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Abstract

Clustering methods provide users with methods to sum-
marize and organize the huge amount of data in order to
help them find what they are looking for. However, one
of the drawbacks of clustering algorithms is that the re-
sult may vary greatly when using different clustering cri-
teria. In this paper, we present a new clustering algorithm
based on graph partitioning approach that only considers
the pairwise similarities. The algorithm makes no assump-
tions about the size or the number of clusters. Besides this,
the algorithm can make use of multiple clustering criteria
functions. We will present experimental results on a syn-
thetic data set and a real world web log data. Our experi-
ments indicate that our clustering algorithm can efficiently
cluster data items without any constraints on the number of
clusters.

1. Introduction

The problem of clustering unlabelled data objects into
groups of similar objects is one of the important unsuper-
vised problems in data mining and has been very well stud-
ied [11, 16]. Different clustering techniques in data mining
are described and a comprehensive review of them is pro-
vided in two recent surveys [2, 15]. The clustering prob-
lem appears in two different forms according to the repre-
sentation of data. Most of the clustering algorithms focus
on clustering data items in metric spaces. However, in a
large number of applications where the data items are in
sequential form, the only information available is a similar-
ity/dissimilarity measure between every pair of data items.
This kind of data occurs in many application domains, such
as biostatistics, medicine, telecommunications, user inter-
face studies, market basket data, and World Wide Web
(WWW) page request monitoring. Understanding the struc-
ture of such data still remains a challenge. For this reason,

sequence clustering has become increasingly important. A
representation of sequence data is a weighted, undirected
graph where each sequence in the data set becomes a vertex
in the graph. The pairwise similarities of sequences form
the edges of the graph. The sequence clustering problem
can be mapped then to graph partitioning 1 problem.

In this paper, we present a new approach for partition-
ing a weighted undirected graph. Graph partitioning is an
NP hard problem [1], because of the combinatoric nature
of the problem. For this reason, evolutionary algorithms
(EA) are good solutions approach to optimize graph par-
titioning problems. To optimize artificial systems, EAs
[10, 18] model the evolutionary process and the principles
of Mendelian genetics found in nature. They are considered
to be among the most powerful heuristic search and opti-
mization methods and are commonly used to attack NP-
hard problems. In this paper our objective is to develop a
clustering algorithm with the following properties:

1. The input data set consists of pairwise similari-
ties/dissimilarities of data items in order to be able to
cluster sequential data.

2. We make no assumptions about the number of clusters.
The algorithm will determine this value based on the
data.

3. The algorithm can use multiple criteria functions
which will result in robust clustering solutions.

As far as we know, existing clustering algorithms that
respect those three properties are hard to find. Despite the
extensive literature on clustering data items in metric space,
there are fewer pairwise clustering algorithms [3, 20]. How-
ever, those algorithms do not automatically determine the
number of clusters. Therefore, we concentrate in this study
on a graph clustering method based on a multiobjective evo-
lutionary algorithm that effectively identifies clusters. Our

1In this paper we will use “graph partitioning” and “graph clustering”
interchangeably.
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algorithm uses two objectives based on the graph connect-
edness and a cluster validity index for graph partitioning.
This approach to graph partitioning is novel and unique.
We experimentally evaluated our method by using both a
synthetic data set and a real world data set obtained from
WWW page requests of a Web site. These graphs are
highly irregular or random, and vertex degrees vary dra-
matically. The preliminary experimental results show that
our method is successful in determining the number of clus-
ters and improve the quality of clusters. Equally important,
these results are robust across graphs with different struc-
tures. However this is a work in progress and there seem
to be quite a few improvements to be made to the approach
to even obtain better results in a shorter time. The current
promising results promote further study.

The rest of the paper is organized as follows. In Section
2, we examine related work. Section 3 briefly describes
graph based clustering. Section 4 presents our proposed
method for graph partitioning. Section 5 provides experi-
mental results. Finally, in Section 6 we conclude and dis-
cuss future work.

2. Related Work

An important form of data considered in data mining is
sequential data. This kind of data occurs in many appli-
cations domains, such as biostatistics, medicine, telecom-
munication, user interface studies, market basket data, and
World Wide Web page request monitoring. However, most
research on clustering algorithms focus on non-sequential
domain. All these algorithms assume that the data set is in
metric space. However, the structure of sequences makes it
difficult to use metric space. Each sequence is composed of
non-numerical symbols, and the length of a sequence can
run up to a thousand or even beyond. Many sequence clus-
tering algorithms precompute all pairwise sequence similar-
ities. In this case, the sequence data can be represented by
an undirected graph G whose vertices are sequences in the
data set. An edge connecting two vertices in the graph has a
weight equal to the similarity between these two sequences.
Properties of a graph can then be used to cluster sequences
by constructing a set of subgraphs from G. Thus, sequence
clustering problem becomes graph partitioning problem.

Most sequence clustering algorithms refine clustering re-
cursively. However, one of the most challenging problems
in sequence clustering methods that use graph partitioning
approaches is to put a single cutoff score that separates all
sequence clusters. At any given point a set of sequence
clusters or subgraphs such as {G1, G2, ..} are given. The
problem in such methods is, should a cluster, for example,
say, G2 be split further or not. Different cutoff values may
result in different clustering solutions. Many clustering al-
gorithms use graph properties to handle this problem. The

clustering algorithms in [14, 17] are based on a purely graph
theoretic approach. However, there remains another impor-
tant issue. In the simplest MIN cut algorithm, a connected
graph is partitioned into two subgraphs with the cut size
minimized. This leads to a skewed cut, where a subgraph
could be very small compared to the other subgraphs. Vari-
ous constraints are introduced, such as ratio cut [4], normal-
ized cut [21], and min-max cut [9], etc. to remedy this prob-
lem. A commonly used graph clustering program is Cluto
[5], where the program requires the number of clusters as
input.

Evolutionary algorithms for clustering has been studied
in literature. In [12] a steady-state genetic algorithm for
clustering data items in metric space is given which is sim-
ilar to k-means clustering algorithm. In [8] we proposed a
new sequence clustering algorithm based on a hybrid evo-
lutionary algorithm. However, both of these algorithms are
unable to automatically determine the number of clusters,
which is a major problem for clustering algorithms. A typi-
cal example for a evolutionary clustering algorithm is [13],
which is based on k-means algorithm. This algorithm uses
multiobjective optimization and determines the number of
clusters. However, it expects data to be mapped into a ge-
ometric space and uses the metric distance between data
points. For this reason, it is not appropriate for data sets
where the data items are in sequential form. The crucial
difference between our algorithm and these previous al-
gorithms is that our algorithm clusters the sequential data
using multiobjective optimization and does not require the
number of parameters as an input. Consequently, as the ex-
periments demonstrate, it is robust across graphs with dif-
ferent structures.

3. Graph Clustering Problem

Formally, graph partitioning problem is defined as fol-
lows: Given a graph G = (V,E) where V is a set of ver-
tices and E is a set of edges, partition the graph G into k
disjoint subgraphs, such that the clustering criteria function
is optimized. An edge connecting two vertices in the graph
has a weight equal to the similarity between these vertices.
We often identify a cluster Ci with the induced subgraph
Gi.

4. The Evolutionary Graph Clustering Algo-
rithm

For addressing the graph clustering problem with an evo-
lutionary algorithm (EA), we used a standard steady-state
EA with duplicate elimination and added a heuristic oper-
ator to exploit problem specific information and increase
performance. The basic flow of the EA used is given in
Algorithm 1.
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Algorithm 1 Flow of the steady-state EA
1: randomly initialize population
2: while max no of fitness evaluations not reached do
3: select parents
4: create child through cross-over
5: mutate child
6: if child is not duplicate then
7: apply heuristic disband to child
8: child replaces worst in population
9: else

10: discard child
11: end if
12: end while

In a steady-state EA, for each iteration of the algorithm,
a new child is created through cross-over and mutation from
two parents. In our approach, the child is further corrected
using a heuristic operator. If the resulting child is the same
as another individual which is currently in the population,
the child is discarded. If a child is not a duplicate, its fitness
is calculated. If the fitness of the child individual is better
than or equal to the fitness of the worst individual in the
current population, the child replaces the worst individual.

The main components of any EA are the method cho-
sen to represent solution candidates, selection, cross-over
and mutation techniques and the fitness evaluation method.
These and the new heuristic operator will be explained in
detail in the following subsections.

4.1. Representation of Solutions

The way solution candidates, which correspond to indi-
viduals in an EA, are represented is very critical to the per-
formance of an EA. For the graph clustering problem, the
most obvious choice is to have each gene represent a vertex
and the value of the gene denote the cluster number the ver-
tex is placed in. A sample individual for a clustering of 7
vertices into 3 clusters, can be seen below:

Individual 1: 1 2 2 1 3 1 3

This individual means that vertices (1,4,6) are in clus-
ter 1, vertices (2,3) are in cluster 2 and vertices (5,7) are in
cluster 3. Even though this representation is very straight-
forward, it has a limitation. For the graph clustering prob-
lem, a solution shows which vertices are clustered together
and the actual cluster number is not relevant. Based on the
selected representation method, the following sample indi-
vidual represents a different solution candidate.

Individual 2: 2 3 3 2 1 2 1

However, for the graph clustering problem, this individual
represents the same clustering solution as individual 1. This

issue leads to two major problems which we address in this
paper:

1. The search space increases artificially. As far as the
EA is concerned, the search space size for this repre-
sentation is cn, where n is the number of vertices and c
is the number of clusters. However, the number of dif-
ferent clustering solutions is less than the search space
size determined by the representation.

2. The main purpose of cross-over should be to combine
parts of the clustering solution in each parent to form
a new child individual which is partially similar to its
parents and is also different from them. Standard uni-
form cross-over becomes meaningless since the cluster
numbers may have different meanings in the different
parents and no meaningful information can be passed
on from the parents to the child when they are com-
bined.

For the solution of the first problem, we added a post-
processing step to creating new individuals through initial-
ization and also through cross-over and mutation. During
this step, the individual is processed from left to right and
the clusters are re-numbered in increasing order, starting
from 1. As a result of this step, both sample individuals
given above are converted to the same individual as given.

Individual 1&2: 1 2 2 1 3 1 3

However, this does not solve the second problem. A new
cross-over operator is still needed. This issue will be ex-
plored in detail in the next subsection.

4.2. The Cross-Over Operator

A new heuristic uniform cross-over operator that aims at
preserving clustering information from the parents is pro-
posed. Assume that two sample parents are given as below.

Parent 1: 1 2 2 1 3 1 3 Parent 2: 1 1 2 3 2 4
cluster 1: vertices (1, 4, 6) cluster 1: vertices (1, 2)
cluster 2: vertices (2, 3) cluster 2: vertices ( 3, 5)
cluster 3: vertices (5, 7) cluster 3: vertices (4)

cluster 4: vertices (7)

The steps of the heuristic uniform cross-over are given
in Table 1.

At each step, one of the uncovered vertices and one of
the parents is selected randomly. The uncovered vertices in
the cluster which contains the selected vertex in the selected
parent are grouped into one cluster and the newly covered
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Table 1. Steps of heuristic uniform cross-over

step chosen chosen formed covered
vertex parent clusters vertices

1 4 2 (4) 4
2 1 1 (4)(1,6) 1,4,6
3 7 1 (4)(1,6)(5,7) 1,4,5,6,7
4 3 1 (4)(1,6)(5,7)(2,3) 1,2,3,4,5,6,7

vertices are marked as covered. This continues until all ver-
tices are covered. As can be seen, as a result of this process,
the number of clusters in the child may be equal to or dif-
ferent from both of the parents. However, it still contains
partial clustering information from its parents.

4.3. The Mutation Operator

A standard mutation operator is used. With a given mu-
tation probability, the value of each gene is reset to a new
value within the allowed interval. In the graph clustering
problem, this corresponds to removing a vertex from the
cluster it is currently in and placing it into another randomly
selected cluster. As a result of mutation, some clusters may
become empty. In this case, a post-processing step is ap-
plied to adjust the new clustering solution.

4.4. Heuristic Disband Operator

The cross-over operator tends to increase the number of
clusters. To improve performance the heuristic disband op-
erator is applied to the child. The vertices belonging to the
cluster with the minimum intra cluster similarity are placed
in the closest cluster. The closest cluster is defined here as
the cluster with the maximum average similarity to the ver-
tex.

4.5. Parent Selection

For each iteration of the EA, two parents are selected for
reproduction. In this study we used a standard tournament
selection method.

4.6. Fitness Evaluation

In this paper, the clustering criteria function is opti-
mized by minimizing the min-max cut function [9] and
maximizing the silhouette index [19]. Min-max cut func-
tion (MMC) combines both the maximization of similarity
within each subgraph and minimization of similarity among

subgraphs, and is defined as:

MMC =
k∑

m=1

cut(Gm, G \ Gm)∑
vi,vj∈Gm E(vi, vj)

(1)

where cut(Gm, G\Gm) is the sum of edges connecting the
vertices in Gm to the rest of the vertices in graph G \ Gm

and E(vi, vj) is the weight of the edge connecting vertices
vi and vj . The min-max cut function tends to minimize the
number of clusters. In order to determine the proper number
of clusters adaptively, we use Silhouette index as a second
objective. For a given cluster, Cj , j = 1, ..., k the silhouette
technique assigns i-th member (vi, i = 1, ..., nj) of cluster
Cj a quality measure (silhouette index)[19]:

s(vi) =
bi − ai

max{ai, bi} (2)

where nj is the number of vertices in cluster Cj , ai is the
average dissimilarity between the vertex vi and the rest of
vertices in cluster Cj , bi is the minimum dissimilarity be-
tween vertex vi and cluster Cm for m = 1, ..., k, m �= j.
In this paper the dissimilarity between two vertices vi and
vj is computed as 1−E(vi, vj). The global silhouette value
GS is calculated as:

Sj =
∑nj

i=1 s(vi)
nj

, GS =

∑k
j=1 Sj

k
(3)

where Sj is the silhouette index of a cluster Cj . The sil-
houette index takes values between -1 and 1. It is close to
1 when the partition is good and thus the number of parti-
tions (k) is appropriate and close to -1 if not. We combine
the two objectives, MMC and GS, by using a weighted
sum approach. For simplicity, we take both objectives as
maximization and use the fitness function as:

fitness = w1 ∗ 1/(1 + MMC) + w2 ∗ GS (4)

Both objectives balance each other out to find an optimal
partition.

5. Experimental Results

There are two aspects to the experimental evaluation of
the method proposed in this paper. We begin with a study
on synthetic data aimed at evaluation the ability of finding
clusters of good quality. The second part of the study fo-
cusses on real world data obtained from user accesses on a
Web site and assesses whether the proposed technique can
be embedded in a sequence space that reveals cluster struc-
ture.

For all experiments, the following parameter set, deter-
mined empirically, is used for the steady state EA: popu-
lation size is 50, probability of cross-over is 1, tournament
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selection size is 2, chromosome length is equal to the num-
ber of vertices, the probability of mutation is 1/chromo-
some length, the probability of heuristic disband is 1 and
the weights of the fitness function w1 = 1 and w2 = 2.

For the synthetic data set, the quality of clustering so-
lution is measured by using two metrics that look at class
labels of data items assigned to each cluster [22]. The first
metric, entropy, measures how the various classes of data
items are distributed within each cluster. A low entropy
value means, that the data items are clustered effectively.
High entropy value, on the other hand, indicates wide di-
vergence in class labels among data items in a cluster. The
second metric, purity, measures the extent to which each
cluster contains data items from primarily one class [22].
A high purity value means that the data items in one cluster
have mostly one of the class labels. In general, larger values
of purity means that the clustering solution is better.

5.1. Synthetic Data

We implemented a graph generator to construct a con-
nected, undirected graph with a given number of vertices
and partitions. We have apriori knowledge about the class
labels of each vertex which enables us to use entropy and
purity metrics to evaluate our clustering approach. For our
experiments, we generated two graphs with 1000(G1) and
4000(G2) vertices for a clustering of 10. The results of
those graphs are given in table 2. The results are given for
10 runs of the algorithm and the maximum number of fit-
ness evaluations is set to 10000. The success rate shows the
percentage of times the global optimum was found. Avg.
evals and Std. dev. are the average and the standard de-
viation values for the number of fitness evaluations needed
to find the global optimum. Finding the global optimum
means that the correct number of clusters are identified and
the vertices are correctly clustered. Based on the defini-
tion for entropy and purity, these values are only given for
the runs during which the optimal number of clusters was
found. As can be seen from the table, in most runs the
global optimum was found through few fitness evaluations.
Besides, the algorithm is scalable across graphs with differ-
ent number of vertices.

Table 2. Results for the clustering solution of
the synthetic data sets

Success Avg. Std. Avg. Avg.
Rate evals. dev. ent. pur.

G1 0.9 2435 828 0 1
G2 0.8 2185.1 737.03 0 1

Table 3. Results for the clustering solution of
the real data set

Avg. Stdev

GS 0.11 0.03
MMC 0.54 0.33
Fitness 1.18 0.047
Evals. 49906 89

5.2. Real World Data

For real world application, we used a data set obtained
from Web server access logs of a Web site. The information
provided by the Web server can all be used to construct a
data model consisting of several user sessions. Since user
sessions are ordered URL requests, we can refer to them as
sequences of Web pages. The behavior of Web users can be
modelled using sequences. The data set is cleaned in order
to obtain user sessions where each user session is defined as
the sequence of page views for a single visit of a user to a
Web site. The cleaning step is beyond the scope of this pa-
per and the details of this step are given in [7]. The pairwise
similarities of user sessions are calculated according to the
similarity metric proposed in [6, 7]. A graph is constructed
whose vertices are user sessions. There is an edge between
two vertices if the similarity value between those vertices
computed as described in [7] is greater than 0 and this edge
is weighted by this similarity value.

The results of this data set is given in Table 3 for 5 runs
of the algorithm. The maximum number of fitness evalua-
tions is set to 50000. In 4 of the runs, the algorithm found
5 clusters for the data set and in the remaining run the num-
ber of clusters was determined as 4. The Cluto program [5]
was run for the data set for 5 clusters in order to compare
the clustering solution. The following results are obtained:
GS = 0.02, MMC = 0.29 and Fitness = 0.33. The
GS for the solutions found by our algorithm is much bet-
ter than that of Cluto and the MMC values are close. These
results show that our algorithm clusters the data set more ef-
fectively. Increasing the maximum number of fitness evalu-
ations may improve our results further.

As can be seen from the results, our method is very effec-
tive for finding the proper clustering solution. One powerful
advantage of our evolutionary graph clustering approach is
that our method is able to find the correct number of clus-
ters. Thus, it is very appropriate for the data sets where the
structure of the data is unknown and it is very difficult to
provide the number of clusters as an input parameter.
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6. Conclusion and Future Work

We have considered the problem of clustering sequential
data by using a graph model. We introduce a novel graph-
based evolutionary sequence clustering algorithm that uses
multiple criteria for the evaluation. This leads to robust
clustering solutions with respect to the structure of data.
This method can effectively determine the number of clus-
ters. We have also presented experimental results both on
graphs generated synthetically with different structures and
a real world data set.

We are now extending the model in several ways. We
will experiment with different representations and genetic
operators existing in literature. This may lead to further im-
provements in our algorithm. We are planning to test the
scalability of the algorithm and the effects of the different
genetic algorithm parameters in more detail. This cluster-
ing algorithm can be applied in many sequence clustering
domains; for example we are planning to use it for recom-
mendation models in web usage mining. This is a work in
progress and the promising preliminary results promote fur-
ther study.
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[7] Ş. Gündüz and M. T. Özsu. A web page prediction model
based on click-stream tree representation of user behavior.
In Proc. of 9. ACM Int. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 535–540, 2003.
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