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Abstract: Paralle to the continuous growth of the Internet, which allows people to share and collaborate more, social
networks have become more attractive as a research topic in many different disciplines. Community structures are
established upon interactions between people. Detection of these communities has become a popular topic in computer
science. Currently, community detection is commonly performed using Social Network Analysis (SNA) algorithms based on
clustering. The main disadvantage of these methods is their high computational costs and non-scalability on large-scale
social networks. Our main aim is to reduce these computational costs without loss on solution quality. In this study, we
focus on Ant Colony Optimization techniques to find cliques in the network and assign these cliques as nodes in a reduced
graph to use with SNA algorithms.
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1. Introduction

Parallel to the continuous growth of the Intermétjch allows people to share and collaborate msweial networks have
become more attractive as a research topic in naififgrent disciplines. Community structures areabBshed upon
interactions between people. Detection of thesentonities has become a popular topic in computensa. There are
many definitions of communities in various disaigls. Having small differences in the terminologymemunities can be
explained by two major definitions: In biologicatrins, organisms that share an environment and hgesecting

demands, intentions and risks are called commaunitie sociology, a group of people having the samganizational

structure, same cause or same intentions on adslwration is called a community. With the advehtte Internet, such
terminology for communities may be updated to hgeegraphical (physical) or virtual locations shar8dch social

networks that form communities can also be founkherwith the significant increase on collaboratemgd sharing ideas
through the popularity of the WWW. From the compugeience point of view, members of a network amesented as
nodes of a graph with edges in between, if thereelisvance or interaction between the two memtRased on this,
communities can be defined as a group of nodeshtéhat higher density of edges in between, comparediges between
them and other node groups [1]. Community detedgi@an important topic for many disciplines,

Girvan and Newman proposed a term on communityctietecalledmodularity [2]. Many community detection algorithms
based on this definition are proposed. Most of éheshniques use clustering for community detecttwcial Network
Analysis (SNA) methods that are based on commudetgction through clustering, suffer from high cartgtional costs
and non-scalability on large-scale social netwo@kst main aim in this study is to reduce these agsatpnal costs while
maintaining an acceptable level of solution qualibys decreasing the execution times and incrgasialability on such
networks. In our approach, we used the conceptatifgae in graph theory, to define community structur@salgraph, a
clique is a subgraph which is complete, i.e. thieran edge between all possible node pairs. We tmsd Ant Colony
Optimization (ACO) techniques to search for cligoesa given network graph. We used a modified warsif a maximum
clique search algorithm to find cliques of all pbts sizes in the given graph. Then, the graphaissformed into a smaller
scale graph, where the cliques are takemeta-nodes. We will refer to these meta-nodedigse-nodes. New edges are
formed between the cliqgue-nodes, based on the ctions between the individual nodes belonging hedique. Finally,
we use traditional SNA methods to find communitynmberships on the reduced graph.



2. Problem Definition and Related Work

Based on many definitions of community detectiorliterature, the problem can be formulated for asbaietworks as
follows: Assume that a social network is modelscharaplG=<V, E>, whereV represents the vertices corresponding to
individuals in the network ang represents the edges which show the pairwise ctions between the individuals (i.e.
similarities or relevancies between two individyaReferring to the previous definition of a comrityrin the previous
section, a community in a network graph is a sytigrhat has a higher density of edges in betweemémbers and a
lower density of edges from its members to thosside the subgraph. As a common approach, netwahg can be
represented by ahixN adjacency matrix wher&l is the number of nodes/vertices in the correspandjraph. For
unweighted graphs, an adjacency matrix cell holdmlae of 1, if there is an edge (i.e. an intemgtibetween the
corresponding two vertices, and O if there is ndhthe graph has weighted edges that represenartimint of similarity
between two vertices, then the corresponding odhé adjacency matrix takes on real values.

The problem is to fink number of communities in a given network graplehstinat each community satisfies Eq. (1):
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where g is the similarity value of an edge in the commyikitand l, is the similarity value of an edge to the outsfiehat
communityK.

There are many proposed Social Network AnalysisASRethods for community detection based on bisectind
clustering, where a community is defined as a dobegroup, such as cliques, clans or plexes. Aah@frical clustering
method proposed by Donetti and Munoz [3], to fimyer communities in a given graph, uses Laplaeigenvectors as a
similarity measurement; communities are createdradt division operation and vectors are re-caledlab continue
division. Although this method does not require taenber of communities to be defined initially, teemination condition
of the process can not be optimized for the bestteting on the network.

Network modularity is a term introduced by Girvan and Newman [2] {d] a divisive approach which is based on
eliminating edges from the graph depending on thetweenness values. The betweenness used heasdad bredge
betweenness where weights are assigned to edges which ar@ms¢ation the shortest path between pairs of nodeshé\
number of shortest paths which go through an edgeases, the betweenness value of that edge $esteghe network
modularity Q is defined as the ratio of in-commumitiges to the edges of a randomly created subgraphgiven network.
Q can take on values between 0 and 1; the valueoagpes 1 if the community has less connectionthéooutside
compared to the edges in the group. While the @evéd optimized to find a better division on theegi graph, the
proposed algorithm shows performance loss on lacgée networks. Radicchi proposed a similar antébetige-clustering
approach on the given method [5]. Clauset, NewnmahMoore [6] have also proposed a fast greedy etingf algorithm
that uses modularity maximization. Clustering coméis by merging nodes that have the maximA@] until the difference
becomes negative. Although Wakita and Tsurumi gfhe up with an optimized version of this methodrehare still
concerns on performance and solution quality foydescaled graphs.

Along with the above SNA methods, nature-inspirpdraaches are also used in community detectiorerfetic algorithm
which is based on a fitness function for diversifion of node groups that match a community dedinitvas proposed by
Pizzuti [8]. Ant clustering is another evolutiondechnique used on community detection. An exaroptéis technique is
used in the study of Liu et al. for Enron’s maitwerk communities [9]. In our study, we also usled ACO technique as a
nature-inspired approach. However, unlike in [9C@ is not used for clustering. We use ACO to deteencliques which
will then be used as vertices in a reduced graphegular clustering based SNA algorithm can therapglied on this
reduced graph. By doing this, we aim to overconeepitrformance loss of SNA methods on large-scaieanks.

3. Ant Colony Optimization

ACO, one of the most commonly used swarm intellagetechniques in literature, is based on the behafireal ants.
ACO wasfirst introducedby Marco Dorigo in his PhDthesis [10] In therealworld, ants(initially) wanderrandomly,and
upon finding food returnto their colony, while laying down a special chemical called thglheromone. This is used to
communicatewith other antslf otherantscome across pathwith pheromone®n it, they are likely to follow the trail,
returningandreinforcingit if they alsdfind food along the same path. The basic ACO algorithigiven in Algorithm (1).
An ACO iteration consists of the solution constimectand pheromone update stages. In each iterat@eh) ant in the



colony constructs a complete solution. Ants stewtf random nodes and move on the construction gbgphisiting
neighboring nodes at each step.

Algorithm 1: Basic ACO Outline
| set ACO parameters
initialize pheromone levels
while stopping criteria not metdo
for each ank do
select random initial node
repeat
select next node based on detisaicy
until complete solution achieved
end for
update pheromone levels
end while

RPoOONOORONE

e

An antk chooses the best neighbor with a probabilitymfOtherwise, the next visited node is determinédgua stochastic
local decision policy based on the current phercerlenelst; and heuristic information; between the current node and its
neighbors with a probabilitykpas calculated in Eq. (2).
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Pheromone trails are modified when all ants havestracted a solution. First, the pheromone valuesegaporated by a
constant factor on all edges. Then, the pheromahees are increased on the edges the ants havedvdiring their
solution construction. Pheromone evaporation arthtgpare implemented as given in Eq. (3) and BEgwere 0 <1
andArkij is the amount of pheromone deposited bykant
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Ant System (AS) is the first implementation of A@Qorithms, and has been the basis for many AC@nts: There are
many successful AS variants in literature. Among thost commonly used variants, the elitist AS, fhaged AS, the
MAX-MIN AS (MMAS), the ant colony system (ACS), tHeest-worst AS, the approximate nondeterminisée tsearch,
and the hyper-cube framework can be mentioned MIMAS and ACS are shown to be good both in solutjoality and
also in solution speed for the example cases ih [Herefore, we also use them in this study. MM& ACS are among
the approaches which can be considered as diréeints of AS, since they both use the basic AS &aork. The main
differences between AS and these variants are @énptferomone update and pheromone management ddtadsAS
algorithm implements the basic ACO procedure detiailbove. The following paragraphs explain theediffices between
the selected ACO variants and AS. For further tetaie [11].

The MAX-MIN Ant System (MMAS) has four major diffences from AS: first, the pheromone update is abbdor the
iteration-best, i.e. the ant with the best solufienthat iteration, or best-so-far ant, i.e. Hrg with the best solution over
all iterations. Secondly, pheromone limits in ateial frmin, Tmad IS USed to prevent stagnation on local optimardiy
edges are initialized with upper pheromone linotéatvor exploration over exploitation in the begimmof the run. Finally,
the pheromone trails are reinitialized when theitsmh does not improve for a number of iterationstagnation occurs.
Pheromones are deposited on the edges accorditig tequations as given for AS above. The differéadbat the ant
which is allowed to add pheromone may be either likst-so-far or the iteration-best ant. CommonlyMMAS
implementations, both the iteration-best and the-be-far update rules are used alternatively.

The ACS differs from AS in three main points: firatpseudo-random proportional action choice milesed, which allows
the exploitation of the ants’ search experienceo8dly, pheromone evaporation and deposit is agptiehe edges of the



best-so-far solutions. Finally, a local pheromompelate, which includes evaporation, is applied déle an ant passes
through the corresponding edge. This favors exptoraover exploitation. At the end of each iteratim ACS, the
pheromone trails are again updated similar to in A8 the pheromone trail updates, both evaporati@hnew pheromone
deposit, are implemented only for the edges betantyp the best-so-far solution.

For the maximum clique version of ACO, each antl&zed on a random node of the given gr&pixV, E> whereV is
the set of nodes arflis the set of edge#énts lay pheromones on the edges of the cliquesfthd through their walk. A
tabu list is maintained for each ant, which forttemm to visit a node only once. This list contaatighe nodes in the ant's
trajectory until it gets stuck or it finds a fedsilsolution. In such a case, the ant restart®iteney and its tabu list is reset.
Each ant chooses its next node based on the plistialstate transition rule, explained above. Atsite that nodes are
chosen by the ant if they establish a clique withriodes the ant has already visited, i.e. the made to be selected should
have connections with all nodes in the clique the s created. After each ant applies the sanes ramd creates a
solution, pheromone update is performed, baseti®nsed ACO variant.

4. Proposed Solution
Our proposed solution approach for community deteaising an ACO technique consists of the follayiour steps:
1. An ACO technique is used to find the cliques ongiven graph.
2. Overlapping cliques are fixed.
3. The graph is transformed into a smaller one wheesrnew edges are created through a scheme basén: on
concept obetweenness.
4. An SNA algorithm is applied on the transformed drépfind the communities.

Ant Colony Optimization for Finding Cliques: In this study, we modified the ACO model proposed $olving the
Maximum Clique Problem, where the clique having llighest number of nodes is searched for. In tihgina version,
proposed by Fenet and Solnon [12], the MMAS alganitvas used for the maximum clique search. In eusion, ants still
try to find the maximum possible clique at eactpdiat once such a clique is found, they continuehair travel on the
graph to find other cliques. An ant starts a neiguel when there is no eligible neighbor node is tiefadd to the current
clique. This means that no neighbor node has aextiom to all the other nodes of the current clitheeant has created so
far. To achieve this, each ant keeps a tabu listHe visited nodes as well as the constructedietq For the pseudo-
random proportional action choice rule, ants usedbgrees of the nodes in the neighborhood of thet node as the
heuristic information and choose the node withrttaximum degree.

In the MMAS model, the best-so-far ant is allowed deposit its pheromones on its solution path. &heunt of
pheromone laid on the paths is calculated, baseth®@points gathered by the best ant. A scoring system evesutdte
points achieved by an ant, based on the cliquieasitfound so far. As shown in Eq. (5), the totahtsogathered by an ant
are equal to the sum of the squares of the numibeodes in the discovered cliques. The best-saifdérhas the highest
points in the iterations up to the current one.
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The pheromone update equations are given in Eqaf@) Eq. (7). These equations show how the pheresname
distributed over the edges of the cliques foundheybest-so-far ant, based on the total point &elidy the ant and the
node counts of the cliques. It can be seen fronethations that the edges of the cliques with adrigumber of vertices
get more pheromone deposited, than the ones viitwer number of verticesibCliques is the number of cliques found by
the current ant anhax_vertices() function gives the number of vertices in the maximclique found so far in Eq. (7).

At (ant) =1- (points@nts)) ™ (6)
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Pheromone initialization depends on the “populagmgorhood” tour executed just before the main algm iterations
begin. The popular neighborhood is a list of cote@aodes to the corresponding node, sorted inedsitrg order of



degrees. Each node in the graph has its own popailghborhood list to be used in the heuristic apph explained above.
Pheromone limits are directly related to the nuntfeants used in the solution for thg, value and the best-so-far ant’s
points gathered at the “popular neighborhood” fourthet,,« value. The pheromone levels on all edges areodéietr,,,.x
value to favor exploration in the beginning of the. In Eqg. (8) and (9), the functigm_tour() gives the total points gained
by the scout ant on the above mentioned tour catiedhe initial pheromone levels ané the evaporation rate.

T max= 0.pn_tour() (8)
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The MMAS model used in our work differs from thagimal one at one major point. Due to the fact tats traverse all

nodes in the graph to find all possible cliquesr¢his no possibility for them to get stuck at aojnt in the journey, like in

other problems, e.g. for the TSP. In our implemiota when there is no possible move from the aurn®de, the ant goes
back to another node in its tabu list and choosesod its unvisited neighbor nodes to continue. dhestops only when all
the nodes have been visited. Hence, restartingrfter depending on a branching factor is not refevan

Fixing Overlapping Cliques: Cliques created by the ants in our ACO model havieast one node shared by another
clique. The reason behind this is that, to stamew clique, the ant goes back to another nodesitaltu list, which has
already been included in the current clique. Ihthentinues on from that node to form the new didthis leads to sharing
of a node between the two cliques. To remove toesdaps, we simply detect the shared nodes betteenliques and
rearrange the two cliques by assigning the shaogé o the clique with the highest number of vediand removing it
from the other. At the end of this step, thererareshared nodes between the cliques.

Transforming the Graph: In this step, new meta-nodes are formed usinglthaes, thus reducing the size of the original
graph. Each cligue becomes a meta-node, which feeteas alique-node. As a result of this, nodes in a clique will be in
the same community when the SNA algorithm runshim iext step. For the reduced graph, new edgesbwiformed
between the clique-nodes, based on the edges betiweerodes in the different clique-nodes and tiges between the
nodes in the same clique-node. The equation usedltulating the edge weights between the cliquiesds given in Eq.
(20).
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In Eqg. (10),a; is the relevance value of the edges between theechodes whildy,,, andby, represent the relevance value
of inward edges of clique-nodes. The sum of thesatlgights between the nodes of the two clique-n@&ids/ided by the
minimum of the sum of the weights of the edges betwthe nodes in each clique-node. The resultihgevgives the
weight value of the new edgg between the two clique-nodes. A higher weight reeaat the two clique-nodes, hence the
individual nodes in each, are more likely to béhia same community.

Using an SNA Algorithm for Finding the Communities: In this last step, a clustering-based SNA algorjtocommonly
used in literature, is applied on the reduced grapfind communities. While there are several mdthn literature to
detect community memberships, we have to choosehatevorks with edge weights rather than just’adi0a “1”, which
only shows that there is a relationship betweenttie nodes or not. This is because our reducedhghegs weights
assigned to each edge between the clique-nodesjirghdhe strength of the relationship between thdimis chosen
approach, proposed by Clauset, et. al. [6] use®edyg method to calculate modularity differencedudd a graph from
scratch.

5. Experimental Results

In this section, we present the experimental resafliour approach. The algorithm is coded in tHar@uage and we used
the iGraph [13] C library for the last step. Fdrthk experiments, we used a single PC (1.6GHzgssmr with 1GBytes of
main memory). We ran iGraph both on the whole lgrapd on the graph reduced using our approach. dNgare our
results based on the number of communities detethedmodularity value Q and the execution timesGrhph on the



original and the reduced graphs. We used 4 netgafhs for our experiments. First 3 are taken fidewman’s personal
website [15].
e Zachary's Karate Club [14]: A social network of aréite club at a US university. It consists of 34nhers and 78
connections in between them.
« American College Football [16]: A set of Americaotball game matches with 115 teams and 616 games.
e Les Miserables [17]: A network data retrieved frire novelLes Miserables.
¢ Chesapeake Bay Food Web [18]: A food web for pradatey relationship on Chesapeake Bay in US. Bxdan
from [19].

Parameters which are specific to the ACO technigusesl in our implementation are shown on Table Herem is the
number of ants. We use 3 differeq@l values to calculate the heuristic information A@S we used = 0.1 for the local
pheromone update. For each of the datasets, watexethe algorithms 10 times with each run schebidecomplete in 10
seconds.

Table 1 — ACO parameters
@« | B | p | m q0
1 2 05| 25| 0/0.4/0.8

Table 2 shows the confidence intervals for the ayernumber of cliques generated for each dataset;ewACS and
MMAS with 3 differentq0 values are applied. In Table 2, we can see ittt ACO techniques achieve similar results on
clique creation except for the football games ddtar Karate and Chesapeake Bay data, it can bethaechanging the
decision rule probability does not affect the numbkcliques. However, as the number of verticed adges increase,
differences between ACS and MMAS and the effeag®fncrease. For the football games data, ACS findse cliques
than MMAS, which means that MMAS finds betkernels upon its execution. This is meaningful as for\aegitime period

of 10 seconds MMAS can find a solution more quickkign ACS, but in the longer runs, ACS is expedtedet better
results [11].

Table 2 — Lower and upper bounds for cliques createwith %95 confidence interval

Karate Chesapeake Les Miserables Football

qo lower - upper lower - upper lower - upper lowerpper

0.0 21.63 - 22.77 18.32 - 20.68 37.94 - 38.06 27 B%.34

ACS 0.4 21.41-22.19 18.42 - 20.98 37.81 - 38.19 272931
0.8 21.54 - 22.06 18.2 -20.4 38.19 - 39.21 27.28.72

0.0 21.55-22.25 18.76 - 20.44 37.4-38 23.94.4@

MMAS 0.4 21.55-22.25 17.75 - 20.45 37.06 - 37.94 235406
0.8 21.7-22.1 19.75 - 20.45 37.17 - 37.83 23.28.44

Table 3, shows the confidence intervals of the ayemodularity for each dataset. The modularityeteh set is calculated
via iGraph modularity calculating implementatiorable 4, shows the execution times of iGraph fohesat on the reduced
graphs obtained using the ACO techniques. On thiertavs of both tables, the results of iGraph om dhiginal graph
(without any graph reduction) are shown.

Table 3 — Lower and upper bounds for modularity wih %95 confidence interval

Karate Chesapeake Les Miserables Football
go lower - upper lower - upper lower - upper lowerpper
0.0 0.38-0.4 0.3-0.38 0.48 - 0.58 0.41 - 0.47
ACS 0.4 0.37 - 0.39 0.33-0.39 0.4 - 0.56 0.44 - 0.48
0.8 0.39-0.41 0.35-0.37 0.52 - 0.6 0.42-0.5
0.0 0.37 - 0.39 0.32-0.36 0.44 - 0.56 0.37 - 0.41
MMAS 0.4 0.39-0.41 0.33-0.39 0.47 - 0.55 0.35-0.43
0.8 0.39-0.41 0.34-0.38 0.53-0.61 0.4-0.42
Orig. Graph 0.380671 0.410783 0.547220 0.549741




Table 4 — Execution times

Karate Chesapeake Les Miserables Football

qo time spent time spent time spent time spent
0.0 0.013 0.014 0.016 0.017
ACS 0.4 0.014 0.014 0.016 0.017

0.8 0.014 0.015 0.016 0.02

0.0 0.013 0.013 0.016 0.016
MMAS 0.4 0.013 0.014 0.015 0.017
0.8 0.012 0.013 0.015 0.016
Orig. Graph 0.015 0.015 0.023 0.029

In Table 5, the average number of clusters (comtias)iis given. The top part of the table showsrthmber of clusters
found by iGraph on the reduced graphs obtainedhkycbrresponding ACS variations. In the “Orig. G@rapow, the
number of clusters found by iGraph when it is runtloe original graph, with no size reductions, barseen. The last row
gives the actual number of clusters given in liiema for the corresponding dataset.

Table 5 — Mean Values of Number of Communities

Karate Chesapeake Les Miserables Football

qo communities communities communities communities|
0.0 4.2 3.2 5.6 5.2
ACS 0.4 4 3.1 5.2 5.3
0.8 4 3 5.8 4.9
0.0 3.8 3 6.2 4
MMAS 0.4 4 3 5.4 4.2
0.8 4 3.2 6 4.4
Orig. Graph 3 5 5 6
Actual no. of 2 3 Not given 12

clusters

Modularity values in Table 3 show that, values almost preserved after the transformation whichrmadhat we have
minimum loss on solution quality. Keeping in middht higher modularity values show better clusterlmest solution for
similarity of the results with iGraph is achievech d.es Miserables data with the help of initiallyopided
relevance/similarity values on the edges, whilelibst solution with respect to the actual numbecarhmunities in the
dataset is achieved on the Chesapeake data a®is€kable 5. For the football game data, modularéjues are higher
which may show that the fast greedy community dietealgorithm gets better clustering results omdopacking (cliques
with less or balanced number of vertices). Fordallasets, we obtained faster execution times onetieced graph as
shown on Table 4. Also, except for the Football gardata, the numbers of communities found are dlmdbeir actual
values. However, on Football games data, as sed@iabie 5, iGraph got similar results on the origiaad the reduced
graph but the number of clusters found by botlo@gdifferent from the actual number of the commiesitin the dataset.
For verification of our results, we also appliethadified silhouette index to the clustering soloimbtained of this dataset
to measure clustering quality and got results ctos6.75 which means that the clustering on bothdhiginal and the
reduced graph is adequate. We will try to exanaing optimize our approach to get better resultshendataset in our
further studies.

6. Conclusions and Future Work

Since many SNA methods suffer from performance ts$arge-scale networks, we aimed to find a metiooovercome
this handicap by reducing the whole graph via diqodes found using the ACO techniques. It is shthahthe original
graph can be reduced to a manageable size keepm@d that communities can be based upon cliglies.experimental
results show that while execution times for the S&lgorithm is lower when a reduced graph is usellitisn quality is
preserved. For further optimization on performanéeur approach, there are some future directiohihwneed to be
pursued. Due to the nature of the current algorithlirants are traversing all the nodes in the lgitapfind all cliques. For
larger graphs, this will be too time consuming. HEhgorithm will be modified so that each ant withterse a part of the
graph for a given time frame and the cliques fobpdhe ants will be merged before the graph transdtion step. For this
modification, ants will be forced to have a comntabu list to avoid traversing the same nodes orgtaph. We will also
do further experimentation with larger graphs alsd an real-world data.
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