
Investigation of New Operators for a Diploid Geneti Algorithm�ima Etaner UYAR�, A. Emre HARMANCIIstanbul Tehnial Univ., Computer Engineering Dept.Maslak TR 80626 Istanbul, TurkeyABSTRACTThis study involves diploid geneti algorithms in whih a diploid representation of individuals is used. This typeof representation allows harateristis that may not be visible in the urrent population to be preserved in thestruture of the individuals and then be expressed in a later generation. Thus it prevents traits that may be usefulfrom being lost. It also helps add diversity to the geneti pool of the populations. In onformane with the diploidrepresentation of individuals, a reprodutive sheme whih models the meioti ell division for gamete formation indiploid organisms in nature is employed. A domination strategy is applied for mapping an individual's genotypeonto its phenotype. The domination fator of eah allele at eah loation is determined by way of a statistial sanof the population in the previous generation. Classial operators suh as ross-over and mutation are also used inthe new reprodutive routine. The next generation of individuals are hosen via a �tness proportional method fromamong the parents and the o�spring ombined. To prevent early onvergene and the population overtake of ertainindividuals over generations, an age ounter is added. The e�etiveness of this algorithm is shown by omparing itwith the simple geneti algorithm using various test funtions.Keywords: Geneti algorithms, evolution, diploidy, meiosis, domination, onvergene1. INTRODUCTIONGeneti Algorithms are a lass of stohasti, global optimization algorithms whih model the biologial priniplesof Darwin's theory of evolution. This theory enters around the priniple of natural seletion whih mainly statesthat those individuals that have a ertain harateristi whih gives them some advantage above the others are morelikely to survive and reprodue. If this harateristi is inheritable, then some of these individuals' o�spring will beborn with it and thus have the advantage over the others. After a few generations, the number of individuals withthe favorable trait will inrease in the population. So individuals that have an advantage over the others and adaptbetter to their environments reprodue and leave more o�spring for the next generations.In an optimization problem, the aim is to �nd the best solution. This may not be possible in all ases, so usuallya near best solution is aepted. Biologial evolution may be seen as an ongoing global optimization proess whihkeeps on searhing for the optimal individual for a ertain environment. In that sense, some mehanisms foundin nature that lead to this natural global optimization proess an be modelled to solve the arti�ial optimizationproblems. Geneti algorithms at on this priniple. However it is not always neessary to model all the naturalmehanisms. While for ertain lasses of problems, a simple subset of these would work well, for some others, a moreompliated algorithm that models more natural operators may lead to better solutions.1.1. Biologial BakgroundGeneti Algorithms model some of the mehanisms found in nature. So most of the terminology will be borrowedfrom biology and related �elds. Therefore, a brief introdution2 for these will be given.Some simple miroorganisms (and some stages of life of more advaned organisms) have a haploid struture, i.e. theyhave one set of hromosomes de�ning all the harateristis. However, most ompliated organisms in nature have adiploid or multiploid struture. In the diploid ase, eah harateristi is represented by two di�erent genes loatedon a pair of hromosomes, alled homologues. Genes are the smallest unit of hereditary information and two or moregenes that oupy the same loation (lous) on homologue hromosomes are alled alleles. All the genes loated onall the homologue hromosomes onstitute the genotype of an individual and the subset of these that are expressed,�Correspondene: Email: etaner�s.itu.edu.tr; Telephone: (+90 212) 2856471; Fax: (+90 212) 2853679



i.e. that are visible, is alled the phenotype. An allele is expressed if it is dominant. The only way a reessive allelemay be expressed is when both alleles have the same value. A mutation, whih is an abrupt hange of a gene fromone alleli form to another may or may not hange the phenotype. This depends on whether the mutation bringsout a dominant allele or not.Meioti ell division is the type of ell division used in diploid organisms to produe four haploid, reprodutive ells(alled gametes) from one ell. It onsists of two stages with �ve phases eah. In the beginning phase of the �rststage, hromosomes repliate, produing two idential hromatids (alled sister hromatids) joined at the enter. Inthe next phase homologue hromosomes, eah of whih are made up of two idential hromatids, ome together toform a tetrad. Cross-over may our during this phase between the orresponding segments of non-sister hromatids.At the end of the �rst stage homologues seperate and two ells are formed. In the following phases of the seond stagesister hromatids are also seperated, forming four ells eah with half the number of hromosomes as the originalell. This marks the end of the ell division.After eah mating parent has ompleted its ell division, eah will have formed four gametes. One gamete from eahparent omes together to form the diploid ell of the o�spring.If an organism has the same value for orresponding genes loated on homologue hromosomes, the organism is saidto be a homozygote for that trait and a heterozygote if it has di�erent values. If an organism is homozygote for aertain trait, then that trait is seen in the phenotype as given by the genes but if it is a heterozygote than the allelewhih is to be expressed is determined depending on whih allele is dominant over the other.Inheritane deals with the transmission of harateristis from parents to o�spring. The mehanisms mentionedabove enable this transmission.1.2. The Simple Geneti AlgorithmThe basi geneti algorithm as desribed in Goldberg's book �Geneti Algorithms in Searh, Optimization and Ma-hine Learning�1 is a simple but powerful searh and optimization tool. It is omposed of three main operators:reprodution, ross-over and mutation. Individuals that make up the population have a haploid, binary represen-tation, i.e. eah gene value may either be a 1 or a 0. In the beginning step of the algorithm, individuals' genesare randomly initialized to either value and their �tness values are alulated. How the binary string is deodedto form the atual parameters needed to alulate the �tness value depends on the enoding and the problem. Forexample, if a funtion has three parameters, eah ranging between 0 - 7, these an be represented using the binaryrepresentation of eah value. Thus, 3 bits (haraters) are needed per parameter and the individual's hromosomean be 9 haraters long. Eah group of 3 haraters of this string an seperately be used to represent eah parameter.For example, if the hromosome is �011101100 � and if the parameters, x1, x2 and x3 are as given above, then the�rst three genes will deode to give x1 = 3 and the seond three genes will deode to x2 = 5 and the last three tox3 = 4.A �tness proportional seletion mehanism (a roulette wheel seletion) is used to hoose the individuals that are goingto take part in the reprodution phase. Eah individual oupies as muh spae in the roulette wheel as its �tness.Assuming there are m individuals in the population, the wheel will be turned m times to hoose m individuals toreprodue. In this method, the expeted number of representatives of eah individual is proportional to its �tness,i.e. if fTot is the sum of the �tnesses of all the individuals and fi is the �tness of the ith individual, the expetednumber of times individual i will be seleted by the wheel is given by (m � fifTot ).After the seletion step, these m individuals are paired o� at random for mating. The new individuals are formed byperforming ross-over operations with a prede�ned probability between mating pairs. In the simple geneti algorithm,a one-point ross-over method is used. A ross-over site is hosen randomly and segments beginning at the ross-oversite and ending at the end of the hromosome are exhanged, forming two new hromosomes whih may or may notbe idential to the original mating hromosomes. These new individuals (the o�spring) replae their parents, thusthere's no overlapping between generations.As the last operator, mutation ours with a very low, prede�ned probability at eah gene loation, independent ofthe others. It auses a sudden hange in the allele value of the gene loation at whih it ours. After this step, thenew �tness values are alulated and the loop starts over from the reprodution phase. This loop is repeated until aspei�ed number of generations is reahed. The algorithm may be written roughly as in Algorithm 1.



Algorithm 1 Simple GAbeginInitialize_Population(no_of_indivs );doreprodue;ross-over;mutate;until end_of_generations ;end. 2. DIPLOIDY IN GENETIC ALGORITHMSIn nature, most omplex organisms have a diploid hromosome struture. This means that the organism has twogenes for eah harateristi, loated on two hromosomes. Even though this seems like redundant information, it isnature's way of keeping a geneti memory. This way, geneti information whih may be useful in the future is notlost but is shielded from the harmful short-term e�ets of seletion. The main mehanism whih aids in shieldingthese harateristis is domination. While the organism has two alleles for the same harateristi, only one of themis expressed. The allele that is dominant over the other appears in the phenotype. However the reessive allele isnot lost but is simply masked until a future time when it may beome useful. A well known example of this innature is the Biston betularia, the peppered moth.2 In the 19th entury, these moths were very widely seen inEngland and were mostly found on lihen overed trees and roks. They had a very light oloring and this madethem almost impossible to see against the bakground. Until 1845, all observed Biston betularia have been lightolored. However, during this year, one blak speimen was seen in growing industrial enters of Manhester. Withthe inreased industrialization going on in England, the tree trunks were left bare and espeially in heavily pollutedareas, the ground, the tree trunks and even the roks were almost blak. During this period more blak speimens ofthe Biston betularia were being found. By the 1950s, only very few light olored ones were seen and these were awayfrom industrial areas. H. B. D. Kettlewell performed tests with both light and dark olored moths in both industrialand unpolluted areas. His tests on�rmed his hypothesis that the blak olor proteted the moths from being seen bythe birds against the dark bakgrounds, thus giving them an advantage over their light olored ounterparts. Eventhough the light olor has been dominant, the dark oloring was masked and ame out when favorable onditionsourred. Reently, the pollution level in Great Britain has been monitored to show a derease. The light oloredpeppered moths have already started to inrease in number along with this. This also shows that the light oloringhas not been lost either and has started reappearing with the emergene of onditions whih favors light oloredmoths over the blak ones.Diploid representations for geneti algorithms have been disussed and summarized in both Goldberg's1 and Hol-land's3 books. There has also been some more reent implementations and papers introduing additive diploidyand polygeni inheritene,4 another new approah to dominane and diploidy and its e�ets on early onvergene,5multiploidy and dominane,6 and a winner take all strategy for applying dominane.72.1. The Diploid AlgorithmThe implemented algorithm ontains most features of the simple geneti algorithm as desribed above and has somenew operators and features added to it. The pseudo-ode of the algorithm may be found in Algorithm 2.2.1.1. The RepresentationIn the algorithm eah individual is represented as in Fig. 1. Chromosome 1 and hromosome 2 are homologues andform the diploid hromosome struture of the individual. The phenotype shows whih of the harateristis areexpressed. In this implementation, the hromosomes and the phenotype are represented eah by strings onsisting ofeither a 1 or a 0 at eah loation. In Fig. 1 the blak boxes represent a 0 and the white ones a 1. How the phenotypeis obtained from the two hromosome strings will be explained in the following setion. The age of an individualshows for how many generations it has survived. Its �tness value shows how �t the individual is, i.e. how well itadapts to its environment.



Algorithm 2 The Diploid GAbegininitialize;doselet mating pool;form gametes;mate;mutate;for eah dead parent, form new individual;selet next generation;alulate new domination values;until end_of_generations ;end.
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FITNESS Figure 1. The Individual.2.1.2. Domination MehanismThe phenotype of the organism is made up of the harateristis that are expressed and the �tness of an individualis determined by its phenotype. Therefore a mehanism to map the genotype onto the phenotype is needed. Thisis a very important part of diploid geneti algorithms and there has been some researh done most of whih areexplained in detail by Goldberg.1In this study, the approah used involves a statistial san of eah generation. When determining the phenotype,the genotype elements orresponding to that loation may either be equal or di�erent. Using 1i and 2i to representthe ith loation on hromosome 1 and hromosome 2 respetively and pi to represent the orresponding ith loationon the phenotype,if 1i = 0 and 2i = 0 then pi = 0if 1i = 1 and 2i = 1 then pi = 1In the above ases where the two alleles for the genes on homologue hromosomes are the same, the orrespondingphenotype equals that allele but in the ase where they are di�erent, i.e. where (1i = 0 and 2i = 1) or (1i = 1 and2i = 0), a method to determine the phenotypi value is needed. In natural organisms, the allele to be seen in thephenotype is the dominant one, so an arti�ial mehanism to simulate this in arti�ial systems must be designed.In this implementation, a domination array omposed of real numbers in [0:0; 1:0℄ is used. The length of the arrayis the same as the hromosome length with eah value showing the dominane fator of the allele 1 over the allele0 orresponding to the same loation on the hromosomes. For example, if the alleles on the two hromosomes aredi�erent for the ith loation and if the ith entry in the domination array is domi = 0:8, the phenotypi value forthat loation will be 1 with probability 0:8 and 0 with probability 0:2.The domination array evolves along with the individuals in eah population and is alulated using Equation 1.Domi = Pj pij � fjPj fj ; i = 1; 2; ::; length j = 1; 2; :::size (1)where pij is the phenotypi value of the jth individual at the ith loation, fj is the �tness value of the jth individual,length is the hromosome length and size is the population size (the total number of individuals in the population).



Equation 1 is evaluated at the end of eah generation using the phenotype and �tness values of the individuals in thatpopulation. So the domi value will be higher if individuals with the allele 1 in the ith loation have higher �tnessesompared to those that have allele 0. Sine the domination array is one of the driving fores of the population, itis expeted that the values orresponding to loations on the phenotype that should be 1 in the optimal solution,should approah 1:0 and 0:0 for the ase where the optimal value should be 0.2.1.3. InitializationThe initialization step is similar to the one in the simple geneti algorithm with a few additions. Eah of the thegenes on the two hromosomes of the individual is initialized randomly to be a 0 or a 1. All the loations on thedomination array is initialized to 0:5, meaning that neither allele is dominant in the beginning. After this step, thephenotypes of the individuals are determined using the initial domination array and the �tnesses are alulated basedon the phenotypi values. The individuals' age ounters are initialized to 0.2.1.4. Mating Pool SeletionThose individuals that are going to take part in the reprodution phase are seleted via a roulette wheel seletionmehanism. The method used is exatly the same as the one desribed in the simple geneti algorithm seletionphase.2.1.5. Gamete FormationGametes in natural, diploid organisms are the haploid reprodutive ells that go into reprodution. One haploidgamete from eah mating pair omes together to make up the diploid ell of the o�spring. In most ases in nature,gamete formation is the result of a ell division proess alled meiosis.The arti�ial implementation of the meioti ell division is given in Algorithm 3 and the mehanism is shown in twomajor steps in Fig. 2.Algorithm 3 Arti�ial Implementation of Meioti Cell Divisionproedure meiosis;beginmake hromosome_1 hromatid_1;opy hromatid_1 into hromatid_2;make hromosome_2 hromatid_3;opy hromatid_3 into hromatid_4;hoose one from hromatid_1 and hromatid_2 randomly;hoose one from hromatid_3 and hromatid_4 randomly;if flip (probability_of_rossover) thenross-over hosen hromatids;if flip (probability_of_rossover) thenrossover remaining hromatids;make eah hromatid a gamete;end;In this implementation, a two point ross-over approah is used. In two point ross-over, two ross-over sites areseleted randomly and the hromosome segments remaining between these sites are exhanged. How this type ofross-over works is shown in the bottom part of Fig. 2. Unlike in the simple geneti algorithm, ross-over oursbetween non-sister hromatids of the same individual during meioti ell division.As an be seen in Fig. 2, using this type of ell division adds diversity to the population. Two of the gametes fromthe four that have been formed are seleted randomly to go into the mating phase.
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RFigure 2. Meioti ell division.2.1.6. Mating PhaseAfter eah mating parent goes through a meiosis-like proess, there are four gametes from eah parent, ready to gointo mating. In this implementation, eah mating produes two o�spring whih do not replae their parents at thisstep. In order to have two o�spring, two gametes from eah parent are seleted at random and eah gamete fromeah parent goes to eah one of the o�spring. For example, for the ase where a binary representation for gametesis used, the formation of the o�spring is seen in Fig. 3.
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Figure 3. Mating and the formation of o�spring.2.1.7. MutationThe e�et of mutation is the same as it is in the previously explained simple geneti algorithm. In the diploid ase thegenotype and the phenotype of an individual are di�erent and mutation ats diretly on the genotype, i.e. on eahgene of the two strands of hromosome. Eah mutation at eah loation is independent of those in other loationsand the probability of its ourrane is the same for all genes.2.1.8. Aging and DeathSine the o�spring do not replae their parents and the next generation of individuals is seleted from among theparents and the o�spring via a �tness proportional seletion metod, those individuals that have high �tnesses mayget seleted through many generations. This may lessen diversity and may ause early onvergene. To prevent this,an aging mehanism is introdued. As seen in the struture of the individual in Fig. 1, eah individual has an ageounter. Eah time the individual survives into the next generation, this ounter is inremented by one. At the endof eah generation, some individuals die of old age and new individuals are initialized randomly to �ll their plae.



The probability of an individual to die is proportional to the square of its age. The probability of the ith individualto die is alulated as in Eq. 2 DeathProbi = k:age2 (2)where k is a problem-dependent onstant in the real number set [0:0; 1:0℄ and should be determined at the beginningof the algorithm by taking into aount the number of generations the algorithm is to be run, the population size andthe maximum age the individuals may live to be. At the end of eah generation, eah individual is heked to see ifit dies or not. If a deision is made to kill an individual, then a new individual is initialized to keep the populationsize onstant.2.1.9. Determining Who SurvivesUnlike in the simple geneti algorithm, the o�spring do not replae their parents and they survive together till theend of the generation. Sine the population size is kept onstant in all generations, half of the individuals must beseleted to survive into the next generation. A �tness proportional seletion method, similar to a roulette wheelseletion method, is used to determine these individuals. However eah individual may be seleted only one andone it is seleted, it is removed from the urrent population and is opied into the next. The probability of the ithindividual being seleted as the pth individual to survive may be given as in Eq. 3.SelProbi = fiPj fj �Pr fsel[r℄ ; j = 1; 2; :::; size r = 1; 2; p� 1 (3)where fi is the �tness of the individual,Pj fj denotes the sum of the �tnesses of all the individuals in the populationand Pr fsel[r℄ denotes the sum of the �tnesses of all the (p � 1) individuals seleted before this individual. Thisseletion is repeated as many times as the size of the population.3. TEST FUNCTIONS AND RESULTSThe proposed diploid algorithm is tested using various test funtions and the results are ompared with those obtainedusing an implementation of the simple geneti algorithm on the same funtion. In the following setions, the resultsof two of these omparisons will be given. In eah test ase, the algorithms are run 100 times and the average of theresults are given over 100 runs. The algorithms are run eah time with the same set of parameters but with di�erentinitial populations. The parameters hosen for the algorithms are given in Table 1.Parameters Haploid DiploidNumber of Generations 1000 1000Population Size 250 250Cross-Over Probability 0.9 0.9Mutation Probability 0.009 0.009Aging and Dying Fator (k) - 0.001Table 1. Parameters used in both algorithmsThe results will be ompared based on the algorithms' online and o�ine performanes. The online and o�ineperformane of an algorithm as de�ned by DeJong are explained in Goldberg's book.1 The o�ine performane isdesigned to measure onvergene and the online performane is designed to measure ongoing performane of thealgorithm. In an o�ine appliation, a simulation of the system may be used and the algorithm may be run on thesimulation to ahieve the best results and then these best results an be applied to the real system. However in anonline appliation, the results of funtion evaluations are the results of atual experimentation on the real system,so in suh appliations, the time it takes to reah an aeptable solution beomes more important then getting thebest solution. DeJong de�ned the online performane xe(s) of strategy s on environment e as given in Eq. 4



xe(s) = 1T TX1 fe(t) (4)where fe(t) is the �tness funtion value for the environment e on trial step t, i.e. online performane is the averageof all funtion evaluations up to and inluding the urrent trial. He de�ned o�ine performane x�e(s) of strategy son environment e as given in Eq. 5 x�e(s) = 1T TX1 f�e (t) (5)where f�e = bestffe(1); fe(2); :::; fe(t)g, i.e. the o�ine performane is the running average of the best performanevalues up to a partiular time.Another omparison will be made by giving a table of best, worst and average results from eah run in 100 runsand the standard deviation of these runs. In eah table Mean Fitness will denote the average of the best �tnessesahieved over 100 runs of the algorithm, � will give the standard deviation of the best results obtained from 100runs, Best Fitness and Worst Fitness will denote the best and the worst results obtained over all the 100 runs, thePerentage will denote the perentage of the standard deviation to the mean �tness value and Average Step willdenote the average of the number of generations needed to ahieve the best result in eah of the 100 runs.3.1. Test Case 1The funtion used in this test will be explained below. It is a funtion whih is onsidered easy for the haploid,simple geneti algorithm. The main aim in this test is to show that the proposed algorithm performs as well as, ifnot better than, the simple algorithm in suh ases.3.1.1. The ProblemThe problem is to maximize the number of genes that have the value 1 in the ase where the hromosome length is32. So the best individual will be the one that has a hromosome with all 32 genes having a value of 1 and the worstone would have all 0s. The �tness value of an individual will be equal to the number of 1s its hromosome has.3.1.2. The ResultsAs will be seen in Fig. 4 and Fig. 5, the online and o�ine performanes of both algorithms are plotted on a ommonset of axis respetively. In eah ase the x-axis represents the generation ount and the y-axis represents a �tnessvalue. In both graphs the above plot line belongs to the diploid algorithm. The plots and the results in Table 2show that the proposed diploid algorithm performs as well as the simple geneti algorithm whih uses a haploidrepresentation.
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0 100 200 300 400 500 600 700 800 900 1000Figure 5. O�ine performane averaged over 100 runsTest 1 Simple, haploid algorithm Proposed diploid algorithmMean Fitness 32 32� 0.0 0.0Perentage 0.0 0.0Best �tness 32 32Worst �tness 32 32Average step 29 30Table 2. Results from Test 13.2. Test Case 2The funtion used in this test will be explained below. It is a funtion whih is onsidered hard for the haploid,simple geneti algorithm beause the �tness funtion hanges in time. It will be shown that the proposed algorithmperforms better than the simple algorithm as expeted.3.2.1. The ProblemThe hromosomes are again made up of 32 genes. The �tness funtion osillates every 30 generations between tryingto maximize the deimal value represented by the hromosome and trying to minimize it. A 32 bit hromosomestring is taken as a binary number and its deimal equivalent is alulated. When trying to maximize this value, thedeimal number itself beomes the �tness and when trying to minimize it, the deimal value is subtrated from thebiggest deimal number that an be represented by 32 bits and this beomes the �tness value of the individual.3.2.2. The ResultsFig. 6 shows a plot of the maxima and Fig. 7 shows a plot of the averages of �tnesses of all the individuals obtainedat eah generation, averaged over 100 runs. For larity reasons, the x-axis representing the generation ount, showsonly 250 generations. The y-axis represents �tness values. In both plots, the thiker plot line belongs to the diploidalgorithm, while the thinner one belongs to the simple geneti algorithm. It an be seen that the diploid algorithmreovers and �nds the maximum muh more quikly than the haploid one during �tness funtion transitions. Ittakes a little longer for the average �tness value of the population to reover but it still is faster in the diploid ase.As expeted, these di�erenes are due to the fat that the diploid hromosome struture ats as a geneti memory.Charateristis that were useful before the �tness hange were not forgotten and when the �tness evaluation methodswithed bak, they emerged again, ausing the algorithm to reover more quikly whereas the haploid algorithmhad to searh for them all over from srath.
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Test2 Simple haploid algorithm Proposed diploid algorithmMean �tness 4294950144 4294966272� 34971.7 2636.2Perentage 0.000814 0.000061Best �tness 4294967296 4294967296Worst �tness 4294702080 4294958080Average step 147.3 259.5Table 3. Results from Test 2In the beginning generations of the seond test problem, those individuals that have a higher deimal value aremore at an advantage than the others. However after 30 generations, the �tness funtion hanges (similar to anenvironmental hange in nature) and those that have smaller deimal values gain advantage and remain that wayfor the next 30 generations. The gene ombinations whih made the individuals favorable in the �rst 30 generationsare not lost however and are remembered in the genotype. When the �tness funtion hanges bak to the �rst ase,they beome favorable again and thus are one again expressed. This is very muh like the biston betularia examplegiven in previous setions. 4. CONCLUSIONIn this paper, the proposed diploid algorithm has been ompared with an implementation of the simple, haploidalgorithm using two test funtions. The results obtained from these two test ases show that the proposed diploidalgorithm works well in both ases and better in the the ase of a hanging �tness funtion as expeted. Comparisonswith other diploid representations found in literature are urrently being done.REFERENCES1. D. E. Goldberg, Geneti Algorithms in Searh, Optimization, and Mahine Learning, Addison-Wesley, 1989.2. H. Curtis, N. S. Barnes, Invitation to Biology (3rd Ed), Worth Publishers In., 19813. J. H. Holland, Adaptations in Natural and Arti�ial Systems: An Introdutory Analysis With Appliations toBiology, Control and Arti�ial Intelligene, MIT Press, 1998.4. C. Ryan, �The Degree of Oneness�, in Proeedings of the 1994 ECAI Workshop on Geneti Algorithms, SpringerVerlag, 1994.5. F. Greene, �A Method for Utilizing Diploid/Dominane in Geneti Searh�, in Proeedings of the First IEEEConferene on Evolutionary Computation, 1996.6. Y. Kim, J. K. Kim, S. Lee, C. Cho, L. Hyung. �Winner Take All Strategy for a Diploid Geneti Algorithm�, inProeedings of the First Asia-Pai� Conferene on Simulated Evolution and Learning. 1996.7. E. Collingwood, D. Corne, P. Ross, �Useful Diversity via Multiploidy�, AISB Workshop on Evolutionary Compu-tation, 1996.


