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ABSTRACT
Knapsack problems are among the most common problems
in literature tackled with evolutionary algorithms (EA). Their
major advantage lies in the fact that they are relatively sim-
ple to implement while they allow generalizations for a wide
range of real world problems. The multi-dimensional knap-
sack problem (MKP), which belongs to the class of NP-
complete combinatorial optimization problems, is one of the
variations of the knapsack problem. The MKP has a wide
range of real world applications such as cargo loading, select-
ing projects to fund, budget management, cutting stock, etc.
The MKP has been studied quite extensively in the EA com-
munity. Due to the constrained nature of the problem, con-
straint handling techniques gain great importance in the per-
formance of the proposed EA approaches. In this study, the
applicability of a generational EA that uses a penalty-based
constraint handling technique and a gene locus based, asym-
metric, adaptive mutation scheme is explored for the MKP.
The effects of the parameters of the explored approach is
determined through tests. Further experiments, using large
MKP instances from commonly used benchmarks available
through the Internet are performed. Comparison tables are
given for the performance of the explored approach and
other good performing EAs found in literature for the MKP.
Results show that performance improves greatly when com-
pared with other penalty-based techniques, but the explored
approach is still not the best performer among all. How-
ever, unlike the explored technique, the EAs using the other
constraint handling techniques require a great amount of
extra computational effort and need heuristic information
specific to the optimization problem. Based on these ob-
servations, and the fact that the performance difference be-
tween the explored scheme and the better performers is not
too high, research on improving the explored approach is
still in progress.
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1. INTRODUCTION
Knapsack problems [14] are among the most common prob-

lems in literature tackled with evolutionary algorithms (EA)
[17]. Their major advantage lies in the fact that they are
relatively simple to implement while they allow generaliza-
tions for a wide range of real world problems. It is noted
in [14] that as a result of the analysis of the requests made
to the Stony Brook Algorithm Repository [22], the conclu-
sion [21] is that the knapsack algorithm implementations
are among the third needed implementations in the repos-
itory. There are many different variations of the knap-
sack problems. The multi-dimensional knapsack problem
(MKP), which belongs to the class of NP-complete combi-
natorial optimization problems, is one of these variations.
The MKP has a wide range of real world applications such
as cargo loading, selecting projects to fund, budget manage-
ment, cutting stock, etc. The MKP has been studied quite
extensively in the EA community and there are numerous
publications on the applications of EAs to the MKP [4, 6,
7, 8, 9, 15, 19, 20].

The MKP is a constrained optimization problem. Differ-
ent constraint handling techniques have been proposed and
analyzed in literature for this problem. These will be ex-
plored in more detail in Section 2. Each of these techniques
have their advantages and disadvantages. Modifications to
improve their performance have also been developed. To
ensure the proper evaluation of the proposed approaches,
several benchmark instances have been developed and they
are available on the Internet. Most papers report their re-
sults on these benchmarks, which makes comparisons easier.

The aim of this study is to explore the properties of the
MKP and explore and improve an EA that uses a penalty-
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based constraint handling technique. Penalty based tech-
niques that have been proposed in earlier works are not very
successful [6, 9, 13], mainly due to the presence of infeasible
individuals. The technique explored in this paper uses an
adaptive mutation scheme which fastens convergence to the
optimum. When the population converges on an optimum,
diversity is increased to let the search for other optima con-
tinue. This new EA approach, GBAM+, is a modification
of the previously proposed mutation adaptation algorithm
GBAM (Gene Based Adaptive Mutation) in [23, 24]. Tests
are performed using the larger benchmark MKP instances
on the Internet. Results are compared with others reported
in literature for these specific instances.

The improvements obtained in the penalty based tech-
niques is very promising and the performance approaches
those reported for other constraint handling techniques. How-
ever there is still more work to do to outperform the ap-
proaches that currently provide the best results. The main
drawback of those approaches is the extra work and the
problem specific heuristic information they require in order
to provide problem specific improvements. GBAM+ also
uses heuristic information to improve the search process,
however this information is obtained directly by observing
the population and is not specific to a problem class or in-
stance. These will be discussed in greater detail in later
sections.

The rest of the paper is organized as follows: Section 2
gives an overview of the existing EA approaches for the
MKP, Section 3 introduces the modified GBAM+ approach,
Section 4 details the experiments that have been performed
and provides results and discussions and Section 5 concludes
the paper and provides possible future work directions.

2. RELATED WORK ON THE MKP
The MKP belongs to a class of NP-complete optimization

problems with constraints. The MKP can be defined as in
Eq. 1.

maximize

nX
j=1

pj . xj

subject to

nX
j=1

wij . xj ≤ Ci i = 1, 2, ..., m

(1)

where n is the number of items, m is the number of knap-
sacks, xj ∈ {0, 1} shows whether jth item is included in the
subset or not, pj shows the profit of the jth item, wij shows
the weight of the jth item in the ith knapsack and Ci is the
capacity constraint of the ith knapsack.

There has been quite a lot of work done for the solution
of the MKP. A good survey on the knapsack problems, in-
cluding the MKP, and all the different solution techniques
(both standard techniques, heuristics (e.g. in [18]) and hy-
brids (e.g. in [25])) is given in [14]. In [6], a detailed survey
of the problem, of the different EA approaches proposed, of
their weaknesses, strengths and performance comparisons is
provided.

As noted in [6] and [9], the presence of constraints intro-
duces the problem of infeasible parts in the search space.
In [6], the techniques to handle constraints are categorized
into three main groups. Some of these try to directly han-
dle the constraints while others use different representations

or decodings to transform the constrained problem into an
unconstrained problem. The main constraint handling tech-
niques are:

• Direct search in the complete search space,

• Direct search in the feasible search space,

• Indirect search in the feasible search space.

Direct search means that the candidate solutions produced
by the search algorithm are actually a part of the original
search space, whereas indirect search means that the candi-
date solutions belong to a transformed search space and are
mapped back into the original search space.

Direct search in the complete search space techniques in-
clude the penalty-based constraint handling methods where
the algorithm is allowed to search in the whole search space.
In these techniques, the fitness of all individuals are deter-
mined according to a defined objective function, however
the infeasible individuals have their fitness values penalized
through a penalty function. For these techniques, design of
good penalty functions plays an important role in the per-
formance of the different approaches [6, 9, 15].

In the direct search in the feasible search space group of
approaches, specialized techniques to ensure the feasibility
of all solutions are used. The fitness of all individuals are
evaluated using the objective function. Repair algorithms,
where infeasible individuals are repaired into feasible indi-
viduals, belong to this group [4, 19].

Indirect search in the feasible search space approaches in-
clude decoder-based techniques where the search space is
transformed and the new search space consists only of feasi-
ble individuals. Search continues in the transformed search
space and found solutions are mapped back into the original
search space [7, 12, 13, 20].

In penalty based techniques, the fitness of infeasible in-
dividuals are penalized. Good design of penalty calculation
methods is crucial to the performance of an EA. In [6, 9]
different penalty techniques are compared. It is shown in
[6, 9] that the solution of the MKP lies close to the feasible
boundary. Based on these observations and the results of
the comparisons, a good penalty technique

• should penalize the infeasible individuals by an amount
that is proportional to their constraint violations,

• should guarantee that the fitness of the best infeasible
solution always remains lower than the fitness of the
worst feasible solution in the population,

• should guide the population towards the feasible bound-
ary.

A penalty method that satisfies these requirements and pro-
vides better performance than the previously proposed tech-
niques is given in [6, 9].

Repair algorithms aim to take infeasible individuals and
transform them back into feasible individuals. Chu and
Beasley [4] propose such a repair technique. Raidl [19] takes
this one step further and uses a specialized initialization
technique which ensures diversity as well as the property
that all individuals are feasible. He also uses a repair tech-
nique and applies a local improvement operator to the indi-
viduals. Both in [4] and [19], very good results are reported.
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The major drawback of these techniques is the extra com-
putational cost involved in repairing infeasible individuals
and applying local improvements to solutions.

Decoder based techniques and their properties have been
studied mainly in [6, 7, 8, 13, 20]. One of the most success-
ful decoding techniques proposed in literature for the MKP
is the weight coding approach given in [20]. In the weight
coding approach, solution candidates are represented by real
valued weight vectors. The decoding phase consists of two
steps. In the first step, the original problem is modified by
a biasing technique using the weight values. In the second
step, the real valued vector is decoded into the phenotype in
the binary space using a decoder heuristic. Through the use
of specialized decoder heuristics, feasibility of the solutions
is guaranteed. The decoded solution is then evaluated using
the original fitness function. In [20], several weight cod-
ing techniques and decoding heuristics are introduced and
compared. These techniques also suffer from extra compu-
tational efforts introduced through the biasing and decoding
phases. Moreover they heavily rely on heuristic information
about the specific optimization problem.

Most of these studies use commonly available benchmark
MKP instances downloadable from the Internet. Smaller
instances can be found at [11] maintained by Heitkoetter.
Larger instances, engineered to conform to specific proper-
ties of good MKP benchmarks, are artificially generated by
Chu and Beasley [2] and can be found at the OR-Library[3].
More recently, larger instances of the MKP have been gen-
erated and made available for download at [10].

3. THE MODIFIED GBAM+ ALGORITHM
The original GBAM algorithm [23, 24] uses an asymmet-

ric, adaptive mutation mechanism on each loci on the chro-
mosomes. The mutation adaptation strategy increases or
decreases the mutation rate for each locus on the chromo-
some based on feedback obtained from the current popu-
lation. This mechanism of GBAM is classified as adaptive
according to the categorization in [5].

The main motivation behind GBAM is the fact that the
setting of the mutation rate is one of the most sensitive
parameters of an EA. Traditionally, the best values are de-
termined using a trial-and-error method. This method does
not guarantee an optimal setting as well as being very time
consuming. However GBAM starts from an initial mutation
rate and allows the adaptation based on feedback obtained
from the search process. This allows more flexibility by spec-
ifying a mutation value in a range rather than fixing it before
the actual run. Different from other known mutation adap-
tation strategies, GBAM has a separate mutation rate value
for each locus. An adaptive approach for adjusting muta-
tion rates for the gene locus based on the feedback obtained
by observing the relative success or failure of the individuals
in the population is used. Since the mutation rates at each
locus depend mainly on whether the individuals with a spe-
cific allele value for that locus is successful or not, GBAM
is more suited to problems in which the representation is
binary.

In GBAM, there are two different mutation rates defined
for each locus: pm1 for those genes that are ”1” and pm0

for those that are ”0”. In the reproduction phase, the ap-
propriate mutation rate is applied based on the gene allele
value. Initially all of the mutation rates are set to an initial
value in the specified boundaries. Then for each generation,

the mutation probabilities pm1 and pm0 for each locus are
updated based on feedback taken from the relative success
or failures of those individuals having a ”1” or ”0” at that
locus.

For a maximization problem, the update rule for the two
mutation rate values for one gene location can be seen in
Eq. 2. This update rule is applied separately for each locus.

p+
m0 =

(
pm0 + γ,

Savg

Pavg
> 1

pm0 − γ,
Savg

Pavg
≤ 1

p+
m1 =

(
pm1 − γ,

Savg

Pavg
> 1

pm0 + γ,
Savg

Pavg
≤ 1

(2)

where the pmi value corresponds to the rate of mutation
which is applied when the gene value is equal to “i” in the
corresponding gene location, γ is the mutation update value,
Savg is the average fitness of the individuals with an allele
“1” for the corresponding gene location and Pavg is the aver-
age fitness of the population. It follows from Eq. 2 that for a
maximization problem, if the ratio of Savg to Pavg is greater
than 1, the allele value “1” for the corresponding locus is
assumed to generate more successful results. Therefore, a
decrease in pm1 and an increase in pm0 for the correspond-
ing locus are implemented and vice versa if the Savg to Pavg

ratio is less than 1. As a result of the updates at each gen-
eration, pmi values are allowed to change within the limits
defined by lower and upper bounds. If an update causes a
mutation rate to exceed the limits, it is set to the corre-
sponding boundary value. This mutation adaptation mech-
anism is similar to the basic ideas used in simple estimation
distribution algorithms [16], especially the population based
incremental learning (PBIL) technique proposed in [1].

GBAM is shown in [24] to perform well compared to other
parameter adaptation techniques. It is tested on a very sim-
ple, unimodal One-Max problem to show how it effectively
decreases the first hitting time to the optimum [23]. The
second set of tests are performed on the 4-Peaks problem [1]
which has a partially deceptive fitness function. GBAM also
performs well on various instances of this problem with dif-
fering degrees of hardness. The final tests are conducted us-
ing relatively easy instances of the MKP, namely the Weing-
7 and Weish-30 datasets obtained from [11], with promis-
ingly good results. These results motivate a further in-
vestigation into the suitability of the technique to harder
instances of the MKP, which are obtained from the OR-
Library [2, 3]. These test problems are generated by Chu
and Beasley for their study in [4]. The basic outline of the
GBAM+ algorithm used in this study is similar to the ones
proposed and discussed in [23, 24], but due to the nature of
the MKP, some modifications need to be made. These mod-
ifications are discussed in the following sub-sections. The
flow of the algorithm is given in Fig. 1 and the lines con-
taining the modifications are marked in bold letters.

It is shown in [6, 9] that EA approaches using a penalty-
based constraint handing technique suffer from the feasibil-
ity problem, where the population may drift towards the
infeasible region. Using appropriate penalty terms to guide
the population back towards the feasible boundary helps to
overcome this problem. The penalty calculation technique
proposed and shown to perform best in [6, 9] is used in this
study when calculating the penalty term for infeasible indi-
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initialize population;
initialize mutation arrays;
do
{
  calculate fitnesses;
  update mutation arrays;
  if (proportion_feasibles < propFeas)
    reset mutation arrays;
  if (population converged)
  {
    re-init percent of population;
    reset mutation arrays;
  }
  select parents;
  cross-over pairs;
  apply mutation;
  form next generation;

} while not end-of-generations;  

Figure 1: Outline of the GBAM+ algorithm

viduals. This penalty term is calculated using Equation 3.

penalty =
1 + pmax

wmin
∗max(CV ) (3)

where pmax is the maximum profit value of all the items,
wmin is the minimum weight of all the items in all the knap-
sacks, max(CV ) is the maximum constraint violation value
for all the knapsacks.

3.1 Controlling the Number of Feasible Indi-
viduals

GBAM+ is an adaptive technique which uses the heuristic
information provided by the individuals of the current popu-
lation to increase or decrease the mutation rates as explained
in Section 3. However for the MKP, not all individuals are
feasible.

For the mutation update of GBAM+ to work properly,
only the feasible individuals should be used in the adapta-
tion. If the number of feasible individuals in the population
drops to very low levels, there is no longer enough heuristic
information in the population to guide the adjustment of
the mutation rates.

In this new implementation of GBAM+, which is geared
specifically to be used in constrained problems, if the pro-
portion of feasible individuals in the population drops below
a predefined threshold, all mutation array values are reset
to the initial values. The setting of the actual value of the
threshold is explored in Section 4.

3.2 Convergence Control and Re-Initialization
In [24], it is noted that even though the fast convergence

rates introduced by GBAM are considered useful, once the
whole population converges, necessary measures need to be
taken to re-introduce diversity. A very simple diversity in-
troduction scheme is used in that study and further analysis
of better techniques is left as a future work.

In GBAM+, similar to the approach taken in [24], a per-
centage of the population is changed when the population
converges. Gene locus convergence is said to occur when
95% of the genes at that locus has the same allele. And
based on this, population convergence occurs when all loci
have converged.

In this study, after convergence, a percentage of the pop-
ulation is randomly re-initialized and all mutation array val-

ues are reset to their initial values. The individuals in the
population which are replaced by the new random individu-
als are also selected randomly. This step of the algorithm is
carried out when the population converges which means that
most of the population is similar, so it does not make much
difference which individuals are selected for replacement.

This type of random re-initialization introduces diversity
into the converged population. The setting of the actual
percentage value is explored in Section 4.

4. EXPERIMENTS
The experiments performed for this study consist of two

main parts. The first part and the second part are composed
of 6 and 1 tests respectively.

In the first part, the setting of the GBAM+ parameters,
which are seen to be effective on performance are explored
and tests are performed to justify the actual settings of these
parameter values. These parameters are:

• threshold for the proportion of feasible individuals in
the population (propFeas)

• the ratio of the population to re-initialize when the
population converges (reinitRatio)

• mutation rate update step length (mutUpdate)

• initialization method to generate the first population
of the EA

• re-initialization method used when the population con-
verges

• the number of generations per run

As explained in previous sections, GBAM+ needs to ob-
serve the search process in order to update the mutation
arrays. However, it is better to guide the search process us-
ing the heuristic information gained from feasible solutions.
In GBAM+, when the proportion of feasible individuals in
the population drops below a threshold given by propFeas,
the mutation arrays are reset to the initial value.

It is also explained in the previous section that when the
population converges, it is no longer possible to search other
areas in the search space. When convergence occurs, in
GBAM+, a percentage of the population is re-initialized.
The reinitRatio parameter determines this percentage.

It is left as later work in [23, 24] to study the effect of the
mutation update step size which is used as the increment
or decrement value when the mutation values are increased
or decreased. The parameter mutUpdate corresponds to the
parameter γ in Eq. 2.

The importance of the initial population especially for
EAs using a penalty-based constraint handling technique is
discussed in [6] in great detail. If the initial population is
generated randomly, especially for instances with low tight-
ness ratios, this will give an initial population which consists
mostly of infeasible individuals. It is hard for most penalty-
based EAs to guide the search back into the feasible region.
A clever initialization routine, C∗, which uses problem spe-
cific information, is proposed in [6]. Initialization techniques
are tested with GBAM+ before further experiments are per-
formed.

A similar issue can be considered when re-initializing a
percentage of the population when convergence occurs. Since

1260



Table 1: Basic properties of the EA used for all
experiments

Representation Binary
Population size 250
Parent selection Binary tournaments
Replacement Generational

Elitism Best replaces worst
Duplicate elimination None
Initial mutation value 1/ChromosomeLength
Upper mutation bound 0.5
Lower mutation bound 0.0001

Cross-over Uniform
Cross-over rate per pair 1.0

Table 2: Parameter settings for the first set of ex-
periments

Parameter Setting

propFeas 0.25
reinitRatio 0.75
mutUpdate 1/2L
initialization clever

re-initialization clever
generations per run 20000

the same initialization technique that is used for creating
the initial population is used for re-initialization after con-
vergence, similar tests are performed before further experi-
mentation.

EA performance usually depends on the number of gener-
ations it is allowed to continue for each run. The generation
count parameter becomes important when investigating the
performance of the EAs.

In the second part of the experiments, performance of
GBAM+ is explored using the larger instances of the MKP
benchmarks found in literature. In this part, parameter set-
tings are used as determined as a result of the set of exper-
iments in the first part.

The chosen values for all the above mentioned parameters
used in the experiments will be given after their effects are
explored in the first set of the experiments. The rest of the
parameters of GBAM+ are determined empirically and are
set as given in Table 1 for all the tests in this study.

4.1 Experiments to Determine the Effects of
Different Parameters

In this testing stage, effects of specific GBAM+ param-
eters given above are explored. For this purpose, tests are
performed on one of the hardest instances of the Chu-Beasley
benchmark [3]. The first problem of the set which has 500
items, 30 knapsacks and a tightness ratio of 0.25 is selected.
Results are given averaged over 30 runs of the algorithm for
each test. Performance comparisons are given based on av-
erage fitness values obtained over 30 runs. In all the tests,
the same settings, except for the parameter setting explored
at each test, are used. These are given in Table 2.

Test 1
The first test is to explore the effect of the threshold for
the feasible individual proportion (propFeas). Tests are per-
formed with propFeas values between 0.0 and 1.0 with in-
crements at 0.125. The results are given in Fig. 2. The
plot shows that when the threshold is set to 0, which means
that there is no control on the number of feasible individu-
als in the population, the performance is very bad. This is
an expected outcome since the heuristic information used in
guiding mutation rates in GBAM+ depends on the feasible
individuals. Increasing this threshold also increases the per-
formance. As can be seen best performance occurs around
0.25. Based on this observation, propFeas = 0.25 is used in
the second set of experiments.
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Figure 2: Effect of propFeas ratio

Test 2
The second test is to explore the effect of the ratio of the
population to re-initialize when the population converges
(reinitRatio). Tests are performed with reinitRatio values
between 0.0 and 1.0 with increments at 0.125. The results
are given in Fig. 3. The results show that the best per-
formance occurs around 0.75. Based on this observation,
reinitRatio = 0.75 is used in the second set of experiments.

Test 3
The third test is to explore the effect of the mutation rate
update step length (mutUpdate). As mentioned before, this
corresponds to the γ parameter in Eq. 2. Tests are per-
formed with several levels of values for the mutUpdate, and
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Figure 3: Effect of reinitRatio
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Table 3: Effect of mutUpdate
mutUpdate Average Fitness Stdev

1/L 113464.13 572.05
1/2L 115196.57 148.75
1/3L 115166.97 132.92
1/4L 115151.90 126.79
1/5L 115129.90 190.08
1/10L 115090.67 177.44
1/15L 115000.57 173.61
1/20L 114982.87 192.22
1/30L 114998.23 187.65
1/40L 114830.40 196.77

Table 4: Effect of the initialization method
Initialization Method Average Fitness Stdev

Random 115274.67 211.60
Clever (C∗) 115196.57 148.75

the results are given in Table 3. The results show that the
best performance occurs when the mutUpdate value is high
and drops when the value gets smaller. However, when the
mutUpdate value is set equal to the initial mutation rate,
on the first adaptation when a mutation value is decreased,
it gets set to the lower bound immediately. This allows for
no time to explore the optimal mutation rate for the loci.
This decreases the performance. The results show that the
best performance occurs between 1/2L and 1/5L. Based on
these observations, mutUpdate = 1/2L is used in the second
set of experiments.

Test 4
The fourth test is to explore the effect of the initialization
technique. The C∗ clever initialization technique [6] is com-
pared with a pure random initialization approach in this
test. The results are given in Table 4. The clever initial-
ization technique requires extra computational effort and is
slower than a pure random initialization, and the perfor-
mance of the random initialization method is slightly better
on the average. So for the second set of experiments, ran-
dom initialization is used to generate the first population of
individuals.

Test 5
The fifth test is to explore the effect of the convergence
control mechanism. All tested cases given in Table 5, ex-
cept for the first case denoted as “None”, includes some
form of a convergence control. In “No Re-Init”, there is
no re-initialization of individuals and only the mutation ar-
ray values are reset. In “Random Re-Init”, a percentage of
the population is re-initialized with new random individu-
als. In “Clever Re-Init”, a percentage of the population is
re-initialized with new individuals generated using the C∗

clever initialization technique [6]. In the last two methods,
mutation array values are also reset to the initial value. The
results are given in Table 5. It can be seen that some form
of convergence control and re-initialization is required when
the population converges. As in the previous test, on the
average, random re-initialization seems to be slightly bet-

Table 5: Effect of the convergence control technique

Convergence Control Average Fitness Stdev

None 114847.90 204.86
No Re-Init 114925.53 188.01

Random Re-Init 115224.60 152.26
Clever Re-Init 115196.57 148.75

Table 6: Effect of the no. of generations in a run
Generations Average Fitness Stdev

10000 115039.07 260.67
15000 115164.40 143.42
20000 115196.57 148.75
25000 115269.27 150.07
30000 115265.43 124.76

ter than the clever re-initialization method and again clever
re-initialization is more computationally costly. Based on
these observations, for the second set of experiments, re-
initialization will also be performed randomly when the pop-
ulation converges.

Test 6
The final test in this phase is to explore the effect of the
number of generations the EA is allowed per run. Tests are
performed using 10000, 15000, 20000, 25000, 30000 gener-
ations and the results are given in Table 6. It is seen that
the performance improves as the number of generations in-
creases. However no improvement can be seen after 25000
generations. Based on this observation, 25000 generations
is used in the rest of the experiments.

Summary of Parameter Settings
Based on the results of the tests in this experiment phase,
the settings for the tests in the second set of experiments
are used as follows:

• random initialization of the initial population,

• random re-initialization with reinitRatio = 0.75 after
convergence and resetting of mutation arrays,

• 25000 generations per run ,

• propFeas = 0.25,

• mutUpdate = 1/2L.

4.2 Experiments with Large MKP Instances
For this second part of the experiments, 90 of the largest

Chu-Beasley problem instances [3] are selected. The prop-
erties of the selected problems are given in Table 7.

Performance comparisons are made based on the average
%gap [4, 6, 19, 20]. The %gap is calculated as in Eq. 4.

%gap = 100 ∗ (optLP − optEA)/optLP (4)

where optLP is the LP relaxed optimum and optEA is the
best value found by the EA. The LP relaxed optimum values
which are given at [3] are used in the tests. Resulting %gap
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Table 7: Properties of the test problems used
Items KSacks Tightness Ratio Problem Count
500 5 0.25 10

0.5 10
0.75 10

500 10 0.25 10
0.5 10
0.75 10

500 30 0.25 10
0.5 10
0.75 10

Table 8: %Gap comparisons
PR tr PN PD G H1 H2 CB

500-5 0.25 4.50 1.11 0.59 0.12 0.13 0.09

0.50 2.36 0.51 0.21 0.05 0.06 0.04

0.75 1.16 0.31 0.09 0.03 0.04 0.03

500-10 0.25 4.87 1.62 0.60 0.33 0.39 0.24

0.50 2.49 0.74 0.27 0.15 0.20 0.11

0.75 1.36 0.42 0.15 0.09 0.13 0.07

500-30 0.25 4.91 2.17 0.97 0.79 1.00 0.61

0.50 2.57 0.97 0.43 0.34 0.45 0.26

0.75 1.46 0.53 0.28 0.20 0.33 0.17

Avg. gap 2.85 0.93 0.40 0.23 0.30 0.18

values are given in Table 8, along with results reported in
literature for the same problems.

In Table 8, PR denotes the problem setting given by the
(itemCount, knapsackCount) pair, tr denotes the tightness
ratio, PN denotes the EA approach that uses a penalty tech-
nique and no duplicate elimination [6], PD denotes the EA
approach that uses a penalty technique and duplicate elim-
ination [6], G denotes the GBAM+ approach used in this
paper, H1 denotes the weight coded GA technique with de-
coding heuristic 1 [20], H2 denotes the weight coded GA
technique with decoding heuristic 2 [20] and CB denotes
the repair based EA proposed by Chu and Beasley [4].

All %gap values for the algorithms in Table 8, other than
GBAM+, are taken from the reported values in the corre-
sponding tables given in [6], [20] and [4]. In Table 8, the
%gap values are given in decreasing order from left to right,
so the better performing approaches are located at the right-
most columns.

Discussion of Results
From the results in Table 8 it can be seen that previously
proposed penalty based techniques do not perform well. Sim-
ilar conclusions are also given in [6, 9, 13]. As stated in [6,
9], the optimal solutions to the MKP lie close to the feasible
boundary. However, when using penalty based techniques,
only a few of the individuals in the population are able to
go towards this boundary and it is not usually sufficient to
locate good solutions [6]. However, GBAM+ works in such
a way that by using heuristic performance information ob-
tained directly from the ongoing search process, the whole
population is guided towards where the better performing
individuals are going. So this aspect of GBAM+ helps the

population to converge on locations closer to the feasible
boundary where good solutions are located.

It can be argued that GBAM+ requires more fitness eval-
uations than all other approaches. Even though the re-
ported tests are performed using 25000 generations per run
for maximal performance, the same tests have also been
run with 20000 generations and the obtained results are
similar and do not change the ordering of the algorithms
given in Table 8. These results are not reported here due
to space limitations. Even though GBAM+ requires more
fitness evaluations, the other techniques require extra com-
putational calculations. Techniques such as clever initial-
ization methods, calculation of surrogate multipliers, LP or
Lagrangian relaxation mechanisms, decoding heuristics, lo-
cal search heuristics and repair algorithms are all compu-
tationally very costly. Moreover, penalty based techniques
are much easier to implement than decoder based methods
or repair approaches which usually contain the above men-
tioned extra techniques.

Besides, all of the above mentioned techniques used for
improving the performance of the better performing EA ap-
proaches require using special heuristic information specific
to the optimization problem being solved. GBAM+ also
improves its performance through the use of heuristic infor-
mation, however, the heuristic information used in GBAM+
is obtained directly from the ongoing search process, so it
is not as problem specific as the others. Thus GBAM+ is
more applicable to a wider range of problem classes.

Another observation that can be made from the results
in Table 8 is that the difference in performance of GBAM+
and the best performers decreases for harder problems. Es-
pecially for the problems with 500 items and 30 knapsacks,
the %gaps values are very close to those of the better per-
forming algorithms.

So on the whole, the results show that the GBAM+ mech-
anism improves the performance of penalty based techniques
and achieves a performance which comes close to the best
performers for some of the problems. There is still room for
improvement and further experiments and research is being
carried out.

5. CONCLUSION AND FUTURE WORK
In this study, the gene based adaptive mutation rate ad-

justment approach (GBAM) proposed in [23, 24] is adapted
(GBAM+) to be used with the multi-dimensional knapsack
problem (MKP). The MKP is an NP-complete, constrained
optimization problem. The parameter settings and the per-
formance of GBAM are explored through experiments run
on hard instances chosen from the benchmark created by
Chu and Beasley [4] and available from the OR-Library [3].
Due to time and space limitations, only the results for the
hardest 90 problems from the benchmark are reported in
this study. However, experiments are being performed with
the smaller instances found in the OR-Library in addition
to even larger problem instances which can be downloaded
from [10].

The results of the experiments show that the explored
technique greatly improves the performance of penalty based
techniques and approaches the performance of the other
techniques for most of the problems. There is still more work
to do to fine tune the approach and make it able to outper-
form or at least match the performance of the others, This
is a desirable outcome because penalty-based approaches,
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• require less computation costs,

• are easier to implement,

• require much less problem specific information,

• are more general

than decoder based approaches or repair algorithms which
usually incorporate techniques such as special representa-
tions and their corresponding special operators, clever ini-
tialization methods, calculation of surrogate multipliers, LP
or Lagrangian relaxation mechanisms, decoding heuristics,
local search heuristics and repair algorithms. The results
obtained in this study are quite encouraging and promote
further study.

The experiments and ideas explored in this study are part
of an ongoing project. Another branch of the project deals
with analyzing the dynamics of the fitness landscapes cre-
ated by using this mutation adaptation scheme. Also the
effects of this mutation adaptation scheme is being explored
in problems where there is strong linkage.
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