
Adaptive Mutation with Fitness and Allele Distribution
Correlation for Genetic Algorithms

Shengxiang Yang
Department of Computer Science

University of Leicester
University Road, Leicester LE1 7RH, UK

s.yang@mcs.le.ac.uk
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ABSTRACT
In this paper, a new gene based adaptive mutation scheme is
proposed for genetic algorithms (GAs), where the informa-
tion on gene based fitness statistics and on gene based allele
distribution statistics are correlated to explicitly adapt the
mutation probability for each gene locus over time. A con-
vergence control mechanism is combined with the proposed
mutation scheme to maintain sufficient diversity in the pop-
ulation. Experiments are carried out to compare the pro-
posed mutation scheme to traditional mutation and two ad-
vanced adaptive mutation schemes on a set of optimization
problems. The experimental results show that the proposed
mutation scheme efficiently improves GA’s performance.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic algorithms, gene based adaptive mutation, fitness
and allele distribution correlation

1. INTRODUCTION
Genetic algorithms (GAs) are one class of probabilistic

optimization approaches inspired by the principles of natu-
ral evolution. The performance of GAs depends on many
factors, such as selection and reproduction schemes. This
makes it difficult, if not impossible, to choose operators and
relevant parameters for optimal performance. As one key
ingredient of GAs, mutation works by changing individu-
als bitwise with a small probability pm ∈ [0, 1] and is used
to ensure that all possible alleles can enter the population
and hence maintain the population diversity. Many papers,
both practical [8] and theoretical [10], have been devoted
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to study the nature of mutation, of which many have been
investigated on finding globally “optimal” pm for GAs [1, 7].

However, there has been further studies [2, 11] showing
that the optimal pm will not only depend on the problem
being solved but also vary with the progress of searching.
Hence, developing adaptive mutation rate strategies may not
only overcome the difficulties of finding “optimal” settings
but adapt the mutation rate well according to the evolution-
ary process. Generally speaking, adaptation in mutation
happens at two levels. At the top level, the ratio between
mutation and crossover is adapted during the run of a GA [6,
12]; At the bottom level, the mutation probability is adapted
during the run of a GA, uniformly or non-uniformly over
the loci [1, 3, 5]. In [13, 14], two adaptive mutation schemes
were proposed, which adjust the mutation rate for each gene
locus over time by the information of gene-based allele dis-
tribution and gene-based fitness statistics respectively.

In this paper, a new gene based adaptive mutation scheme
is proposed for GAs, which combines the ideas behind the
two adaptive mutation schemes in [13, 14]. In the proposed
mutation scheme, the statistics information on gene based
fitness and gene based allele distribution in each gene lo-
cus are correlated to explicitly adapt the mutation proba-
bility for that locus. And hence the mutation probability
for each gene locus is adapted more accurately toward the
problem in hand and the evolutionary searching progress. A
convergence control mechanism, which selects a portion of
individuals from the population to be complemented when
the population has converged to certain degree, is combined
with the proposed mutation scheme to maintain sufficient
diversity in the population.

2. RELATED WORK

2.1 Statistics-based Adaptive Non-Uniform
Mutation

In paper [14], a Statistics-based Adaptive Non-Uniform

Mutation (SANUM) was proposed. For the convenience of
description, we first describe the concepts of intrinsic at-
tribute and extrinsic tendency of allele valuing for a gene
locus. In a binary-encoded solution for a given problem, a
gene locus is called 1-intrinsic if its allele is 1, 0-intrinsic

if its allele is 0, or neutral if its allele can be either 0 or
1. Whether a locus is 1-intrinsic, 0-intrinsic, or neutral de-
pends on the problem being solved and encoding scheme.
During the run of a GA, a gene locus is called 1-inclined if
the frequency of 1’s in its alleles over the population tends
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to increase (to the limit of 1.0) with time, 0-inclined if the
frequency of 1s tends to decrease (to the limit of 0.0), or non-

inclined if there is no tendency of increasing or decreasing.
Usually with the progress of the GA, those gene loci that
are 1-intrinsic (or 0-intrinsic) will appear to be 1-inclined (or
0-inclined), i.e., the frequency of 1’s in the alleles of these
loci will eventually converge to 1 (or 0). SANUM uses this
convergence information as feedback to adapt the mutation
probability for each locus.

We use the frequency of 1’s in the alleles in a locus of the
population to calculate corresponding mutation probability
of that locus. The frequency of 1’s in the alleles of a locus
can be taken as the degree of convergence to “1” for that
locus. Let f1(i, t) (i = 1, . . . , L) denote the frequency of 1’s
in the alleles in locus i over the population at generation t
and pm(i, t) (i = 1, . . . , L) denote the mutation probability
of locus i at generation t. In [14], a linear formula is used
to calculate pm(i, t) from f1(i, t). In this paper, a Gaussian
function is used to calculate pm(i, t) as follows.

pm(i, t) = α ∗ exp(−(f1(i, t) − 0.5)2/β), (1)

where α controls the maximum allowable mutation proba-
bility for a locus and β is the parameter that controls the
falling speed of pm(i, t) when f1(i, t) diverts away from 0.5.
The smaller the value of β, the faster the falling speed of
pm(i, t), and the stronger the protection to converged genes
or building blocks found so far. In SANUM with the Gaus-
sian function, a lower bound Pmin can be applied to each
mutation probability by limiting it within [Pmin, α], i.e.,
pm(i, t) ∈ [Pmin, α] for each locus i.

2.2 Gene Based Adaptive Mutation
In paper [13], a Gene Based Adaptive Mutation (GBAM)

was proposed, which uses an asymmetric adaptive mutation
mechanism on each locus of the chromosome. In GBAM,
there are two different mutation rates defined for each lo-
cus: p1

m for those genes that have alleles of “1” and p0

m for
those genes that have alleles of “0”. In the mutation opera-
tions, the appropriate mutation rate is applied based on the
gene allele value. Initially, all the mutation probabilities are
set to an initial value, e.g., 0.02. Then for each generation,
the mutation probabilities p0

m and p1

m for each locus are up-
dated based on the feedback statistics taken from the current
population with respect to the relative success or failures of
those individuals having a “1” or “0” at that locus. For ex-
ample, for a maximization problem, the update rule for the
two mutation probabilities for locus i at generation t + 1 is
given in Eqs. 2 and 3 as below.

p0

m(i, t + 1) =

(

p0

m(i, t) + γ, if G1

avg(i, t) > Pavg(t)

p0

m(i, t) − γ, otherwise
(2)

p1

m(i, t + 1) =

(

p1

m(i, t) − γ, if G1

avg(i, t) > Pavg(t)

p1

m(i, t) + γ, otherwise,
(3)

where γ is the mutation rate update value (a constant pre-
set parameter), G1

avg(i, t) is the average fitness of individuals
with an allele “1” for locus i at generation t, and Pavg(t) is
the average fitness of the population at generation t. This
update rule is applied for each locus separately.

The main motivation behind GBAM is to adapt the mu-
tation rate for each locus based on the relative success or
failure of individuals in the population with respect to that
locus. If the individuals with a specific allele value for a

locus is successful, i.e., their average fitness is greater than
the average fitness of the whole population, the mutation
rate regarding that specific allele value will be decreased in
order to protect that allele value from being mutated (and
hence destroyed). For example, for the maximization prob-
lem, if G1

avg(i, t) > Pavg(t), the allele value “1” for locus i
is assumed to generate more successful results. Therefore,
p1

m(i, t + 1) is decreased and p0

m(i, t + 1) is increased by γ.
In GBAM, the mutation rates are bounded, i.e., p0

m(i, t) ∈
[Pmin, Pmax] and p1

m(i, t) ∈ [Pmin, Pmax] for each locus i. If
an update causes a mutation rate to exceed the limit it is
set to the corresponding boundary value.

3. GENE BASED ADAPTIVE MUTATION
WITH FITNESS AND ALLELE DISTRI-
BUTION CORRELATION

Both SANUM and GBAM are based on the assumption
that during the run of GAs 1-inclined genes or genes with
better performed allele with value “1” will be 1-intrinsic and
hence need protection by decreasing corresponding mutation
rates. Usually, this assumption holds for many problems and
the adaptive schemes improve GA’s performance. However,
for some problems where deception and epistasis pervade
this assumption may not hold and hence may mislead the
GA into local optima quickly. In order to overcome this
difficulty, a new gene based adaptive mutation that make use
of the fitness and allele distribution correlation information,
denoted GBAM FAD, is proposed in this paper.

As in GBAM, in GBAM FAD we also define two muta-
tion probabilities p0

m and p1

m for each gene locus with the
same meanings. In the mutation operations, the appropri-
ate mutation rate is applied based on the gene allele value.
And similarly all the mutation probabilities are initialized
to a pre-set value. For each generation, the mutation prob-
abilities for each locus are updated based on the correlated
statistics taken from the current population with respect to
the relative success of those individuals having a specific
allele and the allele distribution (measured by the allele fre-
quency) at that locus. For example, for a maximization
problem, the update rule for the mutation rates in locus i
at generation t + 1 is given in Eqs. 4 and 5 as below:

p0

m(i, t + 1) = p0

m(i, t)+
γ ∗ sgn((G1

avg(i, t) − Pavg(t))(f1(i, t) − 0.5))
(4)

p1

m(i, t + 1) = p1

m(i, t)−
γ ∗ sgn((G1

avg(i, t) − Pavg(t))(f1(i, t) − 0.5))
(5)

where f1(i, t) is the frequency of 1’s in the alleles in locus i
over the population at generation t, γ, G1

avg(i, t), and Pavg(t)
have the same definitions as in Eqs. 2 and 3, and the sign
function sgn(x) returns 1, 0, or -1 for x > 0, x = 0 and
x < 0 respectively.

The key idea behind GBAM FAD is to correlate the rel-
ative success/failure information of individuals in the pop-
ulation in each locus with the allele distribution statistics.
Here, we call gene locus i 1-successful at time t if G1

avg(i, t) >
Pavg(t) or 0-successful if G1

avg(i, t) < Pavg(t)). If a gene lo-
cus i is detected as 1-successful and appears to be 1-inclined,
it means gene i is very likely to be 1-intrinsic and hence we
need to protect the allele “1” for gene i by decreasing p1

m(i, t)
and increasing p0

m(i, t). Symmetrically, the logic holds for
0-successful and 0-inclined genes. In both cases, the sgn()
function in Eqs. 4 and 5 will return a value of 1. However,
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Figure 1: The building blocks for the three DUFs.

if a gene locus i is detected as 1-successful but appears 0-
inclined, or vice versa, it means that conflict happens, e.g.,
due to deception or epistasis. In this case, p1

m(i, t) is in-
creased while p0

m(i, t) is decreased in order to help the GA
escape the potential local optima. Similarly, in GBAM FAD
the mutation probabilities can be limited within a range, i.e.,
p0

m(i, t) ∈ [Pmin, Pmax] and p1

m(i, t) ∈ [Pmin, Pmax].

4. TEST PROBLEMS

4.1 Decomposable Unitation-Based Functions
Decomposable unitation-based functions (DUFs), such as

trap and deceptive functions, have been widely studied in
GA’s community in order to understand what constructs
difficult problems for GAs [4]. A unitation function of a
binary string returns the number of ones in the string. In
this paper, three DUFs, denoted DUF1, DUF2, and DUF3,
are constructed as the test functions. All the four DUFs
consist of 25 copies of 4-bit building blocks (BBs). Each BB
of the DUFs is a unitation-based function and contributes a
maximum value of 4 to the total fitness, as shown in Figure
1. The fitness of a string is the sum of contributions from
all BBs, giving an optimal fitness of 100 for all DUFs.

DUF1 is in fact an OneMax function, aiming to max-
imize the number of ones in a string. For DUF2, in the
search space of the 4-bit BB, the unique optimal solution
is surrounded by all the other 15 solutions with zero fitness
(needle-in-a-haystack), which makes it much harder for GAs
than DUF1. And DUF3 is a fully deceptive function. Fully
deceptive functions are usually hard problems for GAs [4].

4.2 The Four-Peaks Problem
The 100-bit 4-Peaks problem is defined as follows.

REWARD =

(

100 + T, if o(x) > T and z(x) > T

0, otherwise
(6)

f(x) = max{o(x), z(x)} + REWARD, (7)

where o(x) is the number of contiguous ones at the head of
the string (i.e., starting at position 1), z(x) is the number
of contiguous zeros at the end of the string (i.e., ending at
position 100), and T is a threshold parameter. The 4-Peaks
problem has four peaks: two global optima with fitness value
being 199 and two local optima with fitness 100. With the
increasing of the value of T , the basins of the attraction
surrounding the inferior local optima increase in size expo-
nentially while the basins around the global optima decrease
at the same speed. Hence, increasing T makes it harder for
a GA to escape the local optima. In this paper we set the
value of T to 11 and 27 respectively.

5. EXPERIMENTAL STUDY

5.1 Experimental Settings
In order to test the performance of proposed GBAM FAD,

in this experimental study it is compared with traditional
bit flip mutation with a “standard” probability pm = 1/L =
0.01 [7], SANUM and GBAM. For SANUM, the parame-
ters are set as: (α, β) = (0.05, 0.04) and Pmin = 0.0001
(i.e., pm(i, t) ∈ [0.0001, 0.05] for each locus i). For GBAM
and GBAM FAD, the parameters are set as: γ = 0.001,
[Pmin, Pmax] = [0.0001,0.2], and initially p1

m(i,0) = p0

m(i,0)=
1/L = 0.01 for each locus i. For all the GAs, other genera-
tors are set as follows: the tournament selection with tour-
nament size of 2, elitism of size 1, 2-point crossover with a
typical probability 1.0, and the population size N = 250.

For each experiment of a GA on a test problem, 100 in-
dependent runs with the same set of 100 random seeds to
generate initial populations were executed. For each run, the
initial population is randomly created using a technique that
generates exactly equal number of 0s and 1s for each locus,
i.e., f1(i, 0) = 0.5 for each locus i in the initial population.
In this way the random sampling bias in the initial popu-
lation (for example for some locus j, f1(j, 0) = 0.8 or 0.2)
that may mislead SANUM and GBAM FAD is cancelled.

For each run, the best-so-far fitness was recorded every
generation. For each run, the maximum allowable number
of generations varies with the test problem and is suitably
set to let all GAs have the chance to reach the stable state.
Each experimental result was averaged over 100 runs.

5.2 Experimental Results and Analysis
The experimental results on DUFs and 4-Peaks problems

are shown in Figure 2 and Figure 3 respectively, from which
some results can be observed. First, as recognized by other
researchers, the choice of mutation operators and proper
probabilities has a significant effect on GA’s performance.

Second, on DUF1 and DUF2, the three adaptive muta-
tion schemes outperform traditional mutation regarding the
convergence speed toward optimum. This shows that on
unimodal functions, the introduction of gene-based adaptive
mutation efficiently improves GA’s performance. And with
the increasing of difficulty level from DUF1 to DUF2, the
relative performance of GBAM FAD improves over GBAM
and SANUM. For example, on DUF2 GBAM FAD achieves
the optimum at generation 41, much faster than GBAM and
SANUM. This is because from DUF1 to DUF2 the effect of
epistasis increases and GBAM FAD works more efficiently.

Third, on the deceptive function DUF3, only the GA with
GBAM FAD achieved the optimum within 148 generations.
All the three other mutation schemes fail to achieve the op-
timum. And GBAM and SANUM are even beaten by tradi-
tional bit flip mutation with respect to GA’s performance.
For GBAM and SANUM, the existence of deceptive opti-
mum in DUF3 draws the population toward it strongly and
once converged GAs with GBAM and SANUM are trapped
due to the very low mutation probability for each locus.
However, for GBAM FAD, the correlation scheme of gene-
based fitness statistics and gene-based allele distribution
stops the population from being trapped by the deceptive
optimum efficiently. This is because for each building block
in DUF3 when the global and deceptive optima co-exist in
the population, the more deceptive optima there are in the
population, the more 0-inclined and 1-successful the loci ap-
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Figure 2: Experimental results of GAs on the DUFs. The data were averaged over 100 runs.
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Figure 3: Experimental results of GAs on the 4-

Peaks problems.

pear to be. And hence the higher mutation probabilities
those loci will have according to Eqs. 4 and 5. This efficiently
stops the growth of deceptive optima in the population and
leads to the success of GBAM FAD.

Finally, on the 4-Peaks problems, the performance of GAs
drops heavily when T = 27 than when T = 11. This is as
expected since increasing the value of T increases the at-
traction basin size of the local optima. When T = 11, the
problem is relatively easy. With relatively bigger mutation
probability traditional bit flip mutation can escape the local
optima toward the global optimum more easily than adap-
tive mutation schemes. Hence, bit flip mutation outperforms
adaptive mutation schemes. When T = 27 all GAs are eas-
ily trapped into the local optima and the adaptive mutation
schemes converge faster than traditional bit flip mutation.

5.3 Experiments on Convergence Control
From above experimental results it can be seen that the

adaptive mutation schemes allow the GAs rapid conver-
gence. On unimodal functions, DUF1 and DUF2, this rapid
convergence provides a valuable performance improvement.
However, on multi-modal functions (4-Peaks problems) and
deceptive function (DUF3) the rapid convergence results in
premature and leads the GAs to get stuck at local optima.
As addressed in [13], one way to remedy this problem is to

implement a mechanism to maintain sufficient diversity in
the population in order for the GAs to escape from local op-
tima. In this sub-section we investigate one such mechanism
by introducing convergence control, described below.

Every generation the degree of convergence of the popula-
tion is calculated as the average degree of convergence over
all gene loci. For binary encoding, we can derive the degree
of convergence for a gene locus from the frequency of 1’s in
the alleles in that locus. Let dc(i, t) denote the degree of
convergence in locus i at generation t and dc(t) the average
degree of convergence over all loci at generation t, we have:

dc(i, t) =

(

f1(i, t), if f1(i, t) > 0.5

1.0 − f1(i, t), otherwise
(8)

dc(t) =
1

L

i=L
X

i=1

dc(i, t) (9)

When dc(t) is higher than a pre-set threshold value Tdc,
i.e., dc(t) ≥ Tdc, the convergence control strategy takes ef-
fect: a predefined portion of ρ ∗N individuals are randomly
selected from the current population, their genotype are
complemented, and then the mutation probabilities p1

m(i, t)
and p0

m(i, t) for GBAM and GBAM FAD are reset to the
initial value, i.e., 0.01 in this study.

In this experimental study we perform convergence control
to all GAs with Tdc = 0.95 and ρ = 0.2. The experimental
results on DUFs and 4-Peaks problems are shown in Figures
4 and 5 respectively. From these figures, several results can
be seen. First, on DUF1 and DUF2 it seems that the con-
vergence control has little effect on the performance of GAs.
This is because the complemented individuals are usually
discarded by the selection due to their relatively low fitness.

Second, on DUF3 the situation is different. Convergence
control improves performance of GBAM and SANUM while
it lowers that of GBAM FAD. This happens because for
GBAM and SANUM when the population is converged, a
portion of individuals are complemented, which gives them
higher chance to escape the deceptive optimum. However,
for GBAM FAD the fitness and allele distribution correla-
tion scheme prevents the GA from being trapped by the de-
ceptive optimum. Hence, when convergence control takes
effect, complemented individuals usually have low fitness
and may decerase the overall performance if they survive
selection. Third, on the 4-Peaks problems, the performance
of adaptive mutation schemes are significantly improved by
convergence control. For example, GBAM FAD achieves
the optimum fitness of 199 within generation 1309 and gen-
eration 3018 for the 4-Peaks problems with T = 11 and
T = 27 respectively for all the 100 runs. This shows that
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Figure 4: Experimental results of GAs with convergence control on the DUFs.
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Figure 5: Experimental results of GAs with conver-

gence control on the 4-Peaks problems.

convergence control efficiently improves GA’s performance
on multi-modal functions.

6. CONCLUSIONS
In this paper, a new gene based adaptive mutation scheme,

GBAM FAD, is proposed for GAs, within which the statis-
tics information on gene based fitness and gene based allele
distribution in each gene locus are correlated to explicitly
adapt the mutation probability for that locus. Hence the
mutation probability for each gene locus is adapted more
accurately toward the problem in hand and the evolution-
ary searching progress. In order to maintain sufficient di-
versity in the population, a convergence control mechanism
is combined with GBAM FAD. When the population has
converged to certain degree a portion of individuals from
the population are randomly selected and complemented.
The experimental results show that GBAM FAD efficiently
improves GA’s performance. Especially, GBAM FAD effi-
ciently solves the deceptive function, which otherwise is dif-
ficult for GAs. Together with the convergence control mech-
anism, GBAM FAD also achieves the optimum of difficult 4-
Peaks problems, e.g., with T = 27. Generally speaking, the
experimental results indicate that GAs with GBAM FAD
and the convergence control mechanism are a good choice
for difficult optimization problems.
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