
Towards an Analysis of Dynamic Environments

Jürgen Branke
Institute AIFB

University of Karlsruhe
76128 Karlsruhe, Germany

branke@aifb.uni-
karlsruhe.de

Erdem Salihoğlu
Istanbul Technical University

Informatics Institute
Maslak 34469 Istanbul, Turkey

salihoglu@be.itu.edu.tr

Şima Uyar
Istanbul Technical University

Computer Engineering
Department

Maslak 34469 Istanbul, Turkey

etaner@cs.itu.edu.tr

ABSTRACT
Although the interest in nature-inspired optimization of dynamic
problems has been growing constantly over the past decade, very
little has been done to analyze and characterize a changing fitness
landscape. However, it would be very helpful for algorithm de-
velopment to have a better understanding of the nature of fitness
changes in dynamic real-world problems. In this paper, we propose
a number of measures that can be used to analyze and characterize
the dynamism in a problem changing over time. Additionally, we
introduce a new dynamic multi-dimensional knapsack problem as
a close-to-real-world test problem.

Categories and Subject Descriptors: I.2.8 Heuristic Algorithms

General Terms: Algorithms.

Keywords: evolutionary algorithm, dynamic environment, charac-
terizing dynamism

1. INTRODUCTION
Many real-world optimization problems are changing over time,

requiring repeated re-optimization, and a continuous tracking of the
changing optimum. Examples include scheduling, where new jobs
arrive over time, or vehicle routing, with new requests arriving over
time. Evolutionary algorithms (EAs) have shown some promise
for this domain, and the number of publications in the field rose
steadily over the past decade. For an overview on EA approaches
to dynamic environments see e.g. [7, 8, 32].

Although many of the approaches have shown to work well, most
of them have been applied to simple artificial benchmark problems
only, and little has been done to characterize and understand the
nature of a change in real-world problems.

When trying to characterize static problems, an important con-
cept is that of a fitness landscape. A fitness landscape is an intuitive
model of what situations a search algorithm might encounter, and
depends not only on the problem or fitness function, but also on the
definition of a neighborhood structure on the search space, which,
in turn, depends on the representation and search operators, i.e.,
the algorithm. The fitness landscape model allows to use intuitive
descriptions like local optima, peaks and valleys, or ruggedness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

The aim of this paper is to take the idea of a fitness landscape one
step further, and to analyze changes of the fitness landscape due to
changes of the underlying problem instance. For that purpose, we
propose a number of measures that may be helpful to understand
what aspects of the fitness landscape change, and most importantly,
what information can be carried over from one stage of the problem
to the next. The latter is particularly important when designing
algorithms for dynamic optimization problems, because it is the
information that carries over from one stage to the next that can be
exploited and that may result in algorithms which perform better
than simple restart whenever the problem changes.

The paper is structured as follows. Some related work is re-
viewed in Section 2. The proposed measures to characterize change
are defined in Section 3. In Section 4, we define the dynamic bench-
mark problem used in this study. Experimental results are reported
in Section 5. The paper concludes with a summary and ideas for
future work.

2. RELATED WORK
Fitness landscapes of static problems have been examined e.g. in

[18, 23, 28]. An alternative attempt to characterize a search space
is the concept of epistasis, see e.g. [10].

There have been previous attempts to classify and categorize
dynamic environments, without necessarily attempting to actually
measure the characteristics. Branke [5, 7] uses the following main
criteria to characterize changing environments:

• Frequency of change: How often does the environment change.
For optimization purposes, that usually means how many fit-
ness evaluations can be performed between changes.

• Severity of change: This is usually characterized by the dis-
tance from the old to the new optimum.

• Predictability of change: Are the changes purely random or
do they follow a pattern that could be learned.

• Cycle length / cycle accuracy: This defines, for cycling envi-
ronments, how long it takes until the environment returns to
a previous state, and how accurately it will return to it.

De Jong [15] proposes a different classification of problems:

• Alternating problems

• Problems with changing morphology, i.e., the fitness land-
scape changes according to certain topological rules

• Drifting landscapes, and

• Abrupt and discontinuous problems.

1433



Weicker [32] aims at establishing a mapping between different
types of dynamic optimization problems, techniques and perfor-
mance measures. To achieve this, he proposes a mathematical frame-
work for classifying and comparing dynamic problems. Within
the framework, the dynamics of a problem are formally defined
through defining different changes (rotations, fitness rescalings and
coordinate transformations) for components of a decomposable fit-
ness function. However, as the author notes himself, the defined
properties like severity, predictability and homogeneity can only be
determined for a specific domain of artificial benchmark problems.

While the above mentioned criteria have been used as inspiration
for designing artificial benchmark problems, to our knowledge, no
one has ever attempted to characterize and measure the dynamism
of the fitness landscape of a given dynamic real-world problem.

Many authors have proposed simple artificial benchmark prob-
lems that allow to exactly determine the problem dynamics. Exam-
ples include the dynamic bit-matching problem [29], the moving
sphere [1], or a multi-peak environment where peak-heights change
over time [30]. One of the most prominent artificial benchmark
problems is the moving peaks problem that has been proposed con-
currently and independently in [6, 20]. It consists of a set of peaks
changing over time in location, height, and width. Richter [24] has
recently modified this benchmark, allowing to influence the degree
of chaos in the changes as measured by the Lyapunov exponent.
Although these artificial benchmark problems are quite popular, it
is not clear how closely their dynamics resemble the dynamics of
real-world problems.

One of the few real-world dynamic benchmark problems are job
shop scheduling (e.g., [4]) and a greenhouse simulator [31]. The
latter, however, proved to be not very challenging to evolutionary
algorithms as it features extremely simple search landscapes.

In this paper, we are using a dynamic multi-dimensional knap-
sack problem where profits, weights and capacities may change
over time (see Section 4).

There are also a number of theoretical investigations on how
the path of evolution is influenced by moving or oscillating fitness
landscapes [2, 17, 25, 26, 27, 33].

3. CHARACTERIZING CHANGE
In this section, we propose a number of measures to characterize

the nature of a changing landscape, and discuss their advantages
and disadvantages. Most of these measures are based on a large
number of samples taken from the search space, which are evalu-
ated after every change. To improve the estimates, we choose the
samples by stratified sampling. Some measures also require the
knowledge of the location of the global optimum, and are thus only
applicable if this can be determined.

If the measure involves a distance between solutions, this de-
pends on the underlying representation and search operators. In
the experiments in Section 5, we look at real-valued and binary
encodings, and use Euclidean distance and Hamming distance, re-
spectively. Where local hill-climbing (LHC) is required, we use
steepest descent hill climbing with bit flip neighborhood for binary
representation and fixed step size of 1/5 the range of the search
space in one variable in the real-valued domain.

Change severity: The distance between the optimum before the
change and the optimum after the change has been deemed impor-
tant in virtually all previous categorizations (cf. Section 2) and is
usually termed “change severity”. We agree that this is an impor-
tant measure and list it here for completeness. Furthermore, for
reasons of comparison, we normalize the change severity by divid-
ing the distance by the maximal distance between any two points of
the search space. Note that it is possible that there is more than one

optimal solution, in which case we simply pick one for each envi-
ronment to calculate the change severity1. If the change severity is
low, it means that it is likely that the new optimum is somewhere
close to the old optimum, and approaches like hypermutation [9],
which keep the population and just add some diversity to revive ex-
ploration seem promising. On the other hand, if the change severity
is large, such approaches are bound to fail.

Estimated change severity: For most real-world problems, it
will not be possible to determine the optimum, and thus the change
severity can not be determined. Therefore, it would be nice to have
an estimator for the change severity that works without knowing
the optimum. Here, we test the idea to estimate the change severity
by looking at the distance between the best sample before and after
the change.

Fitness correlation: This measure looks at the correlation coef-
ficient of the fitnesses of all samples before and after a change. If
the correlation is high, previous good solutions will remain to be
good also in the new environment, and strategies with a memory
of good solutions may be helpful. We calculate correlation coeffi-
cients over fitness values and ranks.

LHC fitness correlation: The samples we use are basically ran-
dom points in the search space. However, usually we assume that
the least our algorithm can do quickly is local hill-climbing. There-
fore we propose here to measure the correlation of fitness after LHC
before and after the change. That is, we look at local optima only
(after LHC), and ask whether a similar fitness level can be reached
again after a change by LHC. If the correlation is high, this indi-
cates that simple local hill-climbing after a change may be suffi-
cient to obtain new good quality solutions.

Fitness change correlation of similar points: Here we would
like to know whether similar (in terms of distance in search space)
points experience a similar fitness change. If the correlation is high,
it means that whole areas in the search space change coherently,
i.e., the structure of the landscape doesn’t change too much. We
measure the correlation with distance d in the following way: for
each of n random points, we pick a random point with distance
d, and observe the correlation of fitness changes between these n
pairs.

Estimated value of last-stage local optima: Instead of starting
from scratch after a change of the environment, many approaches
attempt to re-use information from the environment’s previous stage,
e.g., by keeping the old population. With this measure, we want to
determine the benefit of keeping information about good solutions
from the previous stage. To this end, we would like to compare
the fitness that can be obtained by LHC from one of the previous
stage’s best k local optima to the fitness that is obtained when start-
ing from a random sample. Unfortunately, this measure requires to
know the best k local optima, which is generally impossible to com-
pute for any practical problem. Therefore, we report in this paper
only on the estimated value of last-stage local optima. In this case,
we compare the fitness obtained by performing LHC from one of
the previous stage’s best samples to the fitness obtained by LHC
from a random sample.

Value of past optima: Instead of only using information from
the environment’s last stage, one may also look back for several
stages. Consequently, several EA approaches to dynamic optimiza-
tion problems introduce a memory of optima found in previous
stages of the environment, hoping that these might help to discover
the new optimum after a change. This is of course particularly
promising in cyclic environments, where the optimum returns to

1We use a multi-dimensional knapsack problem with real-valued
weights and profits in Section 5, for which the existence of several
global optima is rather unlikely.

1434



previous locations, or close to previous locations. For the proposed
measure, we keep the optima of the m previous stages and check
how much the solution found by LHC from a previous optimum im-
proves compared to starting LHC from a random solution. Again,
if there are more than one global optimum, we store a random one
in the memory, assuming that an EA would also focus on a single
optimum.

Estimated value of past optima: If the true optimum of a prob-
lem is unknown, as in most practical applications, we would like
to have a measure that also works without knowing the optimum.
Here, we replace the optimum in our previous measure by the point
obtained from LHC on the best sample.

4. THE DYNAMIC MULTI-DIMENSIONAL
KNAPSACK PROBLEM

Knapsack problems [16] are commonly used combinatorial bench-
mark problems to test the performance of EAs. There are many
different variations of knapsack problems. The multi-dimensional
knapsack problem (MKP) is one of these variations and belongs to
the class of NP-complete combinatorial optimization. The MKP
has a wide range of real world applications such as cargo loading,
selecting projects to fund, budget management, cutting stock, etc.
This aspect of the problem makes it a good choice to use as the
example problem in this study. The MKP can be formalized as
follows.

maximize
n

∑
j=1

p j · x j (1)

subject to

n

∑
j=1

ri j · x j ≤ ci, i = 1,2, ...,m (2)

where n is the number of items, m is the number of resources, x j ∈
{0,1} shows whether item j is included in the subset or not, p j
shows the profit of item j, ri j shows the resource consumption of
item j for resource i and ci is the capacity constraint of resource i.

For the MKP, several different genetic representations and ge-
netic operators have been proposed. A detailed comparison can be
found in [13]. Because we want to also examine the effect of the
representation on the fitness landscape, in this study, we look at not
only one but two successful approaches: a direct binary encoding
using penalties for constraint handling, and a decoder-based real-
valued encoding. These two are discussed in the following in more
detail.

4.1 Binary representation
This is a direct encoding where each bit of a bit string corre-

sponds to an item, and the bits indicate whether an item should be
included in the knapsack or not [13, 14]. Because this does not
guarantee feasibility, infeasible solutions are penalized

f itness(x) = f (x)− penalty(x) (3)

In [13, 14], different penalty functions are compared, and the fol-
lowing one is recommended:

penalty(x) =
pmax +1

rmin
∗max{CV (x, i) | i ∈ I}, x ∈U (4)

pmax = max{pi | i ∈ I} (5)

rmin = min{ri j | i ∈ I, j ∈ J} (6)

CV (x, i) = max(0, ∑
j∈J

ri j · x j − ci) (7)

where pmax is the largest profit value calculated as in Eq. 5, rmin
is the minimum resource consumption calculated as in Eq. 6 and
CV (x, i) is the maximum constraint violation for the ith constraint
ci calculated as in Eq. 7. It should be noted that rmin 6= 0 must be
ensured.

4.2 Weight Coding
A successful example for the decoder based techniques is the

weight-coding (WC) approach [22]. In the weight-coding tech-
nique, a candidate solution consists of a vector of real-valued genes
(biases) associated with each item of the MKP. To obtain the corre-
sponding phenotype, first the original problem P is transformed (bi-
ased) into a modified problem P′ by multiplying the original profits
of each item with the corresponding bias. Then, a fast heuristic
is used to find a solution to P′, and finally, the resulting solution
(items to be placed in knapsack) is evaluated based on the original
problem. Raidl [22] discusses two possible decoding heuristics,
one based on a surrogate relaxation technique and the other based
on Lagrangian relaxation. The one using the surrogate relaxation
method is preferred due to its lower computational requirements.
The surrogate relaxation method [21] simplifies the original prob-
lem by transforming all constraints into a single one as follows:

n

∑
j=1

(

m

∑
i=1

ai · ri j

)

x j ≤
m

∑
i=1

ci (8)

where ai is the surrogate multiplier for the ith constraint, ri j is the
resource coefficient. Surrogate multipliers are determined by solv-
ing the relaxed MKP (i.e., variables xi can take any value ∈ [0,1])
by linear programming (LP), and using the values of the dual vari-
ables as surrogate multipliers. Then, to obtain a heuristic solution
to the MKP, the profit/pseudo-resource consumption ratios denoted
as u j are calculated as given in Eq. 9.

u j =
p j

∑m
i=1 airi j

(9)

The items are then sorted in decreasing order based on their u j
values. Using this ordering, items are added to the solution one at a
time if none of the constraints are violated. More details regarding
this method may be found in [22].

To keep computation costs low, in [22] the surrogate multiplier
values ai are determined only once for the original problem at the
beginning. As a result, the decoding step starts with the computa-
tion of the u j values based on the biased profits.

Biases are restricted to [(1 + γ)−1,(1 + γ)1], where γ is called
the biasing strength and determines the size of the covered search
space. In the following experiments, we set γ = 1.

Weight-codings have the advantage of introducing heuristic bias
and restricting the search to the feasible part of the search space.

4.3 The Dynamic MKP
Dynamic instances of knapsack problems have been proposed

before. However, they usually consider only one dimension, and
the only dynamic An instance of a MKP depends on the values
of the profits p j , resource consumptions ri j and the resource con-
straints ci. While dynamic instances of knapsack problems have
been proposed before, they usually consider only one dimension,
and the only dynamic aspect is a cyclic change of the resource con-
straint (see e.g. [12, 19]).

In the dynamic MKP we implemented for this study, for every
change, the profits, resource consumptions and the constraints are

1435



multiplied by a normally distributed random variable as follows:

p+
j = p j ∗ (1+N(0,σp))

r+
i j = ri j ∗ (1+N(0,σr))

c+
i = ci ∗ (1+N(0,σc))

(10)

The standard deviation of the normally distributed random variable
used for the changes has been set to σp = σr = σc = 0.05 so that
changes are of moderate severity. Each profit p j , resource con-
sumption ri j and constraint ci is restricted to an interval as deter-
mined in Eq. 11.

0.8∗ p j ≤ p j ≤ 1.2∗ p j
0.8∗ ri j ≤ ri j ≤ 1.2∗ ri j
0.8∗ ci ≤ ci ≤ 1.2∗ ci

(11)

If any of the changes causes any of the lower or upper bounds to
be exceeded, the value is bounced back from the bounds and set to
a corresponding value within the allowed boundaries.

In the experiments below, the dynamic multi-dimensional knap-
sack problems are based mostly on the problem PB5 that can be
obtained from [3]. Some results are also based on the instances
HP1 and WEISH02, which can also be obtained at [3].

5. ANALYSIS OF LANDSCAPE CHANGES
In this section, we calculate the measures proposed above for

several instances of the dynamic MKP. Unless stated otherwise, we
use 32768 samples to calculate the measures for the binary encod-
ing, and 5000 samples to calculate the measures for WC2. Optimal
solutions were calculated by running a MIP solver from the glpk
package [11].

5.1 Change severity
Figure 1 (a) shows the actual and estimated change severity over

20 environmental changes for the binary representation. The actual
normalized change severity lies between 0.1 and 0.4 with an aver-
age of 0.235, i.e., a jump from the old to the new optimum requires
to flip an average of 23.5% of the bits. That is less than 50% which
would have been required if the new landscape were completely
unrelated to the old one, but probably still more than what simple
strategies like hill-climbing or hypermutation can handle. The es-
timated change severity depends on the samples selected, which is
why in Figure 1 (a) mean over 20 runs plus/minus standard devia-
tion is plotted. For the 20 runs, the seed of the environment change
generation is kept the same which means all runs are performed on
the same set of environment changes with different samples from
the search space. On average over the 20 runs, the measure predicts
a normalized change severity of 0.279, which is reasonably close
to the true value of 0.235. However, the standard deviation is rather
large, and the correlation between estimated and true change sever-
ity is quite low, which means that the estimator is not too helpful
in determining the change severity of a single change. In the ex-
ample from Figure 1 (a), we took 32768 samples, which amounts
to approximately 3.1% of the search space. Obviously, the accu-
racy of the measure could be improved by increasing the number
of samples (with perfect match when the complete search space is
sampled).

Figure 1 (b) shows the same plot for the WC encoding. Since it is
not obvious how to transfer an optimal solution back into weights,

2Since WC only covers the feasible search space, much smaller
sample numbers are necessary to get a representative set.

we can’t plot the true severity for this encoding. With an average
normalized change severity of 0.345, the estimated change severity
is significantly higher, but still below random movements. Also,
the estimates have a significantly lower standard deviation.

5.2 Fitness correlation
Table 1 shows the fitness correlation of the samples before and

after a change. As can be seen, for the binary encoding correlation
is extremely high (0.98-0.99). Because we wondered whether that
is only due to the strong penalty for infeasible solutions and thus
a categorization into feasible and infeasible solutions, we addition-
ally tested the correlation of fitness ranks in the population. How-
ever, that turned out to be almost as high (0.94-0.99). Therefore, in
this environment, good solutions are likely to be found where good
solutions have been in the previous stage. Surprisingly, when look-
ing at fitnesses after LHC, correlation is significantly lower. So far,
we have no intuitive explanation for this.

For the WC encoding, correlation is much lower (0.53-0.6), but
not affected by LHC. The latter is probably due to the many plateaus
existing in this fitness landscape.

Figure 2 shows how the fitness correlation depends on the time
lag. As is to be expected, the correlation decreases with increasing
time lag. Decrease is stronger for WC than for binary encoding.
Additional tests (not shown) have demonstrated that fitness corre-
lation for the WC encoding increases with the biasing strength.

5.3 Fitness change correlation of similar points
The fitness change correlation measures how strongly correlated

the fitness change of an individual is with a random individual with
normalized distance d. The results for binary encoding and WC
encoding are shown in Figure 3. For binary encoding, correlation of
close neighbors is rather high with a correlation coefficient of 0.75
for d = 0.05. For weight-biased encoding, correlation is much less
pronounced. As is to be expected, in both encodings, correlation
decreases with distance. For normalized distances greater than 0.5,
it even turns negative. Such information could perhaps be exploited
algorithmically, but so far, this has not been attempted.

5.4 Value of last-stage local optima
Running LHC from a random solution yields an average fitness

of approximately 1642 for the binary encoding and 1789 for the
WC encoding. 3 This difference is clearly due to the heuristic bias
that is part of the WC encoding. The average optimal value (i.e., the
upper bound) is 2047.36. Running LHC from one of the k best sam-
ples yields significantly better solutions than starting from random
solutions. Figure 4 shows the solution quality that can be obtained
by doing LHC starting from the k-th best sample from the previous
stage, for binary encoding (a) and for WC encoding (b). As would
be expected, the less good the solution in the previous stage (i.e.,
the larger k), the smaller the solution quality usually obtained after
the change. But even starting from the 50-th sample from the previ-
ous stage yields a much better solution than starting from a random
sample. As for starting from random solutions, WC yields better
solutions also when starting from last stage’s good solutions. Also,
degradation over k is much slower when the WC coding is used,
which means that the quality of the previously best found solution
is not as important with WC. Nevertheless, the general trends are
also observable for WC.

3Note that because we only simulated 20 environmental changes,
and we want to use information from up to the previous 10 stages in
the next section, the values in this and the next section are averaged
only over the environments 10-20.

1436



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

no
rm

al
iz

ed
 d

is
ta

nc
e

time

actual
estimated

(a) Binary encoding

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

no
rm

al
iz

ed
 d

is
ta

nc
e

time

estimated

(b) WC encoding

Figure 1: Change severity over 20 consecutive changes.

Table 1: Fitness correlations and rank correlations for different test instances, with and without LHC, and binary as well as WC
encoding. Average and standard deviation are given.

binary WC
PB5 HP1 WEISH02 PB5 HP1 WEISH02

avg 0.99 0.98 0.99 0.60 0.53 0.56Fitness
std 0.009 0.013 0.008 0.092 0.128 0.159

Fitness avg 0.76 0.77 0.90 0.64 0.51 0.53
after LHC std 0.058 0.101 0.027 0.084 0.198 0.187

avg 0.98 0.94 0.99Rank
std 0.010 0.0281 0.009

Rank avg 0.75 0.76 0.90
after LHC std 0.061 0.100 0.029

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

co
rr

el
at

io
n 

co
ef

fic
ie

nt

lag

(a) Binary encoding

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

co
rr

el
at

io
n 

co
ef

fic
ie

nt

lag

(b) WC encoding

Figure 2: Fitness correlation depending on time lag, for problem PB5.

1437



-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

co
rr

el
at

io
n 

co
ef

fic
ie

nt

normalized distance

(a) Binary encoding

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

co
rr

el
at

io
n 

co
ef

fic
ie

nt

normalized distance

(b) WC encoding

Figure 3: Fitness change correlation between random individuals of normalized distance d.

 1750

 1800

 1850

 1900

 1950

 5  10  15  20  25  30  35  40  45  50

fit
ne

ss

k

(a) Binary encoding

 1750

 1800

 1850

 1900

 1950

 5  10  15  20  25  30  35  40  45  50

fit
ne

ss

k

(b) WC encoding

Figure 4: Estimated value of good solutions from previous stage.

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 5  10  15  20  25  30  35  40  45  50

fit
ne

ss

k

estimated
random

(a) Binary encoding

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 5  10  15  20  25  30  35  40  45  50

fit
ne

ss

k

estimated
random

(b) WC encoding

Figure 5: Combined value of the k best solutions from previous stage.

1438



The benefit of using several (in our case the k best) previous sam-
ples is shown in Figure 5. As is to be expected, the quality of the
best found solution increases with the number of random starting
points for LHC. For previously good samples, the effects could be
too strongly correlated (e.g., because they all lie in the same region
of the search space), so that adding additional starting points might
not be beneficial. And indeed, the benefit of increasing the number
of previously good samples is smaller than the benefit of increasing
the number of random points. In fact, for WC, starting from more
than 15 previous solutions has almost no effect. However, starting
from previously good samples is always better than starting from
random samples. Also, note how closely the quality approaches
the optimum of 2047.36 in case of WC. Therefore, we conclude
that in a dynamic environment, it is beneficial to maintain a diverse
set of high-quality solutions from the previous stage.

5.5 Value of past optima
Instead of just keeping information from the last stage, it may be

helpful to use a memory, storing the best solutions found in the m
previous stages. Again, the results need to be compared to what can
be obtained by starting from random solutions, namely the already
quoted fitness of approximately 1642 for the binary encoding and
1789 for the WC encoding. As for the last measure, let us first look
at the value of single solutions. Clearly, Figure 6 shows that starting
LHC from a local optimum of previous stages again significantly
improves performance. As is to be expected, there is a general ten-
dency that with increasing age of the previous optimum, its benefit
shrinks. However, the degradation is surprisingly slow. Despite
the fact that the environment was not designed to be cyclic, start-
ing LHC from an optimum 10 environmental stages ago performs
much better than starting from a random point. For the binary en-
coding, we have additionally plotted the value of starting from the
previous environment’s true optima (as opposed to the best solu-
tion found). As expected, the value of the true optima is generally
higher than the value of the perceived optima, but the estimated
value seems to be a reasonable approximation.

Now let us again turn at the accumulated value of several pre-
vious optima. As can be seen in Figure 7, additional optima add
value, although the additional benefit becomes rather small if the
additional optima are from more than 5 environmental stages ago,
in particular for the WC encoding.

Comparing the value of previous optima with the value of last-
stage good solutions, both seem to have comparable benefit (cf.
results for k < 10 with m < 10). Only for larger numbers, one might
detect a slight advantage for using samples from only the previous
stage, which may be due to the fact that the information from many
stages ago is too outdated to be helpful

6. CONCLUSION
In this paper, we have proposed a number of measures with the

aim to characterize fitness landscape changes of a dynamic opti-
mization problem. These measures include change severity, fitness
correlations, and the value of previous good solutions. Further-
more, we have applied these measures to several instances of a
multi-dimensional knapsack problem, and two different representa-
tions. We have shown that the proposed measures allow interesting
observations.

We are aware that these measures are only a first step towards
the analysis of dynamic landscapes. In the future, we will use these
measures to compare and possibly classify different real-world prob-
lems. Also, we will use them to examine artificial benchmark prob-
lems and check whether benchmark problems have similar charac-
teristics to real-world problems. Finally, it would be most valuable

if based on the problem characteristics the suitability of different
algorithmic approaches could be predicted.

7. REFERENCES

[1] P. J. Angeline, D. B. Fogel, and L. J. Fogel. A comparison of
self-adaptation methods for finite state machines in dynamic
environments. In L. J. Fogel et al., editor, Conference on
Evolutionary Programming, pages 441–449, 1996.

[2] D. V. Arnold and H.-G. Beyer. Random Dynamics Optimum
Tracking with Evolution Strategies. In J.J. Merelo,
P. Adamidis, H.-G. Beyer, J.L. Fernández-Villacañas, and
H.-P. Schwefel, editors, Parallel Problem Solving from
Nature, pages 3–12, Heidelberg, 2002. Springer.

[3] J. E. Beasley. Or-library. online,
www.brunel.ac.uk/depts/ma/research/jeb/orlib/mknapinfo.html.

[4] C. Bierwirth and D. C. Mattfeld. Production scheduling and
rescheduling with genetic algorithms. Evolutionary
Computation, 7(1):1–18, 1999.

[5] J. Branke. Evolutionary algorithms for dynamic optimization
problems - a survey. Technical Report 387, Insitute AIFB,
University of Karlsruhe, February 1999.

[6] J. Branke. Memory enhanced evolutionary algorithms for
changing optimization problems. In Congress on
Evolutionary Computation, volume 3, pages 1875–1882.
IEEE, 1999.

[7] J. Branke. Evolutionary Optimization in Dynamic
Environments. Kluwer, 2001.

[8] J. Branke and H. Schmeck. Designing evolutionary
algorithms for dynamic optimization problems. Theory and
application of evolutionary computation: recent trends,
pages 239–262, 2002. S. Tsutsui and A. Ghosh, editors.

[9] H. G. Cobb. An investigation into the use of hypermutation
as an adaptive operator in genetic algorithms having
continuous, time-dependent nonstationary environments.
Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA, 1990.

[10] Y. Davidor. Epistasis variance: suitability of a representation
to genetic algorithms. Complex Systems, 4:369–383, 1990.

[11] GLPK. GNU linear programming kit. online,
http://www.gnu.org/software/glpk/glpk.html.

[12] D. E. Goldberg and R. E. Smith. Nonstationary function
optimization using genetic algorithms with dominance and
diploidy. In J. J. Grefenstette, editor, International
Conference on Genetic Algorithms, pages 59–68. Lawrence
Erlbaum Associates, 1987.

[13] J. Gottlieb. Evolutionary Algorithms for Combinatorial
Optimization Problems. Phd,
Mathematisch-Naturwissenschaftlichen Fakultaet der
Technischen Universitaet Clausthal, December 1999.

[14] J. Gottlieb. On the feasibility problem of penalty-based
evolutionary algorithms for knapsack problems. In E.J.W.
Boers et al., editor, Applications of Evolutionary Computing,
volume 2037 of LNCS, pages 50–60. Springer, 2001.

[15] K. A. De Jong. Evolving in a changing world. In
International Symposium on Foundations of Intelligent
Systems, pages 512–519. Springer, 1999.

[16] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer, 2004.

[17] Y. Li and C. O. Wilke. Digital evolution in time-dependent
fitness landscapes. Artificial Live, 10:123–134, 2004.

1439



 1820

 1840

 1860

 1880

 1900

 1920

 1940

 1960

 1  2  3  4  5  6  7  8  9  10

fit
ne

ss

m

estimated
optimal

(a) Binary encoding

 1820

 1840

 1860

 1880

 1900

 1920

 1940

 1960

 1  2  3  4  5  6  7  8  9  10

fit
ne

ss

m

estimated

(b) WC encoding

Figure 6: Value of best solution from m-th previous stage.

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 2100

 1  2  3  4  5  6  7  8  9  10

fit
ne

ss

m

optimal
estimated

random

(a) Binary encoding

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 2100

 1  2  3  4  5  6  7  8  9  10

fit
ne

ss

m

estimated
random

(b) WC encoding

Figure 7: Combined value of best solutions from m previous stages.

[18] P. Merz. Advanced fitness landscape analysis and the
performance of memetic algorithms. Evolutionary
Computation, 12(3):303 – 325, 2004.

[19] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a
changing environment by means of the thermodynamical
genetic algorithm. In Parallel Problem Solving from Nature,
pages 513–522. Springer, 1996.

[20] R. W. Morrison and K. A. DeJong. A test problem generator
for non-stationary environments. In Congress on
Evolutionary Computation, volume 3, pages 2047–2053.
IEEE, 1999.

[21] H. Pirkul. A heuristic solution procedure for the
multiconstraint zero-one knapsack problem. Naval Research
Logistics, 34:161–172, 1987.

[22] G. R. Raidl. Weight-codings in a genetic algorithm for the
multiconstraint knapsack problem. In Congress on
Evolutionary Computation, pages 596–603. IEEE, 1999.

[23] C. Reidys and P. Stadler. Combinatorial landscapes. SIAM
Review, 44:3–54, 2002.

[24] H. Richter. Behavior of evolutionary algorithms in
chaotically changing fitness landscapes. In Xin Yao et. al.,
editor, Proceedings of Parallel Problem Solving from Nature
VIII, volume 3242 of LNCS, pages 111–121. Springer, 2004.

[25] C. Ronnewinkel, C.O. Wilke, and T. Martinetz. Genetic
algorithms in time-dependent environments. In Theoretical
Aspects of Evolutionary Computing. Springer, 2001.

[26] J. E. Rowe. Finding attractors for periodic fitness functions.
In W. Banzhaf et al., editor, Genetic and Evolutionary
Computation Conference, pages 557–563. Morgan
Kaufmann, 1999.

[27] J. E. Rowe. Cyclic attractors and quasispecies adaptability. In
L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical
Aspects of Evolutionary Computing, pages 251–259.
Springer, 2001.

[28] P. F. Stadler. Towards a theory of landscapes. In
R. Lopez-Pena et al., editor, Complex Systems and Binary
Networks, pages 77–163. Springer, 1995.

[29] S. A. Stanhope and J. M. Daida. Genetic algorithm fitness
dynamics in a changing environment. In Congress on
Evolutionary Computation, volume 3, pages 1851–1858.
IEEE, 1999.

[30] K. Trojanowski and Z. Michalewicz. Searching for optima in
non-stationary environments. In Congress on Evolutionary
Computation, volume 3, pages 1843–1850. IEEE, 1999.

[31] R. K. Ursem, T. Krink, M. T. Jensen, and Z. Michalewicz.
Analysis and modeling of control tasks in dynamic systems.
IEEE Trans. Evolutionary Computation, 6(4):378–389, 2002.

[32] K. Weicker. Evolutionary Algorithms and Dynamic
Optimization Problems. Der Andere Verlag, 2003.

[33] C. O. Wilke. Evolutionary Dynamics in Time-Dependent
Environments. Shaker Verlag, 1999.

1440


