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ABSTRACT
Evolutionary algorithms are among the metaheuristic search
methods that have been applied to the structural test data
generation problem. Fitness evaluation methods play an im-
portant role in the performance of evolutionary algorithms
and various methods have been devised for this problem.
In this paper, we propose a new fitness evaluation method
based on pairwise sequence comparison also used in bioin-
formatics. Our preliminary study shows that this method is
easy to implement and produces promising results.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
search-based software engineering, structural software test-
ing, automated software test data generation, evolutionary
algorithms, pairwise sequence alignment

1. INTRODUCTION
Testing is a critical and costly activity in software develop-

ment and techniques for automating this process have been
explored extensively [2], especially in the field of structural
test data generation, where the aim is to generate input val-
ues for program components in order to cover specific paths
or statements [4].

A basic approach for using search methods to solve this
problem can be summarized as follows:

• represent a set of input values as a candidate solution

• apply these input values to the code under test and
observe the generated path

• compare the generated path with the desired path and
assign a fitness value to the input set
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In this paper, we present a new fitness evaluation method
based on the pairwise sequence comparison technique also
used in bioinformatics [5]. We tested the proposed method
using common benchmark problems and our preliminary re-
sults show that the guidance characteristics of this method
are similar to existing methods but it is easier to implement
and is uniformly applicable to a wide range of problem in-
stances.

2. RELATED WORK
Some of the proposed fitness evaluation methods provide

little guidance in the search for covering hard-to-reach por-
tions of the code, and some methods suffer from implemen-
tation difficulties. The basic approaches are [4]:

Branch Distances. If the control flow continues with the
unwanted branch at a condition statement, the branch dis-
tance at that statement is defined as the difference of the
actual and necessary values of the variables in order to let
the flow take the intended branch. Solutions with smaller
branch distances get better fitness values.

A major problem with this method is that inputs which
cause big portions of the code getting skipped with small
branch distances get better fitness values than inputs which
generate paths that follow the desired path more closely but
fail with larger distances. Loops pose another problem with
this scheme in that it becomes harder to determine whether
a predicate has failed or not for a branch inside a loop.

Control Structures. An approximation level is defined to
measure the number of correct branches taken to reach a
desired program construct. Solutions with higher approxi-
mation levels get better fitness values.

A major problem with this method is that solutions which
fail on the same predicate can not be compared. This makes
the search space consist of plateaus and the search can not
be guided towards better solutions within plateaus. An-
other important problem is that if there are multiple selec-
tion or repetition constructs, approximation levels for each
construct will be different and each construct will have to
be evaluated separately, using partial aims [6].

Combined Approaches. Branch distance and approxima-
tion level methods can be combined, for example by using a
multiobjective function where the fitness value is a function
of the normalized approximation level and branch distance
scores.
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desired: 2 4 5 6 8 11 12 14 15 16

generated: 2 4 - 6 8 9 - - - 16

Figure 1: Path alignment example.

3. PAIRWISE SEQUENCE COMPARISON
AS A FITNESS MEASURE

Pairwise sequence alignment can be defined as the pro-
cess of finding matching patterns that occur in the same
order in two sequences [5]. For each location on the aligned
sequences, one of three situations will occur:

• a match: the elements are identical

• a mismatch: the elements are different

• a gap: one of the elements is a gap

Assuming that the desired path of line numbers through
a code is < 2, 4, 5, 6, 8, 11, 12, 14, 15, 16 > and the generated
path is < 2, 4, 6, 8, 9, 16 >, a sample alignment is given in
Figure 1.

Two metrics are used for scoring the alignment: one which
defines the similarity based on the number of matches, and
the other which defines the distance based on the number
of mismatches and gaps.

3.1 Sequence Similarity
We are proposing a new fitness evaluation method based

on the pairwise similarity of the desired and generated paths.
After aligning these paths, the fitness is defined as the ra-
tio of the number of matches to the length of the aligned
sequences. If the two paths are identical, all elements will
match and this will produce a fitness of 1.

3.2 Sequence Distance
The sequence similarity method by itself suffers from the

same problem as the approximation level method because
two input sets that generate the same path can not be com-
pared. To overcome this, we define a sequence distance to
measure the amount of change needed to convert the gener-
ated path to the desired path using the following operations
adapted from bioinformatics [5]:

1. insertion: A subsequence in the desired path is miss-
ing from the generated path. This case occurs when
a branch is not entered when it should and can be
identified as a gap in the aligned generated path.

2. deletion: The generated path contains a subsequence
not found in the desired path. This case occurs when
a branch is entered when it should not and can be
identified as a gap in the aligned desired path.

3. substitution: The item in the generated path is dif-
ferent from the item in the desired path. This case
typically occurs when the wrong branch is taken at a
predicate and can be identified as a mismatch.

We compute a penalty for each gap as:

pen(d, g) = d + (g − 1)e

where g is the length of the gap, d is the gap opening
penalty (in our case, the branch distance) and e is the gap-
extension penalty. The sum of individual gap penalties is
the sequence distance.

4. EMPIRICAL ANALYSIS
We tested the proposed method with a few common bench-

mark functions such as triangle classification [4] using a stan-
dard steady-state evolutionary algorithm with elitism and
duplicate elimination [1]. Each gene represents an input pa-
rameter for the code being tested, where gene values are
integers in the range [1,1000]. For sequence alignment, we
used a linear sequence alignment algorithm based on Hirsh-
berg’s approach [3].

For each test, we measured the success rate, the number
of fitness evaluations and the first hitting times. Our results
can be summarized as follows:

• Using only sequence similarity resulted in very poor
success rates, even in moderately complex cases.

• Using only sequence distances performed slightly bet-
ter, still with unacceptable success rates in most cases.

• Using sequence similarity and preferring the solution
with smaller sequence distance when similarities are
equal resulted in very high success rates (100% for
nearly all cases) and an acceptable performance.

5. CONCLUSIONS AND FUTURE WORK
The proposed sequence similarity and sequence distance

approaches roughly have the same characteristics as approx-
imation level and branch distance methods. Their advantage
is that they are easy to implement and they can be uniformly
applied to all parts of the code. Besides, since they evalu-
ate the paths in their entirety instead of processing them
partially, they have the potential of better exploiting the
desirable characteristics of an input set.

Our preliminary results are promising but more research
is needed to better analyze the performance on various prob-
lems and to identify possible pitfalls in the algorithm. The
effect of parameter settings such as the match, mismatch
and gap penalties for the sequence alignment can also be
explored. The major drawback of the current implementa-
tion is that the tester specifies the desired path. Work on
eliminating this requirement is also needed.
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