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Abstract: When working in dynamic  environments, it is important for a solution approach to adapt
to the change and follow the new optima. For genetic algorithms, using diploid representations is one
of the methods for addressing performance and diversity issues in such environments. When using a
diploid representation for individuals, the choice of a good genotype to phenotype mapping
mechanism is a very important factor. The main aim of this study is to give performance comparisons
of some of the existing genotype to phenotype mapping approaches, show their weaknesses and
propose a new, adaptive approach that will perform better in the cases where these fail. The proposed
approach is compared against the Ng-Wong and the additive diploidy approaches with a dominance
change mechanism, using a controlled 0/1 Knapsack problem. All three approaches tested for this
study, show similar performances for oscillating change. In the random change cases, the proposed
approach shows better performance in automatically adapting to the change.
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Introduction

Most studies in application of genetic algorithms deal with static environments. However there is a
class of problems where the environment changes in time. From a genetic algorithm point of view, the
change may be in the fitness function, in the constraints or the problem instance itself. In such
environments, it becomes important for the solution approach to adapt to this change and follow the
new optima. Classical genetic algorithms do not have the necessary mechanisms to address the issues
encountered when working in such environments. Thus it becomes necessary either to make
modifications to existing algorithms or to incorporate other features. The main issues when dealing
with dynamic environments is preserving diversity in the gene pool of the population and being able to
converge to a solution on the phenotype level. The modifications or the new features have to take this
issue into account and incorporate a balance between preserving diversity and converging to a
solution.

There are several different approaches in literature which deal with variations of genetic algorithms
suitable for working in dynamic environments. Since the choice of a suitable approach depends on
analyzing the nature of the change in the environment, it is worthwhile to categorize the change based
on specific properties. A good set of criteria for this purpose is given in [1] as follows:

• frequency of change,
• severity of change,
• predictability of change,
• cycle length / cycle accuracy.

Using diploid representations is one of the approaches for addressing performance and diversity
issues in dynamic environments. When using a diploid representation for individuals, the choice of a
good genotype to phenotype mapping mechanism is a very important factor in performance. In nature



this is achieved by the domination property of genes. There has been some research done in the area of
artificial domination and discussions and references can be found in literature, some of which are
given in [1,2,3,5,6].

The main aim of this study is to give performance comparisons of some of the existing major
domination approaches, show their weaknesses and propose a new, adaptive approach that will
perform better in the cases where these fail.

Domination Approaches

In this section the proposed domination approach and the major approaches found in literature
which will be used in the comparisons will be introduced and their mechanisms will be briefly
explained.

The Proposed Approach

The adaptive dominance approach proposed in this study is loosely based on a natural phenomenon
known as the penetrance of a gene [12]. The main factor for this phenomenon in nature is
environmental change. The level of penetrance for a gene may be calculated as the proportion of
individuals with a given genotype which exhibit a particular phenotype. Under incomplete penetrance,
a dominant trait may not be expressed in the phenotype for a given genotype. This implies that the
level of penetrance of a gene may change when environmental conditions are altered.

For the proposed approach in this study, individuals are represented with three binary strings, i.e.
two chromosome strings making up the genotype and one phenotype string. A global domination map
is used for genotype to phenotype mapping. The length of the map is the same as the length of the
chromosomes. Each location on the map may take on a real value in [0.0,1.0]. This value shows the
domination factor of the allele 1 over the allele 0 for the corresponding location on the chromosomes.
For example if the value for the 5th location on the domination map is 0.7 and the corresponding 5th

locations on the chromosomes of an individual are different, the individual will show the allele 1 in its
phenotype for the 5th location with probability 0.7 and the allele 0 with probability 0.3. This
domination map is re-evaluated at the end of each generation using Equation 1.
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where pij shows the ith phenotypic value of the jth individual and fj shows the fitness of the jth
individual. All locations on the domination map are initialized to 0.5, meaning that allele 1 and allele 0
are equally dominant in the beginning. Since the domination map is re-calculated in each generation
based on the current fitness values of individuals, the adaptation is automatic and it is not required to
explicitly detect the change to make the necessary modifications.

Approaches Chosen for Comparisons

There are several diploid approaches in literature and references for these may be found in
[1,2,3,4,5,6,8,9].

It has been shown in [7] and [10] that in the case of dynamic environments, some type of a
dominance change mechanism is needed. The approaches which do not incorporate this feature do not
perform better than a simple, haploid genetic algorithm. Based on these results, the approaches with
fixed dominance mechanisms will not be used for comparisons in this study.



In [7], the domination approach proposed by Ng-Wong [8] and the additive diploidy approach
proposed by Ryan [9] are modified to incorporate a dominance change mechanism as is explained in
the following subsections. The results reported in [7] conclude that both approaches are good for
environments where the change oscillates between two solutions with fixed intervals but fail to give
the same level of performance for the case where the change instances and severities occur randomly.

Modified Ng-Wong Approach

In the basic Ng-Wong approach [8], there are four alleles, two of which are dominant given by 0
and 1 and the others recessive given by i and o. In the phenotype, the dominant allele is expressed. The
dominance map to obtain the phenotype from the genotype is given in Table 1 where 0/1 means that 0
and 1 are equally likely and the occurrence of 1i or 0o is prohibited (if it occurrs the recessive gene is
promoted to be dominant).

Table 1. Dominance map for Ng-Wong

0 o 1 i

0 0 0 0/1 0

o 0 0 1 0/1

1 0/1 1 1 1

i 0 0/1 1 1

As given in [7], Ng-Wong allows a dominance change to occur when the fitness of a population
member drops by a particular percentage between successive evaluation cycles. Dominance change is
achieved by inverting the dominance values of all allele pairs, i.e. 11 becomes ii, 00 becomes oo, 1o
becomes i0 and 0i becomes o1.

Modified Additive Diploidy

In the basic additive diploidy approach [9], alleles are represented by ordered values that are
combined using a pseudo-arithmetic to obtain the phenotype. In [9], each value is associated with a
number (A:2, B:3, C:7, D:9) and addition is performed. If the resulting sum is above a threshold
(chosen as 10), the phenotype becomes 1 and if it is below, it becomes 0. The resulting map is given in
Table 2.

Table 2. Dominance map for additive diploidy

A B C D

A 0 0 0 1

B 0 0 0 1

C 0 0 1 1

D 1 1 1 1

In [7], the above approach is modified to incorporate a dominance change mechanism where alleles
in the genotype are demoted or promoted by one grade (demoting a B makes it an A and promoting it
makes it a C).  As in the Ng-Wong approach, dominance change is allowed to occur when the fitness
of a population member drops by a particular percentage between successive evaluation cycles. To
achieve the dominance change, for each locus one of the genotypic alleles is chosen at random and,

• if the phenotypic expression for this locus is 1, then the chosen genotypic allele is demoted (unless it is an A).
• if the phenotypic expression for this locus is 0, then the chosen genotypic allele is promoted (unless it is a D).



Test Methodology

In the tests performed for this study, the modified Ng-Wong and additive diploidy approaches are
compared against the proposed domination mechanism through a controlled set of changes using a
modified 0/1 knapsack problem.

Test Cases

In the tests, change is introduced through changing the weight constraint for the knapsack instance.
The knapsack is chosen in such a way that for each weight constraint, there is only one possible
solution. The following types of change cases are used for the comparisons:

• Case 1: Optima oscillate between two values with fixed intervals
• Case 2: Change is random and is moderate in severity
• Case 3: Change is random and is high in severity

For case 1 the weight constraint oscillates between two fixed values every 500 generations. The
change instances for the random change cases (cases 1 and 2) that are used for the discussions are
given in Table 3. The generation no. shows the generation at which the change occurs, the weight
constraint shows the constraint to be applied, the optimum value is the actual optimum solution for the
knapsack for the given constraint and the hamming distance is the hamming distance between the
previous and the current actual optimum solutions.

Table 3. Discussed Change Instances for Random Change Case

Generation
no.

Weight Constraint Optimum Value Hamming
Distance

0 22 112648 0
1500 100 131066 9
2100 40 128512 11

All  algorithms use binary representation for the genes, two point cross over, roulette wheel
selection and non-overlapping populations and are run using the same set of parameters as given
below.

• population size: 250
• cross-over probability: 0.75
• mutation probability: 0.005

Controlled tests where the actual best fitnesses for each weight constraint is known is performed.
The comparisons are done based on the ability of the dominance approaches in tracking the change in
the environment for each different type of change case.

Test Results

The tests are performed for all test cases. The results are given as averaged over 5 runs for each test
case. The results obtained for the random change cases for each domination approach is given in Table
4. The value found column gives the fitness value obtained by each approach for each change interval
and the generation column gives the generation number at which this given best fitness is reached by
each algorithm for each change interval.

The plots for the results obtained are given at the end of the paper. Figures 1, 2, 3 show the plots for
the case where the change oscillates every 500 generations and Figures 4, 5, 6 show the plots for the



cases where the change occurs randomly as given in Table 3. In all plots, the x-axis shows the number
of generations and the y-axis shows the fitness values found. On all plots, the actual fitnesses are
plotted using a dashed line and the fitness values found by the approaches are plotted using solid lines.

Table 4. Found Solutions by Each Method

Ng-Wong Additive Diploidy Proposed
Value Found Generation Value Found Generation Value Found Generation

112648 9 112648 25 112648 39
131040 1852 130728 1719 131066 1890
128512 2180 128512 2203 128512 2113

Conclusions

The results obtained for the modified Ng-Wong and additive diploidy approaches are in keeping
with the ones found in [7]. The proposed approach shows a similar performance to these for the
oscillating change case. The re-calculation of the domination map at the end of each generation brings
extra computational load, however unlike the other two approaches, for the proposed approach it is not
required to detect the change in the environment. Detecting when the change occurs is an important
issue in dynamic environments and a good detection scheme affects the performance of the algorithm.
In the proposed approach, the adaptation is done automatically based on a feedback obtained from the
population. Because of this, there is no need to do calculations to explicitly detect the change. The
detection is implicitly achieved by the adaptive property of the domination mechanism. This property
makes the proposed approach very effective in dynamic environments.

In the cases where the change is random, the two tested algorithms do not give an acceptable
performance as noted also in [7]. When the severity of the random change is moderate or low, the
proposed approach shows good performance in adapting to the change. When the severity of the
change is high, even the proposed approach may not be able to give acceptable results. These types of
change instances require very high levels of diversity to be present in the population which diploidy
alone may not be able to provide. Additional mechanisms to provide this are needed. These
mechanisms are further discussed and explored in [11] by the same authors.
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            Fig. 1  Plot for Ng-Wong (oscillating change)                                Fig. 4  Plot for Ng-Wong (random change)

 126000

 127000

 128000

 129000

 130000

 131000

 132000

 0  500  1000  1500  2000  2500  3000

M
ax

. 
V

al
u
e

Generations         
 110000

 112000

 114000

 116000

 118000

 120000

 122000

 124000

 126000

 128000

 130000

 132000

 0  500  1000  1500  2000  2500  3000

M
ax

. 
V

al
u
e

Generations

            Fig. 2  Plot for additive dipl. (oscillating change)                           Fig. 5  Plot for additive dipl. (random change)
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            Fig. 3  Plot for proposed (oscillating change)                                   Fig. 6  Plot for proposed (random change)


