
LANDSCAPE ANALYSIS OF SIMPLE PERTURBATIVE
HYPER-HEURISTICS

İbrahim Maden

Istanbul Technical
University

Informatics Institute
34469 Maslak Istanbul

Turkey
imaden@itu.edu.tr

Şima Uyar

Istanbul Technical
University

Computer Engineering
Department

34469 Maslak Istanbul
Turkey

etaner@itu.edu.tr

Ender Özcan

University of Nottingham
ASAP Research Group

School of Computer Science
Jubilee Campus

NG8 1BB Nottingham
United Kingdom

exo@cs.nott.ac.uk

Abstract: Hyper-heuristics introduce novel approaches for solving hard combinatorial optimization problems.
A hyper-heuristic method operates over a set of low level heuristics. There are different hyper-heuristic
frameworks that employ the idea of automating the heuristic design process. In a perturbative hyper-heuristic
framework, the most appropriate low level heuristic is automatically determined and applied to solve a given
problem at each step of the search process. A landscape analysis technique provides means for understanding
the influence of operators and algorithmic behavior for a given problem. In this study, we aim to understand and
analyze a set of perturbative hyper-heuristics through landscape analysis based on an auto-correlation function.
Tests are performed on a series of commonly used benchmark functions. To the best of the authors' knowledge,
no such prior landscape analysis exists in literature for the perturbative hyper-heuristics.

Keywords: hyper-heuristic, landscape analysis, correlation length, heuristic performance

1 Introduction

Hyper-heuristics [8,19,22] are novel approaches for solving hard combinatorial optimization problems. A hyper-
heuristic method operates over a set of low level heuristics. Hyper-heuristics separate the problem domain and
the solution domain from each other operating on the low level heuristics. They do not require any problem
specific information. There are different hyper-heuristic frameworks that employ the idea of automating the
heuristic design process. In a perturbative hyper-heuristic framework, a hyper-heuristic repeatedly chooses and
applies low level heuristics moving towards better regions in the search space until the end of iterations. The
output of a hyper-heuristic is the best solution found during the search. As a result, hyper-heuristics can be
thought of as black box search techniques that get the problem instance and a list of low level heuristics as
inputs, run until the stopping criteria are satisfied and finally output the solution. In literature, hyper-heuristics
can be categorized in two main groups [8], namely heuristics to choose heuristics and heuristics to generate
heuristics, both of which can be further be divided into two more classes, i.e. perturbative hyper-heuristics and
constructive hyper-heuristics. These different hyper-heuristic methods will be explained further in Section 2. In
this study, we focus on hyper-heuristic approaches which use perturbative low-level heuristics and fall in the
category of heuristics to choose heuristics.

Fitness denotes the objective function value which measures the quality of a solution to a given problem. A
fitness landscape shows the association between the fitness space and the search space. By the help of fitness
landscape analysis, performance of heuristics on a problem can be predicted and more effective operators can be
designed. One of the most commonly used metrics to analyze landscapes is the “auto correlation function” or the
“correlation length” which is derived from it. A high correlation length means a smooth landscape and a low
correlation length shows a rugged landscape. Smooth landscapes are easier for search algorithms that rely on the
neighborhood structure of the underlying landscape.

In this study, we focus on analyzing the landscape properties of perturbative hyper-heuristics. To the authors'
best knowledge, no such prior landscape analysis exists in literature for this type of hyper-heuristics. We use the
"fitness correlation length" metric to analyze the landscape of a simple perturbative hyper-heuristic framework.
Tests are performed on seven well known benchmark functions.

The rest of the paper is organized as follows: Section 2 gives an overview on hyper-heuristics and fitness
landscape analysis. In section 3, the proposed method and framework for analyzing the landscape of the

perturbative hyper-heuristics is explained. The experiments and the results are given in Section 4. Section 5
concludes the paper and provides directions for future work.

2 Hyper-heuristics and Landscape Analysis

2.1 Hyper-heuristics
Hyper-heuristics [8,19,22] operate on a search space of heuristics rather than directly on a search space of
solutions. Cowling et al. [2] also define hyper-heuristics as “an approach that operates at a higher level of
abstraction than metaheuristics and manages the choice of which low-level heuristic method should be applied at
any given time, depending upon the characteristics of the region of the solution space currently under
exploration”. In other words, a hyper-heuristic itself does not search for a better solution for the problem.
Instead, it selects at each step of the solution process, the most promising simple low-level heuristic which has a
high potential to improve the solution. When no improvement occurs, such as a locally optimal solution is found,
the hyper-heuristic tries to diversify the search to another region of the solution space by selecting appropriate
heuristics from the given heuristic list.

Low-level heuristics usually represent the simple local search neighborhoods or the rules used by human
experts for constructing solutions. However, more complex heuristics such as metaheuristics can also be
included in the set of heuristics used by the hyper-heuristic [4]. Hyper-heuristics do not require knowledge of
how each low-level heuristic works or the objective function of the problem. All domain-specific information
remains at the level of the low-level heuristics and the objective function. For example, the hyper-heuristic only
receives the value obtained as a result of evaluating the objective function.

In literature, two broad hyper-heuristic classes can be identified [8, 22]: heuristics to choose heuristics and
heuristics to generate heuristics. In the first group, the hyper-heuristic is supplied with a set of low-level
heuristics and the hyper-heuristic chooses how to apply these heuristics, e.g. in [5] and [20]. In the second group,
good heuristics for a specific problem are evolved from given heuristic components, e.g. [6] and [21]. Both
groups can further be divided into two classes: perturbative hyper-heuristics, e.g. as in [5], and constructive
hyper-heuristics, e.g. as in [20]. Most of the approaches that fall into the first group work on a single candidate
solution and decide which low level perturbative heuristic(s) will be applied at each iteration. In the second
group of approaches, at each iteration, a solution is constructed from scratch by applying the constructive low-
level heuristics. The hyper-heuristic determines the order in which these heuristics will be applied to generate the
solution. In this study, we focus on a hyper-heuristic approach which is perturbative and falls in the group of
heuristics to choose heuristics.

Perturbative heuristics used in a perturbative hyper-heuristic framework are divided into two classes [5]:
mutational and hill climbing heuristics. Mutational heuristics modify a given solution randomly. In mutational
heuristics, the resulting solution may be of lower quality than the current solution, however, hill climbing
heuristics guarantee a solution which has better or the same quality as the input. Previous studies [5] show that
choosing a low level mutational heuristic and then applying a single hill climbing heuristic generates better
results than using the hill climber within the set of low level heuristics.

2.2 Landscape Analysis
A fitness landscape is obtained by associating a fitness value with each point in the search space, on which a
neighborhood is defined. Then, a walk can be performed on this landscape by visiting neighboring points at each
step. The definition of a neighborhood is crucial in the analysis of the fitness landscape and depends mainly on
the solution representation and the heuristic operators used.

Fitness landscape analysis techniques are used to better understand the influence of representations and
associated variation operators when solving a combinatorial optimization problem [3]. The concept of fitness
landscape, which was introduced by Wright [1] to demonstrate the dynamics of biological evolutionary
optimization, has been useful for the analysis and understanding of evolutionary algorithm’s behavior. In
addition, the study of fitness landscapes can be of value in designing heuristic search algorithms since it can help
predict the algorithms' performance.

Ruggedness is commonly used to determine the structure of fitness landscapes and algorithm behavior. The
auto-correlation function (acfs), given in Equation 1, is used for analyzing the ruggedness of a landscape. By
performing a random walk on a landscape, the ruggedness or the smoothness of the whole landscape may be
described. The auto-correlation function is a measure of the correlation between the fitness of two points
separated by s random steps. Auto-correlation function values close to 1 denote a high positive correlation and
values close to 0 show low correlation.

 T

t
t

st

sT

t
t

s

ff

ffff

acf

1

2

1
(1)

The correlation length of a landscape, which is commonly used to compare the ruggedness of landscapes, is
the largest number of steps, for which the starting and the end points of the walk are correlated. A high
correlation length means a smoother landscape, whereas, a low correlation length shows a more rugged structure.
Problems with smoother landscapes are easier for search algorithms which rely on the underlying neighborhood
of the landscape to generate solutions. The correlation length (cl) is defined in Equation 2.

1ln
1
acf

cl (2)

In evolutionary algorithms literature, fitness landscape analysis has been studied for many years. Reeves, in
[9], gives a detailed overview of the properties of landscapes. Other measures than cl, such as fitness distance
correlation [14], epistasis variance [14], neutrality and evolvability [15] are also explored in some studies in
literature. There are many application studies which perform a fitness landscape analysis of well known
problems such as the traveling salesman problem [10], the multi-dimensional knapsack problem [3], the
quadratic assignment problem [11], the graph bi-partitioning problem [12], the max-sat problem [13] and a
special case of a routing problem [18].

In hyper-heuristics literature, there are only two studies [16,17], which focus on analyzing the landscape of
hyper-heuristics. However, both of these studies work on constructive hyper-heuristics. In [16], a constructive
hyper-heuristic which uses graph-coloring heuristics to solve the timetabling problem is considered. To analyze
the heuristic landscape of this constructive hyper-heuristic, the fitness distance correlation and the correlation
length metrics are used. In [17], a fitness distance correlation analysis is performed on the heuristic landscape of
the hyper-heuristic which employs dispatching rules heuristics to solve the hybrid flow-shop problem. Both
papers conclude that hyper-heuristics which exploit the properties of the heuristic landscape would be more
successful for both problems.

3 Landscape Analysis of a Perturbative Hyper-heuristic Framework

Hyper-heuristic approaches search the heuristics space instead of the solution space. Therefore the corresponding
landscape is called the “landscape of heuristics” and not that of the solutions. One of the most common methods
to perform fitness landscape analysis is using an “auto correlation function”. In our study, we adapt the
“correlation length” (cl) metric which is derived from this function for analyzing the behavior of a subset of
perturbative hyper-heuristics. The set of low-level perturbative heuristics, the heuristic selection method, the
acceptance criteria and the hyper-heuristic framework are chosen from a previous study in [5] where a very
detailed experimental comparison of perturbative hyper-heuristics is conducted. A generic hyper-heuristic
framework managing a set of perturbative low level heuristics is chosen (Figure 1). In this framework, low-level
heuristics are selected from a list, then the hyper-heuristic method applies these heuristics on the solution and
finally the acceptance criteria decides whether the generated solution will be accepted or rejected.

Figure 1. Illustration of a single iteration in a generic perturbative hyper-heuristic framework

Select
and then
Apply

Accept
or

Reject

Mutational
Heuristics

The perturbative low-level heuristics which are used in this framework can be both mutational heuristics and
hill climbers. However, in the preliminary experiments it was observed that when hill climber heuristics are
used, a solution is found in a few iterations or search gets stuck at a local optimum. When conducting a
landscape analysis, exploring different regions of the search space is more important than finding the optimum
value of the problem. Therefore, only mutational heuristics are used in our experiments. Four different low-level
mutational heuristics are used within the hyper-heuristics during the experiments as described below:

 Mutation (MUTN): This operator is the standard mutation operator used in Genetic Algorithms. All the
bits are scanned one by one and a bit is flipped with a probability of 1/Solution_Length.

 Swap Dimension (SWPD): Two dimensions within a given candidate solution are chosen randomly and
then their values are exchanged.

 Dimensional Mutation (DIMM): A single dimension is chosen randomly. Then, mutation as in MUTN
is applied only to the bits within the chosen dimension. A bit is flipped with a probability of
1/Dimension_Length.

 Hyper-mutation (HYPM). This operator applies MUTN to all the bits of a given candidate solution with
a probability of 0.5. HYPM heuristic helps the search to jump to new areas of the search space when a
local optimum is encountered.

Greedy, Simple Random (SR) and Random Descent (RD) are the chosen heuristic selection methods. Greedy
method allows all heuristics to process a given candidate solution and chooses the one that generates the most
improved solution. SR heuristic selection mechanism randomly chooses a low level heuristic from the list with
equal probability and applies it to the candidate solution. RD chooses a low level heuristic randomly with equal
probability and applies the heuristic repeatedly until no improvement is achieved. All Moves (AM) and Only
Improving (OI) schemes are chosen as the acceptance criteria. AM accepts all solutions generated by the selected
heuristic, regardless of its quality. OI accepts only improving moves (solutions with equal quality are not
accepted).

Landscape analysis is performed for the above defined hyper-heuristics on seven well known continuous
benchmark functions: Sphere, Rosenbrock, Step, Quartic with (uniformly random) noise, Rastrigin, Schwefel
and Griewangk (Table 1). Modality of a function specifies the number of optimum that it contains within the
search space. Unimodal benchmark functions have a single optimum, whereas multimodal benchmark ones
contain multiple optima. A function of n variables is referred to as separable, if it can be represented as a
collection of n single-variable functions. For example, a multi-variable separable function can be equal to the
sum of single variable functions. During the experiments, such additively separable benchmark functions are
used, except the Griewangk function.

Table 1. Benchmark functions used in the experiments
Function Range of xi Properties

Sphere

n

i
ixxf

1

2
[-5.12,5.12]

unimodal,
separable

Rosenbrock

1

1

222
1 1100

n

i
iii xxxxf

[-2.048,2.048]

unimodal,
inseparable

Step

n

i
ixnxf

1

6

[-5.12,5.12]
unimodal,
separable

Quartic with
noise

n

i
i Uxixf

1

4 1,0

[-1.28,1.28]
multimodal,
separable

Rastrigin

n

i
ii xxnxf

1

2 2cos1010

[-5.12,5.12]
multimodal,
separable

Schwefel

n

i
ii xxnxf

1

sin9829.418

[-500,500]
multimodal,
separable

Griewangk 1cos
4000

11

2

n

i

i
n

i

i

i

xx
xf

[-600,600]
multimodal,
inseparable

4 Experiments

4.1 Settings
In our experiments all benchmark functions are tested with 20 dimensions. We use a gray encoding to represent
the solutions. In this scheme, each dimension is encoded with 10 bits. As a result, each candidate solution is a bit
string of length 200. During each experimental run with a given hyper-heuristic over a benchmark function, the
fitness value of an accepted solution is recorded at each step. A run (walk) is terminated after 2000 steps,
sampling 2000 points (fitness values) for computing the correlation length. Moreover, the best fitness value
encountered during a walk and the step that it is encountered are also accumulated. As each walk is repeated for
100 times, starting from different random point, statistics, such as, the average and standard error values for all
these quantities are used during the landscape analysis.

4.2 Results and Discussion
Table 2 and 3 summarize the experimental results. In both tables, cl is the average correlation length obtained
over 100 runs and stderr(cl) gives its standard error; bs is the average of the best solution obtained in each walk
over 100 runs and the stderr(bs) gives its standard error; step is the average of the step count when the best
solution is obtained in each walk over 100 runs and the stderr(step) gives its standard error. Each hyper-heuristic
is denoted as <heuristic selection> – <move acceptance>. Table 2 shows the results obtained when the AM
acceptance method is used together with the three heuristic selection schemes. Similarly, Table 3 shows the
results obtained when the OI acceptance method is used together with the three heuristic selection schemes.

Table 2. Test result for All Moves acceptance criteria
Greedy – AM

Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 44.83677 22.19067 0.00082 0.00341 1822.87 153.54758
Rosenbrock 15.05187 12.08595 67.84332 29.23171 1512.42 454.00527
Step 126.31290 46.58216 2.60000 1.42842 1731.01 199.89120
Quartic w/n 5.91090 1.81726 8.08736 0.57982 1271.22 488.93197
Rastigin 66.45556 28.08149 22.52137 7.03620 1958.86 53.54107
Schwefel 110.95565 40.78793 979.27836 322.72432 1960.16 69.05461
Griewank 51.36108 27.32004 1.26334 0.36940 1500.99 355.30855

RD – AM
Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 3.27191 0.29425 66.07899 9.49872 1019.57 566.11031
Rosenbrock 2.93812 0.26570 1534.62562 314.93183 959.39 644.36727
Step 3.35915 0.29660 64.73000 4.49658 1056.03 580.98781
Quartic w/n 2.91038 0.22812 14.11436 1.48357 963.45 582.27345
Rastigin 3.31949 0.33136 207.03253 15.63024 942.77 557.72580
Schwefel 3.20222 0.28065 5204.39937 299.48174 1043.45 611.68927
Griewank 3.28610 0.32454 206.59255 27.57067 996.92 594.58138

SR – AM
Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 3.40739 0.26373 77.52255 9.72065 994.28 526.58211
Rosenbrock 3.25867 0.31900 2167.60653 455.88516 986.82 543.36172
Step 3.44164 0.33630 69.87000 4.92089 907.72 519.35163
Quartic w/n 3.19732 0.26332 17.23813 2.07844 959.37 560.89696
Rastigin 3.30546 0.32932 233.21566 15.88990 1037.22 545.75616
Schwefel 3.24051 0.30786 5730.95627 289.34191 1047.42 607.88014
Griewank 3.31341 0.31405 238.64892 34.58293 1054.70 568.61063

When the AM selection technique is used, the Greedy hyper-heuristic has the highest correlation length
values. This is mainly because the Greedy approach applies all the low-level heuristics and selects the best of
them. Therefore, the new point is closely related with the previous point from which it was generated. However,
the RD and the SR selection schemes might have high drops in fitness because of a bad heuristic selection. The
intervals for the cl and bs values of the RD and SR methods are very close to each other. This means that, there
is no statistically significant difference between them. Also RD behaves similar to SR and was not able to apply
the chosen heuristic many times until there was no improvement.

In addition, since the Greedy approach always selects the best heuristic, it is able to find better solutions. The
Greedy approach improves its solution at each iteration and thus is able to find better solutions, mostly towards

the end of the run. For example, for the Sphere function (which is unimodal), the Greedy – AM hyper-heuristic
encounters its best solution around step 1823 on average. Due to the random heuristic selection mechanisms in
both RD and SR, the best solution can be encountered at any step of the walk. Therefore, the standard error
values of the step when the best solution is found are much higher than that of the Greedy method. Also, the
solution quality achieved by RD and SR with AM acceptance is much lower than that of Greedy. These results
back up the cl values obtained during the experiments. Higher cl means a smoother landscape which is easier for
a search heuristic that relies on the neighborhood structure of the underlying landscape. In this experiment, the
Greedy method which has a higher cl than the RD and SR, also achieves the best solution quality. The results
obtained by RD and SR are similar to each other, so are the cl values of their landscapes.

Table 3. Test results for Only Improving acceptance criteria
Greedy – OI

Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 49.51943 27.09491 0.00046 0.00110 1840.15 134.28932
Rosenbrock 15.38073 10.19749 45.12681 29.33253 1983.78 21.97132
Step 109.32785 36.54910 11.18000 2.69822 1720.08 238.57996
Quartic w/n 23.11167 19.32718 9.95526 1.37597 1300.77 515.69507
Rastigin 67.81996 22.53317 20.39235 6.11360 1938.68 105.83796
Schwefel 115.72481 42.782443 992.92127 383.29499 1964.38 50.71882
Griewank 46.19313 24.16803 0.70176 0.69001 1638.47 256.44840

RD – OI
Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 73.08927 41.64527 0.04087 0.06379 1961.78 42.75383
Rosenbrock 24.50513 15.90997 51.54439 28.78878 1982.84 16.73363
Step 167.24141 65.73952 14.03000 3.00993 1692.28 277.38268
Quartic w/n 33.88447 27.85375 10.25615 1.36049 1297.24 555.59039
Rastigin 98.80451 36.87493 29.80780 7.51286 942.77 557.72580
Schwefel 136.34661 59.51040 1583.14879 447.80914 1964.53 43.42285
Griewank 68.06959 31.32192 1.17834 0.76097 1899.97 110.48967

SR – OI
Function cl stderr(cl) bs stderr(bs) step stderr(step)
Sphere 159.05777 100.41520 2.65562 2.54339 1980.06 22.02286
Rosenbrock 51.81645 35.3206 87.21807 35.79628 1977.99 21.35202
Step 315.74646 166.49767 21.54000 4.23887 1804.17 175.50147
Quartic w/n 52.44623 44.92910 11.52074 1.80997 1453.03 495.61068
Rastigin 202.77516 88.83062 47.91345 11.82588 1959.82 37.29526
Schwefel 219.58939 103.99239 2235.31564 444.1147 1968.58 29.94445
Griewank 148.47994 92.03618 7.93971 6.80547 1982.67 16.06870

If the appropriate heuristic is not selected, this might cause a large decrease in the fitness value, which makes
the landscape more rugged. When the OI acceptance is used, these fitness decreases are bounded, as OI allows
only improving solutions to be accepted at any step of the search. Therefore cl values of almost all functions are
increased when OI acceptance is used. In addition to this, since worse results are eliminated, bs values are also
better. For RD and SR hyper-heuristics, the increase in cl values is much more than that of Greedy, since in
Greedy the best heuristic is always chosen. This means that in most cases the new solution is not much worse
than the current one. Therefore the improvement in cl and solution quality for Greedy with OI is less. With SR,
the average cl is increased dramatically; however, the standard error is very high which is due to the randomness
in the heuristic selection process. RD seems to benefit the most with regard to solution quality, from using OI
instead of AM. Even though the average increase in cl for RD is less than that of SR, the standard error is
smaller. Therefore it is able to find better solutions in more cases than SR, thus increasing solution quality.
Again, the results show that the cl values and solution quality are in accordance.

5. Conclusion and Future Work

In this study, we performed a correlation length analysis on the heuristic landscapes generated by six hyper-
heuristics on seven commonly used benchmark functions. The heuristic selection mechanisms used are the
Greedy method, the Simple Random and the Random Descent methods. As acceptance schemes, All Moves and
Only Improving are used. The results of the experiments show that the heuristic selection mechanism as well as
the solution acceptance scheme affects the underlying heuristic landscape. We also showed that as the

correlation length increases, solution quality of the hyper-heuristics also increases, as expected. As a conclusion,
we observe that the correlation length analysis of the heuristic landscape, produced by a hyper-heuristic provides
a good indication of the algorithm performance.

We experimented with a subset of existing heuristic selection and acceptance criteria combinations in a
generic hyper-heuristic framework, referred to as type A in [5]. The results of the preliminary investigations are
very promising which promote further study. As a future work, other perturbative hyper-heuristic frameworks,
namely type B, C and D as described in [5], embedding more sophisticated heuristic selection schemes (i.e.,
Choice Function, Tabu Search) and acceptance mechanisms (i.e., Great Deluge, Simulated Annealing) will be
analyzed on a more diverse set of benchmark functions.

References:
[1] S. Wright, “The roles of mutation, inbreeding, crossbreeding and selection in evolution”, in Proc. VI Int.
Conf. Genetics, vol. 1, pp. 356–366, 1932.
[2] P.Cowling, G. Kendall, E. Soubeiga, “A hyper-heuristic approach to scheduling a sales summit”, in PATAT
2000, LNCS, vol. 2079, pp. 176–190, Springer, 2000.
[3] J. Tavares, F. B. Perreria, E.Costa, “Multidimensional Knapsack Problem: A Fitness Landscape Analysis”,
IEEE Transactions on Systems, Man and Cybernetics – Part B. Vol. 38, No. 3, 2008.
[4] K. Chakhlevitch, P. Cowling, “Hyper-heuristics: Recent Developments”, Adaptive and Multilevel
Metaheuristics, SCI 136, pp. 3–29, 2008.
[5] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A Comprehensive Survey of Hyper-heuristics”, Intelligent Data
Analysis, 12(1):1-21, 2008.
[6] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward, “Exploring Hyper-heuristic
methodologies with genetic programming”, Studies in Computational Intelligence: collaboration, fusion and
emergence, chapter 6, Springer, 2009.
[7] E. Özcan, S. Etaner-Uyar, E. K. Burke, “A Greedy Hyper-heuristic in Dynamic Environments”, GECCO
2009 Workshop on Automated Heuristic Design: Crossing the Chasm for Search Methods, 2009.
[8] E. Soubeiga, “Development and Application of Hyper-heuristics to Personnel Scheduling”, PhD Thesis in
School of Computer Science and Information Technology The University of Nottingham, 2003.
[9] C. R. Reeves, “Fitness Landscapes and Evolutionary Algorithms”, in Proc. Sel. Papers 4th Eur. Conf.
Artificial Evolution, LNCS, vol. 1829: pp. 3-20, 1999.
[10] P. F. Stadler, W. Schnabl, “The Landscape of the Traveling Salesman Problem”, Physics Letters A, vol.
161: pp. 337-344, 1992.
[11] P. Merz, B. Freisleben, ”Fitness Landscape Analysis and Memetic Algorithms for the Quadratic
Assignment Problem”, IEEE Trans. Evol. Comp., vol 4: No.4, 2000.
[12] E. Angel, V. Zissimopoulos, “Auto-correlation Coefficient for the Graph Bipartitioning Problem”,
Theoretical Computer Science, vol. 191: pp. 229-243, 1998.
[13] H. H. Hoos, K. Smyth, T. Stützle, “Search Space Features Underlying the Performance of Stochastic Local
Search Algorithms for MAX-SAT”, Parallel Problem Solving from Nature - PPSN VIII, LNCS vol. 3242: pp.
51-60, 2004.
[14] B. Naudts, L. Kallel, “Comparison of Summary Statistics of Fitness Landscapes”, IEEE Trans. Evol. Comp.
vol.41: pp. 1-15, 2000.
[15] T. Smith, P. Husbands, P. Layzell, M. O'Shea, “Fitness landscapes and evolvability”, Evolutionary
Computation, vol. 10: No. 1, pp. 1-34, 2002.
[16] G. Ochoa, R. Qu, E. K. Burke, “Analyzing the Landscape of a Graph Based Hyper-heuristics for
Timetabling Problems”, Genetic and Evolutionary Computation Conference (GECCO), 2009.
[17] G. Ochoa, J. A. Vazquez-Rodriguez, S. Petrovic, E. K. Burke, “Dispatching Rules for Production
Scheduling: a Hyper-heuristic Landscape Analysis”, IEEE Congress on Evolutionary Computation (CEC), 2009.
[18] F. Corut-Ergin, A. Yayimli., A. S. Uyar, "An Evolutionary Algorithm for Survivable Virtual Topology
Mapping in Optical WDM Networks", EvoCOMNET 2009: Sixth European Workshop on the Application of
Nature-inspired Techniques for Telecommunication Networks and other Parallel and Distributed Systems,
LNCS, vol. 5484, pp.31-40, Springer, 2009.
[19] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, “Hyper-heuristics: An Emerging
Direction in Modern Search Technology”, Handbook of Metaheuristics, pp. 457-474, Kluwer, 2003.
[20] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, “A Graph-based Hyper-heuristic for Educational
Timetabling Problems”, Europena Journal of Operational Research, vol.176, pp. 177-192, 2007.
[21] M. Bader-El-Den, R. Poli, “Generating SAT Local-Search Heuristics using a GP Hyper-heuristic
Framework, 8th International Conference on Artificial Evolution (EA), LNCS, vol. 4926, pp. 37-49, Springer,
2008.
[22] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu, “A Survey of Hyper-heuristics”,
technical report, University of Nottingham, 2009.

