Genetic Algorithm

Sima Etaner UYAR*, A. Emre HARMANCI

Istanbul Technical Univ., Computer Engineering Dept.
Maslak TR 80626 Istanbul, Turkey

ABSTRACT

This study involves diploid genetic algorithms in which a diploid representation of individuals is used. This type
of representation allows characteristics that may not be visible in the current population to be preserved in the
structure of the individuals and then be expressed in a later generation. Thus it prevents traits that may be useful
from being lost. It also helps add diversity to the genetic pool of the populations. In conformance with the diploid
representation of individuals, a reproductive scheme which models the meiotic cell division for gamete formation in
diploid organisms in nature is employed. A domination strategy is applied for mapping an individual’s genotype
onto its phenotype. The domination factor of each allele at each location is determined by way of a statistical scan
of the population in the previous generation. Classical operators such as cross-over and mutation are also used in
the new reproductive routine. The next generation of individuals are chosen via a fitness proportional method from
among the parents and the offspring combined. To prevent early convergence and the population overtake of certain
individuals over generations, an age counter is added. The effectiveness of this algorithm is shown by comparing it
with the simple genetic algorithm using various test functions.

Keywords: Genetic algorithms, evolution, diploidy, meiosis, domination, convergence

1. INTRODUCTION

Genetic Algorithms are a class of stochastic, global optimization algorithms which model the biological principles
of Darwin’s theory of evolution. This theory centers around the principle of natural selection which mainly states
that those individuals that have a certain characteristic which gives them some advantage above the others are more
likely to survive and reproduce. If this characteristic is inheritable, then some of these individuals’ offspring will be
born with it and thus have the advantage over the others. After a few generations, the number of individuals with
the favorable trait will increase in the population. So individuals that have an advantage over the others and adapt
better to their environments reproduce and leave more offspring for the next generations.

In an optimization problem, the aim is to find the best solution. This may not be possible in all cases, so usually
a near best solution is accepted. Biological evolution may be seen as an ongoing global optimization process which
keeps on searching for the optimal individual for a certain environment. In that sense, some mechanisms found
in nature that lead to this natural global optimization process can be modelled to solve the artificial optimization
problems. Genetic algorithms act on this principle. However it is not always necessary to model all the natural
mechanisms. While for certain classes of problems, a simple subset of these would work well, for some others, a more
complicated algorithm that models more natural operators may lead to better solutions.

1.1. Biological Background

Genetic Algorithms model some of the mechanisms found in nature. So most of the terminology will be borrowed
from biology and related fields. Therefore, a brief introduction? for these will be given.

Some simple microorganisms (and some stages of life of more advanced organisms) have a haploid structure, i.e. they
have one set of chromosomes defining all the characteristics. However, most complicated organisms in nature have a
diploid or multiploid structure. In the diploid case, each characteristic is represented by two different genes located
on a pair of chromosomes, called homologues. Genes are the smallest unit of hereditary information and two or more
genes that occupy the same location (locus) on homologue chromosomes are called alleles. All the genes located on
all the homologue chromosomes constitute the genotype of an individual and the subset of these that are expressed,

*Correspondence: Email: etaner@cs.itu.edu.tr; Telephone: (+90 212) 2856471; Fax: (+90 212) 2853679

i.e. that are visible, is called the phenotype. An allele is expressed if it is dominant. The only way a recessive allele
may be expressed is when both alleles have the same value. A mutation, which is an abrupt change of a gene from
one allelic form to another may or may not change the phenotype. This depends on whether the mutation brings
out a dominant allele or not.

Meiotic cell division is the type of cell division used in diploid organisms to produce four haploid, reproductive cells
(called gametes) from one cell. It consists of two stages with five phases each. In the beginning phase of the first
stage, chromosomes replicate, producing two identical chromatids (called sister chromatids) joined at the center. In
the next phase homologue chromosomes, each of which are made up of two identical chromatids, come together to
form a tetrad. Cross-over may occur during this phase between the corresponding segments of non-sister chromatids.
At the end of the first stage homologues seperate and two cells are formed. In the following phases of the second stage
sister chromatids are also seperated, forming four cells each with half the number of chromosomes as the original
cell. This marks the end of the cell division.

After each mating parent has completed its cell division, each will have formed four gametes. One gamete from each
parent comes together to form the diploid cell of the offspring.

If an organism has the same value for corresponding genes located on homologue chromosomes, the organism is said
to be a homozygote for that trait and a heterozygote if it has different values. If an organism is homozygote for a
certain trait, then that trait is seen in the phenotype as given by the genes but if it is a heterozygote than the allele
which is to be expressed is determined depending on which allele is dominant over the other.

Inheritance deals with the transmission of characteristics from parents to offspring. The mechanisms mentioned
above enable this transmission.

1.2. The Simple Genetic Algorithm

The basic genetic algorithm as described in Goldberg’s book “Genetic Algorithms in Search, Optimization and Ma-
chine Learning”' is a simple but powerful search and optimization tool. It is composed of three main operators:
reproduction, cross-over and mutation. Individuals that make up the population have a haploid, binary represen-
tation, i.e. each gene value may either be a 1 or a 0. In the beginning step of the algorithm, individuals’ genes
are randomly initialized to either value and their fitness values are calculated. How the binary string is decoded
to form the actual parameters needed to calculate the fitness value depends on the encoding and the problem. For
example, if a function has three parameters, each ranging between 0 - 7, these can be represented using the binary
representation of each value. Thus, 3 bits (characters) are needed per parameter and the individual’s chromosome
can be 9 characters long. Each group of 3 characters of this string can seperately be used to represent each parameter.
For example, if the chromosome is “011101100” and if the parameters, 1, o and z3 are as given above, then the
first three genes will decode to give x; = 3 and the second three genes will decode to z2 = 5 and the last three to
Ir3 — 4.

A fitness proportional selection mechanism (a roulette wheel selection) is used to choose the individuals that are going
to take part in the reproduction phase. Each individual occupies as much space in the roulette wheel as its fitness.
Assuming there are m individuals in the population, the wheel will be turned m times to choose m individuals to
reproduce. In this method, the expected number of representatives of each individual is proportional to its fitness,
i.e. if fro: is the sum of the fitnesses of all the individuals and f; is the fitness of the i¢th individual, the expected

number of times individual ¢ will be selected by the wheel is given by (m * ff).

After the selection step, these m individuals are paired off at random for mating. The new individuals are formed by
performing cross-over operations with a predefined probability between mating pairs. In the simple genetic algorithm,
a one-point cross-over method is used. A cross-over site is chosen randomly and segments beginning at the cross-over
site and ending at the end of the chromosome are exchanged, forming two new chromosomes which may or may not
be identical to the original mating chromosomes. These new individuals (the offspring) replace their parents, thus
there’s no overlapping between generations.

As the last operator, mutation occurs with a very low, predefined probability at each gene location, independent of
the others. It causes a sudden change in the allele value of the gene location at which it occurs. After this step, the
new fitness values are calculated and the loop starts over from the reproduction phase. This loop is repeated until a
specified number of generations is reached. The algorithm may be written roughly as in Algorithm 1.

Algorithm 1 Simple GA
begin
Initialize_Population(no_of_indivs);
do
reproduce;
cross-over;
mutate;
until end_of_generations ;
end.

2. DIPLOIDY IN GENETIC ALGORITHMS

In nature, most complex organisms have a diploid chromosome structure. This means that the organism has two
genes for each characteristic, located on two chromosomes. Even though this seems like redundant information, it is
nature’s way of keeping a genetic memory. This way, genetic information which may be useful in the future is not
lost but is shielded from the harmful short-term effects of selection. The main mechanism which aids in shielding
these characteristics is domination. While the organism has two alleles for the same characteristic, only one of them
is expressed. The allele that is dominant over the other appears in the phenotype. However the recessive allele is
not lost but is simply masked until a future time when it may become useful. A well known example of this in
nature is the Biston betularia, the peppered moth.? In the 19th century, these moths were very widely seen in
England and were mostly found on lichen covered trees and rocks. They had a very light coloring and this made
them almost impossible to see against the background. Until 1845, all observed Biston betularia have been light
colored. However, during this year, one black specimen was seen in growing industrial centers of Manchester. With
the increased industrialization going on in England, the tree trunks were left bare and especially in heavily polluted
areas, the ground, the tree trunks and even the rocks were almost black. During this period more black specimens of
the Biston betularia were being found. By the 1950s, only very few light colored ones were seen and these were away
from industrial areas. H. B. D. Kettlewell performed tests with both light and dark colored moths in both industrial
and unpolluted areas. His tests confirmed his hypothesis that the black color protected the moths from being seen by
the birds against the dark backgrounds, thus giving them an advantage over their light colored counterparts. Even
though the light color has been dominant, the dark coloring was masked and came out when favorable conditions
occurred. Recently, the pollution level in Great Britain has been monitored to show a decrease. The light colored
peppered moths have already started to increase in number along with this. This also shows that the light coloring
has not been lost either and has started reappearing with the emergence of conditions which favors light colored
moths over the black ones.

Diploid representations for genetic algorithms have been discussed and summarized in both Goldberg’s' and Hol-
land’s® books. There has also been some more recent implementations and papers introducing additive diploidy
and polygenic inheritence,* another new approach to dominance and diploidy and its effects on early convergence,’
multiploidy and dominance,® and a winner take all strategy for applying dominance.”

2.1. The Diploid Algorithm

The implemented algorithm contains most features of the simple genetic algorithm as described above and has some
new operators and features added to it. The pseudo-code of the algorithm may be found in Algorithm 2.

2.1.1. The Representation

In the algorithm each individual is represented as in Fig. 1. Chromosome 1 and chromosome 2 are homologues and
form the diploid chromosome structure of the individual. The phenotype shows which of the characteristics are
expressed. In this implementation, the chromosomes and the phenotype are represented each by strings consisting of
either a 1 or a 0 at each location. In Fig. 1 the black boxes represent a 0 and the white ones a 1. How the phenotype
is obtained from the two chromosome strings will be explained in the following section. The age of an individual
shows for how many generations it has survived. Its fitness value shows how fit the individual is, i.e. how well it
adapts to its environment.

Algorithm 2 The Diploid GA
begin
initialize;
do
select mating pool;
form gametes;
mate;
mutate;
for each dead parent, form new individual;

select next generation;
calculate new domination values;
until end_of_generations ;
end.

T I I || M Chromosome 1
| [|| || I Chromosome 2
| || || I Phenotype

I AGE |

[FITNESS |

Figure 1. The Individual.

2.1.2. Domination Mechanism

The phenotype of the organism is made up of the characteristics that are expressed and the fitness of an individual
is determined by its phenotype. Therefore a mechanism to map the genotype onto the phenotype is needed. This
is a very important part of diploid genetic algorithms and there has been some research done most of which are
explained in detail by Goldberg.!

In this study, the approach used involves a statistical scan of each generation. When determining the phenotype,
the genotype elements corresponding to that location may either be equal or different. Using ¢y; and c2; to represent
the ith location on chromosome 1 and chromosome 2 respectively and p; to represent the corresponding ¢th location
on the phenotype,

if ¢;;, =0 and ¢9; = 0 then p; =0
if c;; =1 and ¢cy; =1 then p; =1

In the above cases where the two alleles for the genes on homologue chromosomes are the same, the corresponding
phenotype equals that allele but in the case where they are different, i.e. where (¢;; = 0 and ¢; = 1) or (¢1; = 1 and
¢o; = 0), a method to determine the phenotypic value is needed. In natural organisms, the allele to be seen in the
phenotype is the dominant one, so an artificial mechanism to simulate this in artificial systems must be designed.
In this implementation, a domination array composed of real numbers in [0.0,1.0] is used. The length of the array
is the same as the chromosome length with each value showing the dominance factor of the allele 1 over the allele
0 corresponding to the same location on the chromosomes. For example, if the alleles on the two chromosomes are
different for the ith location and if the ith entry in the domination array is dom; = 0.8, the phenotypic value for
that location will be 1 with probability 0.8 and 0 with probability 0.2.

The domination array evolves along with the individuals in each population and is calculated using Equation 1.
> Pij * f

Dom; = =~ vi=1,2,...length j=1,2,..size (1)
il

where p;; is the phenotypic value of the jth individual at the ith location, f; is the fitness value of the jth individual,
length is the chromosome length and size is the population size (the total number of individuals in the population).

Equation 1 is evaluated at the end of each generation using the phenotype and fitness values of the individuals in that
population. So the dom; value will be higher if individuals with the allele 1 in the ith location have higher fitnesses
compared to those that have allele 0. Since the domination array is one of the driving forces of the population, it
is expected that the values corresponding to locations on the phenotype that should be 1 in the optimal solution,
should approach 1.0 and 0.0 for the case where the optimal value should be 0.

2.1.3. Initialization

The initialization step is similar to the one in the simple genetic algorithm with a few additions. Each of the the
genes on the two chromosomes of the individual is initialized randomly to be a 0 or a 1. All the locations on the
domination array is initialized to 0.5, meaning that neither allele is dominant in the beginning. After this step, the
phenotypes of the individuals are determined using the initial domination array and the fitnesses are calculated based
on the phenotypic values. The individuals’ age counters are initialized to O.

2.1.4. Mating Pool Selection

Those individuals that are going to take part in the reproduction phase are selected via a roulette wheel selection
mechanism. The method used is exactly the same as the one described in the simple genetic algorithm selection
phase.

2.1.5. Gamete Formation

Gametes in natural, diploid organisms are the haploid reproductive cells that go into reproduction. One haploid
gamete from each mating pair comes together to make up the diploid cell of the offspring. In most cases in nature,
gamete formation is the result of a cell division process called meiosis.

The artificial implementation of the meiotic cell division is given in Algorithm 3 and the mechanism is shown in two
major steps in Fig. 2.

Algorithm 3 Artificial Implementation of Meiotic Cell Division
procedure meiosis;
begin
make chromosome_1 chromatid_1;
copy chromatid_1 into chromatid_2;
make chromosome_2 chromatid_3;
copy chromatid_3 into chromatid_4;
choose one from chromatid_1 and chromatid_2 randomly;
choose one from chromatid_3 and chromatid_4 randomly;
if flip (probability_of_crossover) then
cross-over chosen chromatids;
if flip (probability_of_crossover) then

crossover remaining chromatids;
make each chromatid a gamete;
end;

In this implementation, a two point cross-over approach is used. In two point cross-over, two cross-over sites are
selected randomly and the chromosome segments remaining between these sites are exchanged. How this type of
cross-over works is shown in the bottom part of Fig. 2. Unlike in the simple genetic algorithm, cross-over occurs
between non-sister chromatids of the same individual during meiotic cell division.

As can be seen in Fig. 2, using this type of cell division adds diversity to the population. Two of the gametes from
the four that have been formed are selected randomly to go into the mating phase.

C [BN W coomaa: R
/ E
chromosome 1 [T W WO . [T NN W cromaaz P
L
|
h h d g

chromosome 2 I T W] NN NN W chomas
\ T
B B B coonas E

—_—

cvomaias [T W C T T W caneer
cromai s W W) . W W | canec: S
S
e ;
Chromata 2 CT W W canees
cromais WL W W | . N W W canec:

Figure 2. Meiotic cell division.

2.1.6. Mating Phase

After each mating parent goes through a meiosis-like process, there are four gametes from each parent, ready to go
into mating. In this implementation, each mating produces two offspring which do not replace their parents at this
step. In order to have two offspring, two gametes from each parent are selected at random and each gamete from
each parent goes to each one of the offspring. For example, for the case where a binary representation for gametes
is used, the formation of the offspring is seen in Fig. 3.

Parentl:gametel __, 101010 Parent2:gametel __, 001010
gamete2 __, 111111 gamete2 __, 111011
gamete3 _, 100001 gamete3 _, 101001
gamete4 __, 001011 gamete4 __, 001001
gl g3 g3 g4
Offspring 1 : chromosome1l _, 101010 Offspring 2 : chromosome1l __, 100001
chromosome2 __, 101001 chromosome2 __, 001001

Figure 3. Mating and the formation of offspring.

2.1.7. Mutation

The effect of mutation is the same as it is in the previously explained simple genetic algorithm. In the diploid case the
genotype and the phenotype of an individual are different and mutation acts directly on the genotype, i.e. on each
gene of the two strands of chromosome. Each mutation at each location is independent of those in other locations
and the probability of its occurrance is the same for all genes.

2.1.8. Aging and Death

Since the offspring do not replace their parents and the next generation of individuals is selected from among the
parents and the offspring via a fitness proportional selection metod, those individuals that have high fitnesses may
get selected through many generations. This may lessen diversity and may cause early convergence. To prevent this,
an aging mechanism is introduced. As seen in the structure of the individual in Fig. 1, each individual has an age
counter. Each time the individual survives into the next generation, this counter is incremented by one. At the end
of each generation, some individuals die of old age and new individuals are initialized randomly to fill their place.

The probability of an individual to die is proportional to the square of its age. The probability of the ith individual
to die is calculated as in Eq. 2

DeathProb; = k.age® (2)

where k is a problem-dependent constant in the real number set [0.0, 1.0] and should be determined at the beginning
of the algorithm by taking into account the number of generations the algorithm is to be run, the population size and
the maximum age the individuals may live to be. At the end of each generation, each individual is checked to see if
it dies or not. If a decision is made to kill an individual, then a new individual is initialized to keep the population
size constant.

2.1.9. Determining Who Survives

Unlike in the simple genetic algorithm, the offspring do not replace their parents and they survive together till the
end of the generation. Since the population size is kept constant in all generations, half of the individuals must be
selected to survive into the next generation. A fitness proportional selection method, similar to a roulette wheel
selection method, is used to determine these individuals. However each individual may be selected only once and
once it is selected, it is removed from the current population and is copied into the next. The probability of the ith
individual being selected as the pth individual to survive may be given as in Eq. 3.

fi . .
i = =44 =L 4p—
SelProb 1,2,...,size T=1,2,p—1 (3)

Ej fj - Er fsel[r] =

where f; is the fitness of the individual, > j f; denotes the sum of the fitnesses of all the individuals in the population
and), fseyr denotes the sum of the fitnesses of all the (p — 1) individuals selected before this individual. This
selection is repeated as many times as the size of the population.

3. TEST FUNCTIONS AND RESULTS

The proposed diploid algorithm is tested using various test functions and the results are compared with those obtained
using an implementation of the simple genetic algorithm on the same function. In the following sections, the results
of two of these comparisons will be given. In each test case, the algorithms are run 100 times and the average of the
results are given over 100 runs. The algorithms are run each time with the same set of parameters but with different
initial populations. The parameters chosen for the algorithms are given in Table 1.

| Parameters | Haploid | Diploid |
Number of Generations 1000 1000
Population Size 250 250
Cross-Over Probability 0.9 0.9
Mutation Probability 0.009 0.009
Aging and Dying Factor (k) - 0.001

Table 1. Parameters used in both algorithms

The results will be compared based on the algorithms’ online and offline performances. The online and offline
performance of an algorithm as defined by DeJong are explained in Goldberg’s book.! The offline performance is
designed to measure convergence and the online performance is designed to measure ongoing performance of the
algorithm. In an offline application, a simulation of the system may be used and the algorithm may be run on the
simulation to achieve the best results and then these best results can be applied to the real system. However in an
online application, the results of function evaluations are the results of actual experimentation on the real system,
so in such applications, the time it takes to reach an acceptable solution becomes more important then getting the
best solution. DeJong defined the online performance z.(s) of strategy s on environment e as given in Eq. 4

1 T
7e(s) = 7 2 ful) @

where f,(t) is the fitness function value for the environment e on trial step ¢, i.e. online performance is the average
of all function evaluations up to and including the current trial. He defined offline performance z%(s) of strategy s
on environment e as given in Eq. 5

1 T
wi(s) =z > fr(D) (5)

S|

where f¥ = best{f.(1), fe(2),..., fe(t)}, i.e. the offline performance is the running average of the best performance
values up to a particular time.

Another comparison will be made by giving a table of best, worst and average results from each run in 100 runs
and the standard deviation of these runs. In each table Mean Fitness will denote the average of the best fitnesses
achieved over 100 runs of the algorithm, o will give the standard deviation of the best results obtained from 100
runs, Best Fitness and Worst Fitness will denote the best and the worst results obtained over all the 100 runs, the
Percentage will denote the percentage of the standard deviation to the mean fitness value and Awverage Step will
denote the average of the number of generations needed to achieve the best result in each of the 100 runs.

3.1. Test Case 1

The function used in this test will be explained below. It is a function which is considered easy for the haploid,
simple genetic algorithm. The main aim in this test is to show that the proposed algorithm performs as well as, if
not better than, the simple algorithm in such cases.

3.1.1. The Problem

The problem is to maximize the number of genes that have the value 1 in the case where the chromosome length is
32. So the best individual will be the one that has a chromosome with all 32 genes having a value of 1 and the worst
one would have all 0s. The fitness value of an individual will be equal to the number of 1s its chromosome has.

3.1.2. The Results

As will be seen in Fig. 4 and Fig. 5, the online and offline performances of both algorithms are plotted on a common
set of axis respectively. In each case the x-axis represents the generation count and the y-axis represents a fitness
value. In both graphs the above plot line belongs to the diploid algorithm. The plots and the results in Table 2
show that the proposed diploid algorithm performs as well as the simple genetic algorithm which uses a haploid
representation.

16 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

Figure 4. Online performance averaged over 100 runs

24 -

23 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 5. Offline performance averaged over 100 runs

Test 1 | Simple, haploid algorithm | Proposed diploid algorithm
Mean Fitness 32 32
o 0.0 0.0
Percentage 0.0 0.0
Best fitness 32 32
Worst fitness 32 32
Average step 29 30

Table 2. Results from Test 1

3.2. Test Case 2

The function used in this test will be explained below. It is a function which is considered hard for the haploid,
simple genetic algorithm because the fitness function changes in time. It will be shown that the proposed algorithm
performs better than the simple algorithm as expected.

3.2.1. The Problem

The chromosomes are again made up of 32 genes. The fitness function oscillates every 30 generations between trying
to maximize the decimal value represented by the chromosome and trying to minimize it. A 32 bit chromosome
string is taken as a binary number and its decimal equivalent is calculated. When trying to maximize this value, the
decimal number itself becomes the fitness and when trying to minimize it, the decimal value is subtracted from the
biggest decimal number that can be represented by 32 bits and this becomes the fitness value of the individual.

3.2.2. The Results

Fig. 6 shows a plot of the maxima and Fig. 7 shows a plot of the averages of fitnesses of all the individuals obtained
at each generation, averaged over 100 runs. For clarity reasons, the x-axis representing the generation count, shows
only 250 generations. The y-axis represents fitness values. In both plots, the thicker plot line belongs to the diploid
algorithm, while the thinner one belongs to the simple genetic algorithm. It can be seen that the diploid algorithm
recovers and finds the maximum much more quickly than the haploid one during fitness function transitions. It
takes a little longer for the average fitness value of the population to recover but it still is faster in the diploid case.
As expected, these differences are due to the fact that the diploid chromosome structure acts as a genetic memory.
Characteristics that were useful before the fitness change were not forgotten and when the fitness evaluation method
switched back, they emerged again, causing the algorithm to recover more quickly whereas the haploid algorithm
had to search for them all over from scratch.

4.5e+09 T T T T

4e+09

3.5e+09 -

3e+09

2.5e+09

2e+09 q

1.5e+09 | b

1e+09 : ! . .
0 50 100 150 200 250

Figure 6. Test 2: Maximums obtained for each generation, averaged over 100 runs

4.5e+09 T T T T

4e+09 . N i r -

3.5e+09

3e+09

2.5e+09 |

2e+09

1.5e+09 |

le+09

5e+08

o

50 100 150 200 250

Figure 7. Test 2: Averages obtained for each generation, averaged over 100 runs

As will be seen in Fig. 8 and Fig. 9, the offline and online performances of both algorithms are plotted on a common
set of axis respectively. In each case the x-axis represents the generation count and the y-axis represents a fitness
value. The better plot line in each belongs to the diploid algorithm. These plots have been calculated from the data
in Fig. 6 and Fig. 7 using Eq. 5 and Eq. 4 respectively and are as expected. It must be noted that in these graphs,
the results for all 1000 generations are given.

4.3e+09 T T T T T T T T T

4.28e+09 (-

o /MWWWWM

4.24e+09 s
4.22e+09 B

4.2e+09 b

4.18e+09 q

4.16e+09 b

4.14e+09 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

Figure 8. Test 2: Offline performance averaged over 100 runs

3.8e+09

3.6e+09

3.4e+09

3.2e+09

3e+09 |+ b

2.8e+09 - b

2.6e+09 b

2.4e+09 - b

2.2e+09 b

2e+09 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

Figure 9. Test 2: Online performance averaged over 100 runs

The results in Table 3 show that the diploid algorithm is much more reliable than the haploid one for this problem.
The standard deviation between maximums obtained at different runs is %0.000061 of the mean fitness in the diploid
case, while it is %0.000814 in the haploid case. Based on these, it can be said that the diploid algorithm will give
good and reliable results even when only one run is made. This also brings out another important aspect of the
algorithm. The haploid algorithm has a higher standard deviation between found optima which shows that it is
more dependent on the initial population. However the fact that the standard deviation in the diploid case is lower,
shows that no matter what the initial population might be, the diploid algorithm produces acceptable results with
low deviations between them. So the diploid algorithm is fairly independent of the starting population in this test
case .

Test2 | Simple haploid algorithm | Proposed diploid algorithm

Mean fitness 4294950144 4294966272
o 34971.7 2636.2
Percentage 0.000814 0.000061
Best fitness 4294967296 4294967296
Worst fitness 4294702080 4294958080
Average step 147.3 259.5

Table 3. Results from Test 2

In the beginning generations of the second test problem, those individuals that have a higher decimal value are
more at an advantage than the others. However after 30 generations, the fitness function changes (similar to an
environmental change in nature) and those that have smaller decimal values gain advantage and remain that way
for the next 30 generations. The gene combinations which made the individuals favorable in the first 30 generations
are not lost however and are remembered in the genotype. When the fitness function changes back to the first case,
they become favorable again and thus are once again expressed. This is very much like the biston betularia example
given in previous sections.

4. CONCLUSION

In this paper, the proposed diploid algorithm has been compared with an implementation of the simple, haploid
algorithm using two test functions. The results obtained from these two test cases show that the proposed diploid
algorithm works well in both cases and better in the the case of a changing fitness function as expected. Comparisons
with other diploid representations found in literature are currently being done.

REFERENCES

. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

. H. Curtis, N. S. Barnes, Invitation to Biology (3rd Ed), Worth Publishers Inc., 1981

. J. H. Holland, Adaptations in Natural and Artificial Systems: An Introductory Analysis With Applications to

Biology, Control and Artificial Intelligence, MIT Press, 1998.

4. C. Ryan, “The Degree of Oneness”, in Proceedings of the 1994 ECAI Workshop on Genetic Algorithms, Springer
Verlag, 1994.

5. F. Greene, “A Method for Utilizing Diploid/Dominance in Genetic Search”, in Proceedings of the First IEEE
Conference on Evolutionary Computation, 1996.

6. Y. Kim, J. K. Kim, S. Lee, C. Cho, L. Hyung. “Winner Take All Strategy for a Diploid Genetic Algorithm”, in
Proceedings of the First Asia-Pacific Conference on Simulated Evolution and Learning. 1996.

7. E. Collingwood, D. Corne, P. Ross, “Useful Diversity via Multiploidy”, AISB Workshop on Evolutionary Compu-

tation, 1996.

W N =

