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Abstract. This study involves genetic algorithms in which a diploid representation of individuals is 
used. In conformance with the diploid representation, a reproductive scheme which models the 
meiotic  cell  division  for  gamete  formation  in  diploid  organisms  in  nature  is  employed.  A 
domination  strategy  is  applied  for  mapping  an  individual's  genotype  onto  its  phenotype.  The 
domination factor for each allele at each location is determined by way of a statistical scan of the 
population in the previous generation. The effectiveness of this domination mechanism is shown 
by comparing it with two other major approaches found in literature.

1 Introduction

In 1831, Charles Darwin embarked on a five-year voyage on the HMS Beagle as a naturalist. On his 
return, he published his book  The Origin of Species by Means of Natural Selection  in 1859 [1], in 
which he related his journeys and observations and documented his theory, ‘The Theory of Evolution’. 
The key idea behind this theory [2] is that all species have descended from other species. His work 
shows evidence that evolution has actually taken place and he correctly outlines the mechanisms by 
which it occurred. 

Evolution is a two-stage process. In the first stage, random variations among individuals take place. 
Some of these variations may be inherited and they may either be useful or detrimental to the organism. 
The second stage is natural selection which is an interaction between an organism and its environment. 
As a result  of this interaction,  the organisms which adapt  better to their environments  leave more  
offspring than others. Over a very long period of time, evolution leads to diversities between groups of 
organisms  living  under  different  conditions.  Evolution  is  viewed  as  one  of  the  most  important 
principles in biology and related sciences.

In an optimization problem, the aim is to find the optimal or in some cases the near optimal solution to 
a problem. Genetic algorithms, which are a class of stochastic, global optimization methods, model 
some of the principles of natural evolution in solving the problem at hand. In nature, organisms that  
have some characteristics which make them better than others in some way are more likely to survive 
and reproduce, thus leave offspring that may inherit the useful characteristic which made the organism 
more  suitable  to  its  environment.  This  may  be  seen  as  an  optimization  process  where  nature  is 
searching for the optimal individual for a certain environment. In this sense, some mechanisms found 
in nature may be modeled in solving artificial optimization problems. For some classes of problems, it  
may be sufficient to model a simple subset of these natural principles and processes. However,  for  
some other classes of problems that have special requirements and characteristics, a broader subset may 
lead to better results.

2 The Diploid Genetic Algorithm

In nature most complex organisms have a diploid structure, i.e. for each characteristic, the organism 
has two alleles located on two homolog chromosomes. Even though this seems like a redundancy, it is 
nature's  way of  keeping  a genetic  memory and  introducing  genetic  diversity.  In  this  way,  genetic  
information which may be useful in the future is shielded against the selection process by way of a 
domination mechanism which masks the recessive allele until a future time when it may become useful 
for the organism. 
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There  has  been  some study on  diploidy  and  dominance  in  genetic  algorithms.  Most  of  these  are  
summarized and discussed in [3]. More recent work can be found in [4], [5], [6], [7] and [8]. However, 
there has been a recent  rising interest  in the genetic  algorithms community to work with dynamic  
environments. One of the methods a genetic algorithm deals with such environments is using diploidy 
which  may be  termed  as  implicit  memory [9].  When diploidy is  used,  some type  of  genotype  to 
phenotype mapping is necessary.

2.1 The Diploid Algorithm

In the implementation of diploidy in this study, each individual is represented, as seen in Fig. 1, by two  
chromosome arrays which make up the genotype of the organism, an array to represent the phenotype  
of  the organism, a  fitness  value  and an age  indicator  which shows for  how many generations the 
individual has survived.
 

Fig. 1. The Individual.

The algorithm uses the basic concepts employed by the simple genetic algorithm explained in [3] and  
introduces some new operators and a new genotype to phenotype mapping scheme as given in the 
following sections. The pseudocode of the diploid algorithm is given in Fig. 2. More detail about the 
implementation of each step can be found in [10].

Fig. 2. The diploid GA.

2.2 Phenotype to Genotype Mapping and Domination

The phenotype of the individual is used in calculating its fitness. Since the individual is diploid, its  
genotype  and phenotype are different.  Thus a mechanism is needed to map the genotype  onto the 
phenotype. This mechanism, called domination, is a very important part of diploid genetic algorithms. 
There has been some research done in this area. These are summarized in [3].. 

In this study, the approach used involves a statistical scan of each generation. When determining the 
phenotype,  the genotype  elements  corresponding to that  location may either  be equal  or  different.  
Using c1i and c2i to represent the i-th location on chromosome 1 and chromosome 2 respectively and p i 

to represent the corresponding i-th location on the phenotype,
if c1i=0 and c2i=0 then pi=0

begin
initialize; 
do 
  select mating pool; 
  form gametes;
  mate;
  mutate;
  for each dead parent
  begin
    form new random individual;
  end;
  select next generation:
  calculate domination array;
until stopping_criteria;



if c1i=1 and c2i=1 then pi=1

In the above cases where the two alleles for the genes on homologue chromosomes are the same, the 
corresponding phenotype equals that allele but in the case where they are different, i.e. where (c 1i=0 
and c2i=1)  or  (c1i=1 and c2i=0),  a  method to determine the  phenotypic  value  is  needed.  In  natural 
organisms, the allele to be seen in the phenotype is the dominant one, so an artificial mechanism to 
simulate  this  in  artificial  systems must  be  designed.  There  are  several  approaches  to  genotype  to  
phenotype mapping in literature and they are summarized in [3]. 

In this implementation, a variable, global domination array composed of real numbers in [0.0,1.0] is  
used. The length of the array is the same as the chromosome length with each value showing the 
dominance  factor  of  the  allele  1  over  the  allele  0  corresponding  to  the  same  location  on  the 
chromosomes. For example, if the alleles on the two chromosomes are different for the i-th location 
and if the i-th entry in the domination array is domi=0.8, the phenotypic value for that location will be 1 
with probability 0.8 and 0 with probability 0.2.

The domination array is evaluated at the end of each generation, so in a way it follows the evolution of  
the individuals. It is calculated using Equation 1.

where pij is the phenotypic value of the j-th individual at the i-th location, f j is the fitness value of the j-
th individual,  length is the chromosome length and  size is the population size (the total number of 
individuals in the population). The domi value will be higher if individuals with the allele 1 in the i-th 
location have higher fitnesses compared to those that have allele 0. Since the domination array is one of 
the driving forces of the population, it is expected that the values corresponding to locations on the 
phenotype that should be 1 in the optimal solution, should approach 1.0 and 0.0 for the case where the 
optimal value should be 0. But in the case of a dynamic fitness function, the domination value for each  
gene location should also follow the change in the optimal solution.

3 Test Functions and Results

The diploid algorithm has been tested in a previous study by the same authors [10] against the simple  
algorithm which uses a haploid representation. Two test functions were used in the comparisons. The 
first function was the one-max problem which is considered easy even for the simple genetic algorithm. 
The second function was of the type where the optimum oscillated between two peaks. This second 
function is a type of a dynamic environment where the fitness function changes and it is considered 
hard for the simple genetic algorithm. The results obtained in that  study showed that the proposed 
diploid algorithm performed as well as the simple genetic algorithm in the first test case and better in 
the second test case.

In this study, to determine the effects of the new domination mechanism, a comparison between two 
genotype to phenotype mapping approaches and the proposed approach is made. 

The test function used for the comparisons is the second one used in the previous study [10]. The  
chromosomes are made up of 32 genes. The fitness function oscillates every 30 generations between 
trying to maximize the decimal value represented by the chromosome and trying to minimize it. A 32-
bit chromosome string is taken as a binary number and its decimal equivalent is calculated. When 
trying  to  maximize  this  value,  the decimal  number  itself  becomes  the  fitness  and when  trying  to 
minimize it, the decimal value is subtracted from the largest decimal number that can be represented by 
32 bits and this becomes the fitness value of the individual.

In order to determine the effect  of the proposed domination mechanism, all steps of the algorithm,  
except for the genotype to phenotype mapping phase is kept the same in all test cases. Three different  
domination approaches are integrated into the diploid algorithm at each testing case and the results are  
compared based on each of the three implementations' online and offline performances [3]. 
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3.1 Test Cases

In the following sections, the results of these comparisons will be given. In each test case, the programs 
are run 100 times and the average of the results are given over 100 runs. The programs are run each 
time with the same set of parameters but with different initial populations. The parameters chosen for 
the programs are given in Table 1.

Table 1. Parameters used in all test cases.

Parameters Value
Number of Generations 1000
Population Size 250
Cross-Over Probability 0.9
Mutation Probability 0.009
Aging and Dying Factor (k) 0.04

3.1.1 Test Case 1: Fixed, Global Dominance Map
In this test case, genotype to phenotype mapping is done via a fixed, global dominance map. Here the  
1s in the genotype  dominate over the 0s for all  loci,  and thus in the case where  the individual is  
heterozygous for a locus, the allele 1 is always expressed in the phenotype. This dominance map is kept 
constant throughout all generations.

3.1.2 Test Case 2: Hollstien-Holland Triallelic Dominance Map
In this test case, genotype to phenotype mapping is done via Hollstien-Holland triallelic dominance 
map. This triallelic scheme covers both dominance map and allele information at a single location. 
Each gene may take on one of three alleles: a 2 means a dominant 1, a 1 means a recessive 1 and a 0  
means  a  0.  In  this  light,  the  single  locus,  triallelic  dominance  map  seen  in  Table  2  is  used  in  
determining an individual's phenotype.

Table 2. Single locus, triallelic dominance map.

0 1 2
0 0 0 1
1 0 1 1
2 1 1 1

3.1.3 Test Case 3: Proposed Dominance Mechanism
In this test case, genotype to phenotype mapping is done via the mechanism explained in the previous 
sections. A global dominance mapping array, which varies along with the population, is used.

3.2 Test Results

In the following sections online and offline performances of each test case are given. In each plotting 
the x-axis represents the number of generations ranging from 0 to 1000 generations and the y-axis 
represents the fitness value.

3.2.1 Offline Performance
The offline performance of an algorithm as defined by DeJong and explained in Goldberg's book [3], is 
designed to measure convergence. In an offline application, a simulation of the system may be used 
and the algorithm may be run on the simulation to achieve the best results and then these best results  
can be applied to the real system. 

The offline performances of the three approaches are given in Fig. 3. In the figure, the better plot line 
belongs  to  the  proposed  dominance  mechanism.  The  second  better  line  belongs  to  the  triallelic  
dominance map approach and the worst one to the fixed dominance map method. 



Fig. 3. Offline performances.

3.2.2 Online Performance
The online performance of an algorithm as defined by DeJong and explained in Goldberg's book [3], is 
designed to measure ongoing performance of the algorithm. In an online application, the results of 
function  evaluations  are  the  results  of  actual  experimentation  on  the  real  system,  so  in  such 
applications, the time it takes to reach an acceptable solution becomes more important then getting the 
best solution. 

The online performances of the three approaches are given in Fig. 4. In the figure, the better plot line 
belongs to the proposed approach.  The online performances  for  the fixed dominance map and the 
triallelic dominance method are almost the same.

Fig. 4. Online performances.

3.2.3 Recovery After Change

In the test problem used, the fitness function changes every 30 generations. The time it takes for the  
algorithm to recover and find the new maximum after a change is an important factor for determining 
how well it performs. The maximums found in each generation for the fixed dominance map method,  
triallelic dominance scheme and the proposed dominance map approach are given in Fig. 5, Fig. 6 and 
Fig. 7 respectively.

It can be seen from the figures that after a change, the program using the proposed dominance map 
approach recovers and finds the new maximum in fewer steps than the others.



Fig. 5. Maximums for fixed dominance map.

Fig. 6. Maximums for triallelic dominance.

Fig. 7. Maximums for the proposed dominance map.

3.2.4 Comments
The results given in the previous sections are to be expected. In the proposed approach, the dominance 
map for each location evolves along with the population of individuals, thus it follows the change in 
the environment. If the maximums obtained at each generation are also observed, it is noted that the 
program using the proposed approach recovers and finds the new maximum much faster than the other 
two approaches  right  after  a  change in the fitness function occurs.  Since in  dynamic  optimization 
problems the fitness function changes in time, a method that also follows this change and adapts to it 
quickly improves the performance of the genetic algorithm used making it more suitable for this class 
of problems.



4 Conclusion and Future Work

There  is  however  still  work  to  be  done.  The results  obtained  in  this  study  and  in  the previously 
mentioned study by the same authors [10], first show that the proposed diploid algorithm performs 
better than the simple haploid one and second shows that the proposed dominance mechanism works 
better  for  the  implemented  diploid  algorithm.  However  in  order  to  determine  the  effects  of  each 
mechanism in the proposed diploid algorithm, several other test runs have to be performed to examine 
and test these separately. 
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