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 Algorithm�ima Etaner UYAR�, A. Emre HARMANCIIstanbul Te
hni
al Univ., Computer Engineering Dept.Maslak TR 80626 Istanbul, TurkeyABSTRACTThis study involves diploid geneti
 algorithms in whi
h a diploid representation of individuals is used. This typeof representation allows 
hara
teristi
s that may not be visible in the 
urrent population to be preserved in thestru
ture of the individuals and then be expressed in a later generation. Thus it prevents traits that may be usefulfrom being lost. It also helps add diversity to the geneti
 pool of the populations. In 
onforman
e with the diploidrepresentation of individuals, a reprodu
tive s
heme whi
h models the meioti
 
ell division for gamete formation indiploid organisms in nature is employed. A domination strategy is applied for mapping an individual's genotypeonto its phenotype. The domination fa
tor of ea
h allele at ea
h lo
ation is determined by way of a statisti
al s
anof the population in the previous generation. Classi
al operators su
h as 
ross-over and mutation are also used inthe new reprodu
tive routine. The next generation of individuals are 
hosen via a �tness proportional method fromamong the parents and the o�spring 
ombined. To prevent early 
onvergen
e and the population overtake of 
ertainindividuals over generations, an age 
ounter is added. The e�e
tiveness of this algorithm is shown by 
omparing itwith the simple geneti
 algorithm using various test fun
tions.Keywords: Geneti
 algorithms, evolution, diploidy, meiosis, domination, 
onvergen
e1. INTRODUCTIONGeneti
 Algorithms are a 
lass of sto
hasti
, global optimization algorithms whi
h model the biologi
al prin
iplesof Darwin's theory of evolution. This theory 
enters around the prin
iple of natural sele
tion whi
h mainly statesthat those individuals that have a 
ertain 
hara
teristi
 whi
h gives them some advantage above the others are morelikely to survive and reprodu
e. If this 
hara
teristi
 is inheritable, then some of these individuals' o�spring will beborn with it and thus have the advantage over the others. After a few generations, the number of individuals withthe favorable trait will in
rease in the population. So individuals that have an advantage over the others and adaptbetter to their environments reprodu
e and leave more o�spring for the next generations.In an optimization problem, the aim is to �nd the best solution. This may not be possible in all 
ases, so usuallya near best solution is a

epted. Biologi
al evolution may be seen as an ongoing global optimization pro
ess whi
hkeeps on sear
hing for the optimal individual for a 
ertain environment. In that sense, some me
hanisms foundin nature that lead to this natural global optimization pro
ess 
an be modelled to solve the arti�
ial optimizationproblems. Geneti
 algorithms a
t on this prin
iple. However it is not always ne
essary to model all the naturalme
hanisms. While for 
ertain 
lasses of problems, a simple subset of these would work well, for some others, a more
ompli
ated algorithm that models more natural operators may lead to better solutions.1.1. Biologi
al Ba
kgroundGeneti
 Algorithms model some of the me
hanisms found in nature. So most of the terminology will be borrowedfrom biology and related �elds. Therefore, a brief introdu
tion2 for these will be given.Some simple mi
roorganisms (and some stages of life of more advan
ed organisms) have a haploid stru
ture, i.e. theyhave one set of 
hromosomes de�ning all the 
hara
teristi
s. However, most 
ompli
ated organisms in nature have adiploid or multiploid stru
ture. In the diploid 
ase, ea
h 
hara
teristi
 is represented by two di�erent genes lo
atedon a pair of 
hromosomes, 
alled homologues. Genes are the smallest unit of hereditary information and two or moregenes that o

upy the same lo
ation (lo
us) on homologue 
hromosomes are 
alled alleles. All the genes lo
ated onall the homologue 
hromosomes 
onstitute the genotype of an individual and the subset of these that are expressed,�Corresponden
e: Email: etaner�
s.itu.edu.tr; Telephone: (+90 212) 2856471; Fax: (+90 212) 2853679



i.e. that are visible, is 
alled the phenotype. An allele is expressed if it is dominant. The only way a re
essive allelemay be expressed is when both alleles have the same value. A mutation, whi
h is an abrupt 
hange of a gene fromone alleli
 form to another may or may not 
hange the phenotype. This depends on whether the mutation bringsout a dominant allele or not.Meioti
 
ell division is the type of 
ell division used in diploid organisms to produ
e four haploid, reprodu
tive 
ells(
alled gametes) from one 
ell. It 
onsists of two stages with �ve phases ea
h. In the beginning phase of the �rststage, 
hromosomes repli
ate, produ
ing two identi
al 
hromatids (
alled sister 
hromatids) joined at the 
enter. Inthe next phase homologue 
hromosomes, ea
h of whi
h are made up of two identi
al 
hromatids, 
ome together toform a tetrad. Cross-over may o

ur during this phase between the 
orresponding segments of non-sister 
hromatids.At the end of the �rst stage homologues seperate and two 
ells are formed. In the following phases of the se
ond stagesister 
hromatids are also seperated, forming four 
ells ea
h with half the number of 
hromosomes as the original
ell. This marks the end of the 
ell division.After ea
h mating parent has 
ompleted its 
ell division, ea
h will have formed four gametes. One gamete from ea
hparent 
omes together to form the diploid 
ell of the o�spring.If an organism has the same value for 
orresponding genes lo
ated on homologue 
hromosomes, the organism is saidto be a homozygote for that trait and a heterozygote if it has di�erent values. If an organism is homozygote for a
ertain trait, then that trait is seen in the phenotype as given by the genes but if it is a heterozygote than the allelewhi
h is to be expressed is determined depending on whi
h allele is dominant over the other.Inheritan
e deals with the transmission of 
hara
teristi
s from parents to o�spring. The me
hanisms mentionedabove enable this transmission.1.2. The Simple Geneti
 AlgorithmThe basi
 geneti
 algorithm as des
ribed in Goldberg's book �Geneti
 Algorithms in Sear
h, Optimization and Ma-
hine Learning�1 is a simple but powerful sear
h and optimization tool. It is 
omposed of three main operators:reprodu
tion, 
ross-over and mutation. Individuals that make up the population have a haploid, binary represen-tation, i.e. ea
h gene value may either be a 1 or a 0. In the beginning step of the algorithm, individuals' genesare randomly initialized to either value and their �tness values are 
al
ulated. How the binary string is de
odedto form the a
tual parameters needed to 
al
ulate the �tness value depends on the en
oding and the problem. Forexample, if a fun
tion has three parameters, ea
h ranging between 0 - 7, these 
an be represented using the binaryrepresentation of ea
h value. Thus, 3 bits (
hara
ters) are needed per parameter and the individual's 
hromosome
an be 9 
hara
ters long. Ea
h group of 3 
hara
ters of this string 
an seperately be used to represent ea
h parameter.For example, if the 
hromosome is �011101100 � and if the parameters, x1, x2 and x3 are as given above, then the�rst three genes will de
ode to give x1 = 3 and the se
ond three genes will de
ode to x2 = 5 and the last three tox3 = 4.A �tness proportional sele
tion me
hanism (a roulette wheel sele
tion) is used to 
hoose the individuals that are goingto take part in the reprodu
tion phase. Ea
h individual o

upies as mu
h spa
e in the roulette wheel as its �tness.Assuming there are m individuals in the population, the wheel will be turned m times to 
hoose m individuals toreprodu
e. In this method, the expe
ted number of representatives of ea
h individual is proportional to its �tness,i.e. if fTot is the sum of the �tnesses of all the individuals and fi is the �tness of the ith individual, the expe
tednumber of times individual i will be sele
ted by the wheel is given by (m � fifTot ).After the sele
tion step, these m individuals are paired o� at random for mating. The new individuals are formed byperforming 
ross-over operations with a prede�ned probability between mating pairs. In the simple geneti
 algorithm,a one-point 
ross-over method is used. A 
ross-over site is 
hosen randomly and segments beginning at the 
ross-oversite and ending at the end of the 
hromosome are ex
hanged, forming two new 
hromosomes whi
h may or may notbe identi
al to the original mating 
hromosomes. These new individuals (the o�spring) repla
e their parents, thusthere's no overlapping between generations.As the last operator, mutation o

urs with a very low, prede�ned probability at ea
h gene lo
ation, independent ofthe others. It 
auses a sudden 
hange in the allele value of the gene lo
ation at whi
h it o

urs. After this step, thenew �tness values are 
al
ulated and the loop starts over from the reprodu
tion phase. This loop is repeated until aspe
i�ed number of generations is rea
hed. The algorithm may be written roughly as in Algorithm 1.



Algorithm 1 Simple GAbeginInitialize_Population(no_of_indivs );doreprodu
e;
ross-over;mutate;until end_of_generations ;end. 2. DIPLOIDY IN GENETIC ALGORITHMSIn nature, most 
omplex organisms have a diploid 
hromosome stru
ture. This means that the organism has twogenes for ea
h 
hara
teristi
, lo
ated on two 
hromosomes. Even though this seems like redundant information, it isnature's way of keeping a geneti
 memory. This way, geneti
 information whi
h may be useful in the future is notlost but is shielded from the harmful short-term e�e
ts of sele
tion. The main me
hanism whi
h aids in shieldingthese 
hara
teristi
s is domination. While the organism has two alleles for the same 
hara
teristi
, only one of themis expressed. The allele that is dominant over the other appears in the phenotype. However the re
essive allele isnot lost but is simply masked until a future time when it may be
ome useful. A well known example of this innature is the Biston betularia, the peppered moth.2 In the 19th 
entury, these moths were very widely seen inEngland and were mostly found on li
hen 
overed trees and ro
ks. They had a very light 
oloring and this madethem almost impossible to see against the ba
kground. Until 1845, all observed Biston betularia have been light
olored. However, during this year, one bla
k spe
imen was seen in growing industrial 
enters of Man
hester. Withthe in
reased industrialization going on in England, the tree trunks were left bare and espe
ially in heavily pollutedareas, the ground, the tree trunks and even the ro
ks were almost bla
k. During this period more bla
k spe
imens ofthe Biston betularia were being found. By the 1950s, only very few light 
olored ones were seen and these were awayfrom industrial areas. H. B. D. Kettlewell performed tests with both light and dark 
olored moths in both industrialand unpolluted areas. His tests 
on�rmed his hypothesis that the bla
k 
olor prote
ted the moths from being seen bythe birds against the dark ba
kgrounds, thus giving them an advantage over their light 
olored 
ounterparts. Eventhough the light 
olor has been dominant, the dark 
oloring was masked and 
ame out when favorable 
onditionso

urred. Re
ently, the pollution level in Great Britain has been monitored to show a de
rease. The light 
oloredpeppered moths have already started to in
rease in number along with this. This also shows that the light 
oloringhas not been lost either and has started reappearing with the emergen
e of 
onditions whi
h favors light 
oloredmoths over the bla
k ones.Diploid representations for geneti
 algorithms have been dis
ussed and summarized in both Goldberg's1 and Hol-land's3 books. There has also been some more re
ent implementations and papers introdu
ing additive diploidyand polygeni
 inheriten
e,4 another new approa
h to dominan
e and diploidy and its e�e
ts on early 
onvergen
e,5multiploidy and dominan
e,6 and a winner take all strategy for applying dominan
e.72.1. The Diploid AlgorithmThe implemented algorithm 
ontains most features of the simple geneti
 algorithm as des
ribed above and has somenew operators and features added to it. The pseudo-
ode of the algorithm may be found in Algorithm 2.2.1.1. The RepresentationIn the algorithm ea
h individual is represented as in Fig. 1. Chromosome 1 and 
hromosome 2 are homologues andform the diploid 
hromosome stru
ture of the individual. The phenotype shows whi
h of the 
hara
teristi
s areexpressed. In this implementation, the 
hromosomes and the phenotype are represented ea
h by strings 
onsisting ofeither a 1 or a 0 at ea
h lo
ation. In Fig. 1 the bla
k boxes represent a 0 and the white ones a 1. How the phenotypeis obtained from the two 
hromosome strings will be explained in the following se
tion. The age of an individualshows for how many generations it has survived. Its �tness value shows how �t the individual is, i.e. how well itadapts to its environment.



Algorithm 2 The Diploid GAbegininitialize;dosele
t mating pool;form gametes;mate;mutate;for ea
h dead parent, form new individual;sele
t next generation;
al
ulate new domination values;until end_of_generations ;end.
Chromosome 1

Chromosome 2

Phenotype

AGE

FITNESS Figure 1. The Individual.2.1.2. Domination Me
hanismThe phenotype of the organism is made up of the 
hara
teristi
s that are expressed and the �tness of an individualis determined by its phenotype. Therefore a me
hanism to map the genotype onto the phenotype is needed. Thisis a very important part of diploid geneti
 algorithms and there has been some resear
h done most of whi
h areexplained in detail by Goldberg.1In this study, the approa
h used involves a statisti
al s
an of ea
h generation. When determining the phenotype,the genotype elements 
orresponding to that lo
ation may either be equal or di�erent. Using 
1i and 
2i to representthe ith lo
ation on 
hromosome 1 and 
hromosome 2 respe
tively and pi to represent the 
orresponding ith lo
ationon the phenotype,if 
1i = 0 and 
2i = 0 then pi = 0if 
1i = 1 and 
2i = 1 then pi = 1In the above 
ases where the two alleles for the genes on homologue 
hromosomes are the same, the 
orrespondingphenotype equals that allele but in the 
ase where they are di�erent, i.e. where (
1i = 0 and 
2i = 1) or (
1i = 1 and
2i = 0), a method to determine the phenotypi
 value is needed. In natural organisms, the allele to be seen in thephenotype is the dominant one, so an arti�
ial me
hanism to simulate this in arti�
ial systems must be designed.In this implementation, a domination array 
omposed of real numbers in [0:0; 1:0℄ is used. The length of the arrayis the same as the 
hromosome length with ea
h value showing the dominan
e fa
tor of the allele 1 over the allele0 
orresponding to the same lo
ation on the 
hromosomes. For example, if the alleles on the two 
hromosomes aredi�erent for the ith lo
ation and if the ith entry in the domination array is domi = 0:8, the phenotypi
 value forthat lo
ation will be 1 with probability 0:8 and 0 with probability 0:2.The domination array evolves along with the individuals in ea
h population and is 
al
ulated using Equation 1.Domi = Pj pij � fjPj fj ; i = 1; 2; ::; length j = 1; 2; :::size (1)where pij is the phenotypi
 value of the jth individual at the ith lo
ation, fj is the �tness value of the jth individual,length is the 
hromosome length and size is the population size (the total number of individuals in the population).



Equation 1 is evaluated at the end of ea
h generation using the phenotype and �tness values of the individuals in thatpopulation. So the domi value will be higher if individuals with the allele 1 in the ith lo
ation have higher �tnesses
ompared to those that have allele 0. Sin
e the domination array is one of the driving for
es of the population, itis expe
ted that the values 
orresponding to lo
ations on the phenotype that should be 1 in the optimal solution,should approa
h 1:0 and 0:0 for the 
ase where the optimal value should be 0.2.1.3. InitializationThe initialization step is similar to the one in the simple geneti
 algorithm with a few additions. Ea
h of the thegenes on the two 
hromosomes of the individual is initialized randomly to be a 0 or a 1. All the lo
ations on thedomination array is initialized to 0:5, meaning that neither allele is dominant in the beginning. After this step, thephenotypes of the individuals are determined using the initial domination array and the �tnesses are 
al
ulated basedon the phenotypi
 values. The individuals' age 
ounters are initialized to 0.2.1.4. Mating Pool Sele
tionThose individuals that are going to take part in the reprodu
tion phase are sele
ted via a roulette wheel sele
tionme
hanism. The method used is exa
tly the same as the one des
ribed in the simple geneti
 algorithm sele
tionphase.2.1.5. Gamete FormationGametes in natural, diploid organisms are the haploid reprodu
tive 
ells that go into reprodu
tion. One haploidgamete from ea
h mating pair 
omes together to make up the diploid 
ell of the o�spring. In most 
ases in nature,gamete formation is the result of a 
ell division pro
ess 
alled meiosis.The arti�
ial implementation of the meioti
 
ell division is given in Algorithm 3 and the me
hanism is shown in twomajor steps in Fig. 2.Algorithm 3 Arti�
ial Implementation of Meioti
 Cell Divisionpro
edure meiosis;beginmake 
hromosome_1 
hromatid_1;
opy 
hromatid_1 into 
hromatid_2;make 
hromosome_2 
hromatid_3;
opy 
hromatid_3 into 
hromatid_4;
hoose one from 
hromatid_1 and 
hromatid_2 randomly;
hoose one from 
hromatid_3 and 
hromatid_4 randomly;if flip (probability_of_
rossover) then
ross-over 
hosen 
hromatids;if flip (probability_of_
rossover) then
rossover remaining 
hromatids;make ea
h 
hromatid a gamete;end;In this implementation, a two point 
ross-over approa
h is used. In two point 
ross-over, two 
ross-over sites aresele
ted randomly and the 
hromosome segments remaining between these sites are ex
hanged. How this type of
ross-over works is shown in the bottom part of Fig. 2. Unlike in the simple geneti
 algorithm, 
ross-over o

ursbetween non-sister 
hromatids of the same individual during meioti
 
ell division.As 
an be seen in Fig. 2, using this type of 
ell division adds diversity to the population. Two of the gametes fromthe four that have been formed are sele
ted randomly to go into the mating phase.
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ell division.2.1.6. Mating PhaseAfter ea
h mating parent goes through a meiosis-like pro
ess, there are four gametes from ea
h parent, ready to gointo mating. In this implementation, ea
h mating produ
es two o�spring whi
h do not repla
e their parents at thisstep. In order to have two o�spring, two gametes from ea
h parent are sele
ted at random and ea
h gamete fromea
h parent goes to ea
h one of the o�spring. For example, for the 
ase where a binary representation for gametesis used, the formation of the o�spring is seen in Fig. 3.

Parent 1 : gamete 1

gamete 2

gamete 3

gamete 4

1 0 1 0 1 0

1 1 1 1 1 1

1 0 0 0 0 1

0 0 1 0 1 1

Parent 2 : gamete 1

gamete 2

gamete 3

gamete 4

0 0 1 0 1 0

1 1 1 0 1 1

1 0 1 0 0 1

0 0 1 0 0 1

Offspring 1 : chromosome 1 1 0 1 0 1 0
chromosome 2 1 0 1 0 0 1

Offspring 2 : chromosome 1 1 0 0 0 0 1
chromosome 2 0 0 1 0 0 1

g1
g3 g3 g4

Figure 3. Mating and the formation of o�spring.2.1.7. MutationThe e�e
t of mutation is the same as it is in the previously explained simple geneti
 algorithm. In the diploid 
ase thegenotype and the phenotype of an individual are di�erent and mutation a
ts dire
tly on the genotype, i.e. on ea
hgene of the two strands of 
hromosome. Ea
h mutation at ea
h lo
ation is independent of those in other lo
ationsand the probability of its o

urran
e is the same for all genes.2.1.8. Aging and DeathSin
e the o�spring do not repla
e their parents and the next generation of individuals is sele
ted from among theparents and the o�spring via a �tness proportional sele
tion metod, those individuals that have high �tnesses mayget sele
ted through many generations. This may lessen diversity and may 
ause early 
onvergen
e. To prevent this,an aging me
hanism is introdu
ed. As seen in the stru
ture of the individual in Fig. 1, ea
h individual has an age
ounter. Ea
h time the individual survives into the next generation, this 
ounter is in
remented by one. At the endof ea
h generation, some individuals die of old age and new individuals are initialized randomly to �ll their pla
e.



The probability of an individual to die is proportional to the square of its age. The probability of the ith individualto die is 
al
ulated as in Eq. 2 DeathProbi = k:age2 (2)where k is a problem-dependent 
onstant in the real number set [0:0; 1:0℄ and should be determined at the beginningof the algorithm by taking into a

ount the number of generations the algorithm is to be run, the population size andthe maximum age the individuals may live to be. At the end of ea
h generation, ea
h individual is 
he
ked to see ifit dies or not. If a de
ision is made to kill an individual, then a new individual is initialized to keep the populationsize 
onstant.2.1.9. Determining Who SurvivesUnlike in the simple geneti
 algorithm, the o�spring do not repla
e their parents and they survive together till theend of the generation. Sin
e the population size is kept 
onstant in all generations, half of the individuals must besele
ted to survive into the next generation. A �tness proportional sele
tion method, similar to a roulette wheelsele
tion method, is used to determine these individuals. However ea
h individual may be sele
ted only on
e andon
e it is sele
ted, it is removed from the 
urrent population and is 
opied into the next. The probability of the ithindividual being sele
ted as the pth individual to survive may be given as in Eq. 3.SelProbi = fiPj fj �Pr fsel[r℄ ; j = 1; 2; :::; size r = 1; 2; p� 1 (3)where fi is the �tness of the individual,Pj fj denotes the sum of the �tnesses of all the individuals in the populationand Pr fsel[r℄ denotes the sum of the �tnesses of all the (p � 1) individuals sele
ted before this individual. Thissele
tion is repeated as many times as the size of the population.3. TEST FUNCTIONS AND RESULTSThe proposed diploid algorithm is tested using various test fun
tions and the results are 
ompared with those obtainedusing an implementation of the simple geneti
 algorithm on the same fun
tion. In the following se
tions, the resultsof two of these 
omparisons will be given. In ea
h test 
ase, the algorithms are run 100 times and the average of theresults are given over 100 runs. The algorithms are run ea
h time with the same set of parameters but with di�erentinitial populations. The parameters 
hosen for the algorithms are given in Table 1.Parameters Haploid DiploidNumber of Generations 1000 1000Population Size 250 250Cross-Over Probability 0.9 0.9Mutation Probability 0.009 0.009Aging and Dying Fa
tor (k) - 0.001Table 1. Parameters used in both algorithmsThe results will be 
ompared based on the algorithms' online and o�ine performan
es. The online and o�ineperforman
e of an algorithm as de�ned by DeJong are explained in Goldberg's book.1 The o�ine performan
e isdesigned to measure 
onvergen
e and the online performan
e is designed to measure ongoing performan
e of thealgorithm. In an o�ine appli
ation, a simulation of the system may be used and the algorithm may be run on thesimulation to a
hieve the best results and then these best results 
an be applied to the real system. However in anonline appli
ation, the results of fun
tion evaluations are the results of a
tual experimentation on the real system,so in su
h appli
ations, the time it takes to rea
h an a

eptable solution be
omes more important then getting thebest solution. DeJong de�ned the online performan
e xe(s) of strategy s on environment e as given in Eq. 4



xe(s) = 1T TX1 fe(t) (4)where fe(t) is the �tness fun
tion value for the environment e on trial step t, i.e. online performan
e is the averageof all fun
tion evaluations up to and in
luding the 
urrent trial. He de�ned o�ine performan
e x�e(s) of strategy son environment e as given in Eq. 5 x�e(s) = 1T TX1 f�e (t) (5)where f�e = bestffe(1); fe(2); :::; fe(t)g, i.e. the o�ine performan
e is the running average of the best performan
evalues up to a parti
ular time.Another 
omparison will be made by giving a table of best, worst and average results from ea
h run in 100 runsand the standard deviation of these runs. In ea
h table Mean Fitness will denote the average of the best �tnessesa
hieved over 100 runs of the algorithm, � will give the standard deviation of the best results obtained from 100runs, Best Fitness and Worst Fitness will denote the best and the worst results obtained over all the 100 runs, thePer
entage will denote the per
entage of the standard deviation to the mean �tness value and Average Step willdenote the average of the number of generations needed to a
hieve the best result in ea
h of the 100 runs.3.1. Test Case 1The fun
tion used in this test will be explained below. It is a fun
tion whi
h is 
onsidered easy for the haploid,simple geneti
 algorithm. The main aim in this test is to show that the proposed algorithm performs as well as, ifnot better than, the simple algorithm in su
h 
ases.3.1.1. The ProblemThe problem is to maximize the number of genes that have the value 1 in the 
ase where the 
hromosome length is32. So the best individual will be the one that has a 
hromosome with all 32 genes having a value of 1 and the worstone would have all 0s. The �tness value of an individual will be equal to the number of 1s its 
hromosome has.3.1.2. The ResultsAs will be seen in Fig. 4 and Fig. 5, the online and o�ine performan
es of both algorithms are plotted on a 
ommonset of axis respe
tively. In ea
h 
ase the x-axis represents the generation 
ount and the y-axis represents a �tnessvalue. In both graphs the above plot line belongs to the diploid algorithm. The plots and the results in Table 2show that the proposed diploid algorithm performs as well as the simple geneti
 algorithm whi
h uses a haploidrepresentation.
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e averaged over 100 runsTest 1 Simple, haploid algorithm Proposed diploid algorithmMean Fitness 32 32� 0.0 0.0Per
entage 0.0 0.0Best �tness 32 32Worst �tness 32 32Average step 29 30Table 2. Results from Test 13.2. Test Case 2The fun
tion used in this test will be explained below. It is a fun
tion whi
h is 
onsidered hard for the haploid,simple geneti
 algorithm be
ause the �tness fun
tion 
hanges in time. It will be shown that the proposed algorithmperforms better than the simple algorithm as expe
ted.3.2.1. The ProblemThe 
hromosomes are again made up of 32 genes. The �tness fun
tion os
illates every 30 generations between tryingto maximize the de
imal value represented by the 
hromosome and trying to minimize it. A 32 bit 
hromosomestring is taken as a binary number and its de
imal equivalent is 
al
ulated. When trying to maximize this value, thede
imal number itself be
omes the �tness and when trying to minimize it, the de
imal value is subtra
ted from thebiggest de
imal number that 
an be represented by 32 bits and this be
omes the �tness value of the individual.3.2.2. The ResultsFig. 6 shows a plot of the maxima and Fig. 7 shows a plot of the averages of �tnesses of all the individuals obtainedat ea
h generation, averaged over 100 runs. For 
larity reasons, the x-axis representing the generation 
ount, showsonly 250 generations. The y-axis represents �tness values. In both plots, the thi
ker plot line belongs to the diploidalgorithm, while the thinner one belongs to the simple geneti
 algorithm. It 
an be seen that the diploid algorithmre
overs and �nds the maximum mu
h more qui
kly than the haploid one during �tness fun
tion transitions. Ittakes a little longer for the average �tness value of the population to re
over but it still is faster in the diploid 
ase.As expe
ted, these di�eren
es are due to the fa
t that the diploid 
hromosome stru
ture a
ts as a geneti
 memory.Chara
teristi
s that were useful before the �tness 
hange were not forgotten and when the �tness evaluation methodswit
hed ba
k, they emerged again, 
ausing the algorithm to re
over more qui
kly whereas the haploid algorithmhad to sear
h for them all over from s
rat
h.
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h generation, averaged over 100 runsAs will be seen in Fig. 8 and Fig. 9, the o�ine and online performan
es of both algorithms are plotted on a 
ommonset of axis respe
tively. In ea
h 
ase the x-axis represents the generation 
ount and the y-axis represents a �tnessvalue. The better plot line in ea
h belongs to the diploid algorithm. These plots have been 
al
ulated from the datain Fig. 6 and Fig. 7 using Eq. 5 and Eq. 4 respe
tively and are as expe
ted. It must be noted that in these graphs,the results for all 1000 generations are given.
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e averaged over 100 runsThe results in Table 3 show that the diploid algorithm is mu
h more reliable than the haploid one for this problem.The standard deviation between maximums obtained at di�erent runs is %0.000061 of the mean �tness in the diploid
ase, while it is %0.000814 in the haploid 
ase. Based on these, it 
an be said that the diploid algorithm will givegood and reliable results even when only one run is made. This also brings out another important aspe
t of thealgorithm. The haploid algorithm has a higher standard deviation between found optima whi
h shows that it ismore dependent on the initial population. However the fa
t that the standard deviation in the diploid 
ase is lower,shows that no matter what the initial population might be, the diploid algorithm produ
es a

eptable results withlow deviations between them. So the diploid algorithm is fairly independent of the starting population in this test
ase .



Test2 Simple haploid algorithm Proposed diploid algorithmMean �tness 4294950144 4294966272� 34971.7 2636.2Per
entage 0.000814 0.000061Best �tness 4294967296 4294967296Worst �tness 4294702080 4294958080Average step 147.3 259.5Table 3. Results from Test 2In the beginning generations of the se
ond test problem, those individuals that have a higher de
imal value aremore at an advantage than the others. However after 30 generations, the �tness fun
tion 
hanges (similar to anenvironmental 
hange in nature) and those that have smaller de
imal values gain advantage and remain that wayfor the next 30 generations. The gene 
ombinations whi
h made the individuals favorable in the �rst 30 generationsare not lost however and are remembered in the genotype. When the �tness fun
tion 
hanges ba
k to the �rst 
ase,they be
ome favorable again and thus are on
e again expressed. This is very mu
h like the biston betularia examplegiven in previous se
tions. 4. CONCLUSIONIn this paper, the proposed diploid algorithm has been 
ompared with an implementation of the simple, haploidalgorithm using two test fun
tions. The results obtained from these two test 
ases show that the proposed diploidalgorithm works well in both 
ases and better in the the 
ase of a 
hanging �tness fun
tion as expe
ted. Comparisonswith other diploid representations found in literature are 
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