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ABSTRACT
Many real-world optimization problems are dynamic in na-
ture. The interest in the Evolutionary Algorithms (EAs)
community in applying EA variants to dynamic optimiza-
tion problems has increased greatly. Differential Evolution
(DE) belongs to the group of evolutionary algorithms which
operate in continuous search spaces. DE has been success-
fully applied to many stationary problem domains. Recently
there has been some research into applying DE to dynamic
optimization problems too. Many real-world problems con-
sist of decision variables which require the optimization al-
gorithm to work with binary parameters. This makes it
impossible to apply DE in its basic form. For this purpose,
binary differential evolution (BDE) approaches have been
introduced. The main focus of this paper is to perform a
series of experiments to test the behavior of a simple BDE
under different change conditions. A simple bit-matching
problem is chosen as the test environment. The results of
this preliminary study show that further study is needed to
make BDEs suitable to work in dynamic environments.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods

General Terms
Algorithms, Performance

Keywords
Differential Evolution, Binary Differential Evolution, Dy-
namic Optimization Problems, Dynamic Bit Matching

1. INTRODUCTION
Many real-world optimization problems are dynamic in

nature. Evolutionary algorithms (EAs) are based on mech-
anisms found in nature. Adaptation to changes is an ongoing
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process in nature. This has caused a growing interest in ap-
plying various types of evolutionary algorithms (EAs) [2] to
such problems. For detailed overviews on EAs in dynamic
environments, refer to [6, 7, 9, 8].

The Differential Evolution (DE) [1] algorithm, introduced
by Storn and Price in 1995, belongs to the group of evolu-
tionary algorithms which operate in continuous search spaces.
DE has been successfully applied to many stationary prob-
lem domains. Recently there has been some research into
applying DE to dynamic optimization problems too. In [3],
DynDE, a multi-population DE approach for dynamic envi-
ronments is introduced. The test results are promising.

Many real-world problems consist of decision variables
which require the optimization algorithm to work with bi-
nary parameters. This makes it impossible to apply DE in
its basic form to such problems. For this purpose binary dif-
ferential evolution (BDE) approaches have been introduced.
Two such different implementations can be found in [4] and
in [5]. The successful results reported in [3] for applying
DE to dynamic optimization problems has been the main
motivation behind this study.

The main focus of this paper is to perform a series of
experiments to test the behavior of BDE under different
change conditions. A simple bit-matching problem is cho-
sen as the test environment and several experiments are per-
formed using the BDE implementation reported in [5]. The
BDE is used in its pure form with no additional measures to
adapt it to perform better in dynamic environments. This
is a very preliminary study and the results promote further
study.

The rest of the paper is structured as follows: Section 2
gives an overview of issues related to dynamic environments.
In Section 3, the BDE algorithm used in this study is ex-
plained. Section 4 details the experimental design and pro-
vides results and discussions. Section 5 concludes the paper
and provides directions for future research.

2. DYNAMIC ENVIRONMENTS
Dynamic optimization problems present a challenging area

for EA research. An optimization can be considered dy-
namic if the change in the environment occurs

• in the objective function,

• in the constraints,

• in the problem instance.
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One possible way to deal with changes is to approach the
problem as new and start from scratch. However, the in-
formation gathered until the change time could be useful in
finding the new optimum especially if it is not too far from
the old one.

Different types of change exhibit different characteristics,
therefore the best EA approach for a specific environment
has to exploit these characteristics. Thus different types of
EAs may perform differently in environments with different
dynamics. A new approach proposed for use in dynamic
environments should be tested for these different change
characteristics. The main approaches for coping with dif-
ferent types of changing environments are summarized and
discussed in detail in [6]. Changing environments can be
categorized based on the following criteria [6]:

• frequency of change

• severity of change

• predictability of change

• cycle length / cycle accuracy

To analyze and compare the performance of various ap-
proaches several metrics have been proposed. One of the
commonly used performance comparison approaches is us-
ing best-of-generation plots. In these plots, the fitness of
the best individual in each generation is plotted. This gives
an idea as to how badly the algorithm is affected from the
change and how quickly and how well it recovers. Another
commonly used metric, which gives an overall idea as to how
well the algorithm copes with the changes is the offline per-
formance [6]. In this metric, a cumulative average of the best
fitness values found so far is calculated. Detailed analysis of
different performance measures can be found in [10].

There are many different EA approaches proposed for im-
proved performance in dynamic environments. A current
overview can be found in [7].

3. BINARY DIFFERENTIAL EVOLUTION
The Differential Evolution (DE) [1] algorithm was intro-

duced by Storn and Price in 1995. Basically, DE is a popu-
lation based algorithm which operates in continuous search
spaces. DE is based on four main steps:

• initialization

• mutation

• recombination

• selection

Each individual in the population passes through these
operations. While the initialization step is only done in the
first iteration, the other three steps take place in each itera-
tion of DE. The chromosomes of an individual are made up
of real valued genes, shown as in Eq. 1, each of which cor-
respond to the parameters of the problem to be optimized.

Xj,i,g =

8<: j index of parameter
i index of individual
g index of generation

9=; (1)

The algorithmic flow of a DE can be seen in Fig. 1. In
this study, BDE which works within a binary search space

1: randomly initialize population
2: while not finished do
3: for all individuals in population do
4: choose target and base vectors
5: randomly choose two other vectors
6: computed weighted difference vector of the two
7: add difference to base vector
8: select between trial vector and base vector
9: end for

10: end while

Figure 1: The Differential Evolution Algorithm

is used. As can be seen from the definition of the mutation
operator of the DE algorithm given in Eq. 3, it is not possible
to use it for binary valued problems without a modification.
There are some approaches in literature for modifying DE so
that it works with binary problems. One of these methods
uses an angle modulation technique to transform the binary
space into a continuous space [4]. In the initial testing stage
of this study, the experimental results obtained using this
technique for a dynamic environment turned out to be very
insufficient. So in the rest of the study and in this paper,
the approach explained in [5] by Gong et. al. is used as the
BDE implementation. The details of this algorithm is given
below.

The initialization step sets the initial values of the param-
eters in the population. The value can be either 1 or 0 as
seen in Eq 2.

Xj,i,0 = rand{0, 1} (2)

Each individual in the population, called the target vec-
tor, goes through the mutation and recombination steps.
There are several mutation operators. One of the most
commonly used forms of these operators, the DE/rand/1
method, chooses three different vectors from the population
and creates a mutant vector from these, which will be called
the donor vector, through the equation given in Eq. 3.

V i, g = Xr0,g + F (Xr1,g −Xr2,g) (3)

F takes values in the range (0,1+) and it is recommended
to set F less than 1 [1]. Also, the constraint over deciding
the r0, r1, r2 vectors can be changed [1]. For example, in
some functions when r0 = r1 is allowed, better optimized
results can be obtained.

The modification for DE to make it run within binary
space, is done to the mutation operator. According to the
approach defined by Gong et al. [5], the multiplication, ad-
dition and substitution operators are changed as explained
below:

1. The value of any parameter in any of the vectors can
be either 0 or 1. To keep all values within the set of
{0,1}, the result of the subtraction (Xr1,g,i−Xr2,g,i) is
obtained using the hamming distance [5] between the
two vectors. The result of the addition operator is also
calculated using hamming distances.

2. After the substitution step, each parameter in the vec-
tor is multiplied with the F parameter. This operation
forces the values of the parameters to change from bi-
nary space to continuous space. To be able to use this
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newly created vector, in the next step of the mutation
operator, which is the addition operator, the values
should be transformed into either 0 or 1 [5]. To imple-
ment this, a rounding mechanism is used.

A sample application of the substitution operator is given
in Table 3.

Table 1: Sample application of the substitution op-
erator

Xr2,g 1 1 0 1 0
Xr3,g 0 1 0 0 0

After substitution 1 0 0 1 0

The aim of the recombination operation is to create a dif-
ferent vector based on the donor and the target vectors. The
parameters of this vector are taken from the target vector
when a uniformly distributed random number is greater than
a predefined Cr value; otherwise, it is taken from the donor
vector [1] as shown in Eq. 4. There are two proposed ways
[5] to implement this step: binomial and exponential. The
binomial crossover operation considers each parameter in a
vector separately, however in the exponential crossover op-
eration after randj(0, 1) ≤ Cr is true for the first time, the
remaining parameters are taken from the donor vector as a
block [1]. According to the experimental results obtained by
Gong et. al. [5], binomial crossover operator shows better
performance for the OneMax problem. Because the prob-
lem used for the tests in this paper is similar to the OneMax
problem, the binomial crossover operator is chosen in this
study. Cr takes values in the range [0,1]. The vector that
is created through the recombination step is called the trial
vector.

Uj,i,g =


Vj,i,g if(randj(0, 1) ≤ Cr or j = jrand)
Xj,i,g otherwise

(4)

Selection is the step to choose the vector between the tar-
get vector and the trial vector with the aim of creating an
individual for the next generation as shown in Eq. 5.

Xi,g+1 =


Xi,g if f(Ui,g) ≤ f(Xi,g)
Ui,g otherwise

ff
(5)

These steps continue until an acceptable solution is found
or a predefined number of maximum iterations has been
reached.

4. EXPERIMENTS
The main aim of the experiments is to analyze the per-

formance of BDE in dynamic environments under differ-
ent change characteristics. The experiments consist of four
tests.

• Test 1 compares the performance of a simple genetic
algorithm (SGA) to that of BDE in a stationary envi-
ronment

• Test 2 compares the performance of a simple genetic
algorithm (SGA) to that of BDE in a base case dy-
namic environment

• Test 3 analyzes the performance of BDE under changes
of different severities

• Test 4 analyzes the performance of BDE under changes
occurring with different frequencies

4.1 Test Problem
A simple, unimodal test problem is chosen for the tests

in this preliminary study. In the bit-matching problem, the
aim of the EA is to find the string which fully matches a
given string called the target string. The fitness of a solu-
tion is defined as the number of bits in the solution candidate
which match the corresponding bits in the target string. A
higher match means a higher fitness. In the binary case, the
fitness of an individual i can be calculated using the Ham-
ming distance between the target string and the solution
candidate as given in Eq. 6.

fi = Length−Hd(target, stringi) (6)

where Hd(target, stringi) gives the Hamming distance be-
tween the target string and the solution candidate stringi

given by the chromosome of individual i and Length is the
length of the target string.

The optimum solution matches the target string in all po-
sitions, and thus the hamming distance is 0. Therefore there
is only one global optimum for this problem and it is also uni-
modal. In the dynamic version of the bit-matching problem
(DBM), the target string is changed everytime the environ-
ment changes. The number of bits that are changed in the
target string is determined by the severity of the change. A
higher number of bits are changed when the change in the
environment is severe.

4.2 Parameter Settings
For the BDE and the DBM in all experiments, a base-

case for the parameter settings is defined as given below.
Base-case parameter settings for the BDE:

• F and CR are taken as 0.6 and 0.3 respectively. These
values are determined experimentally.

• A chromosome consists of 100 bits.

• The population consists of 100 individuals

• DE/rand/1 mutation is used.

• Binomial crossover method is used.

Base-case parameter settings for the DBM problem

• Target string length is 100.

• At every change approximately 20% are changed, i.e.
for every bit position on the target string, the proba-
bility of being changed is 0.2.

• Changes occur every 3000 fitness evaluations.

• A total of 20 changes are applied for every run.

For Test 1 and Test 2, the BDE will be compared to a
SGA. As a SGA, a very standard generational GA with de-
fault parameter settings [2] is used as given below. The
algorithmic flow of the SGA can be seen in Fig. 2.

• Population consists of 100 individuals.

• Chromosome length is 100.
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1: randomly initialize population
2: while not finished do
3: select mating pool
4: perform crossover on parents in pool
5: perform mutation on the offspring
6: offspring replace parents
7: end while

Figure 2: The Simple Genetic Algorithm

• Binary tournament selection is used.

• Recombination is performed through two-point crossover
with probability pc = 0.8. This type of crossover is
chosen to make it similar to the crossover mechanism
in BDE.

• Bit-flip mutation with probability pm = 1/Length,
i.e.pm = 0.01, is used.

• The next generation of individuals is determined through
generational replacement where the offspring fully re-
place the parent population with no elitism.

In Test 3, BDE will be analyzed under changes of different
severities. The following severity settings are used:

• lowSeverity = 0.05

• mediumSeverity = 0.2

• highSeverity = 0.4

• veryHighSeverity = 0.75

In Test 4, BDE will be analyzed under changes occurring
with different frequencies. The following frequency settings
are used:

• highFrequency: changes occur every 1000 fitness eval-
uations

• mediumFrequency: changes occur every 3000 fitness
evaluations

• lowFrequency: changes occur every 5000 fitness eval-
uations

The performance comparisons are done based on offline
performance values calculated as given below.

x‘ = 1
T

PT
t=1 e‘t

where
e′

t = max[eτ , eτ+1, ..., et]
(7)

where τ is the last time step (τ < t) at which a change
occurred.

All results are averaged over 20 runs with different ran-
dom seeds and different random initial target strings. The
average offline performance values over 20 runs and the cor-
responding standard error values will be reported for each
test.

4.3 Test Results
All results will be given as offline performace plots and

also as average and standard error value tables for each test
separately. In all the plots, the x-axes show the number of
fitness evaluations and the y-axes show the corresponding
offline performance values averaged over 20 runs.

In Test 1, the main aim is to compare the performace
of BDE to a SGA in a stationary environment as a base
case. BDE uses the base settings and both algorithms are
allowed to run a total of 63000 fitness evaluations which
corresponds to the total number of fitness evaluations for
21 environments with 3000 fitness evaluations in each. This
value is chosen because in the base-case settings for DBM, 20
changes occur with a period of every 3000 fitness evaluations
so each algorithm has a chance to work in 21 environments.
The offline performance plot is given in Fig. 3. The av-
erage offline performance and the standard errors for SGA
and BDE at the end of 63000 fitness evaluations is given in
Table 2.

Both SGA and BDE show a very similar performance in
the stationary case. Since the bit matching problem is uni-
modal and easy, the algorithms display a good performance.
BDE and SGA perform equally well under the same condi-
tions.
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Figure 3: Offline performance comparison of a SGA
and a BDE in a stationary environment

Table 2: Results for Test 1
Average Standard Error

SGA 98.97 0.02
BDE 98.92 0.008

In Test 2, the main aim is to compare the performace of
BDE to a SGA in a base-case setting of a dynamic environ-
ment. BDE uses the base settings and both algorithms are
subject to the base-change parameter settings of DBM. In
the base-case settings for DBM, 20 changes occur with a pe-
riod of every 3000 fitness evaluations so each algorithm has a
chance to work in 21 environments. The offline performance
plot is given in Fig. 4. The average offline performance and
the standard errors for SGA and BDE at the end of 63000
fitness evaluations is given in Table 3.

In this test, the change severity and frequency is chosen
as medium. SGA drops a little in performance. However
the drop in BDE is drastic. Even a SGA with no special
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mechanisms for dynamic environments performs better than
the BDE.
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Figure 4: Offline performance comparison of a SGA
and a BDE in base-case change scenario

Table 3: Results for Test 2
Average Standard Error

SGA 91.6 0.07
BDE 63.95 0.32

In Test 3, the main aim is to analyze the performace of
BDE under changes of different severity. BDE uses the base
settings and is again subject to the base-change parameter
settings of DBM for a total of 21 environments except for
the change severity parameter. The tested change severity
settings are given in the previous subsection. The offline
performance plot is given in Fig. 5. The average offline per-
formance and the standard errors at the end of 63000 fitness
evaluations for different severity settings is given in Table 4.

As is expected, performance drops as the severity of changes
increases. But the performance drop between a medium
severity change and a high severity change is not very large.
A very high severity change causes approximately 75% of
the bits to change, i.e. change probability for each gene is
0.75. A change probability of 0.5 for a gene means it is a
new problem to be solved. In this case, the best approach
would be to use random-restart. The population which has
converged around the current optimum, mainly hinders the
progress of the EA after such a severe change. Thus, to
study the performance of any EA for any change severities
higher than 50% is not very meaningful. For a BDE, this
threshold seems to be lower. The offline performance differ-
ence between a high and very high severity change is quite
small.

Table 4: Results for Test 3
Average Standard Error

Low severity 73.97 0.46
Medium severity 63.95 0.32

High severity 61.70 0.19
Very high severity 60.57 0.15

In Test 4, the main aim is to analyze the performance
of BDE under changes occurring with different frequencies.
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Figure 5: Offline performance in a dynamic environ-
ment with different change severities

BDE uses the base settings and is again subject to the base-
change parameter settings of DBM for a total of 21 envi-
ronments except for the change frequency parameter. The
tested change frequency settings are given in the previous
subsection. The average offline performance and the stan-
dard errors for the different frequency settings is given in
Table 5. Note that in this test case, since changes occur
with different number of fitness evaluations in between, at
the end of 21 environments, the total number of fitness eval-
uations are different for each case. Due to this, the offline
performance plots for each change frequency is given sepa-
rately as in Fig. 6, Fig. 7 and Fig. 8.

The worst performance occurs under low frequency changes.
This means that the BDE has time to converge between the
changes and once it is converged, it looses its diversity and
is not able to adapt to the new environment. Similarly,
the best performance is achieved in a high frequency change
environment. The BDE doesn’t have sufficient time to con-
verge and thus is able to track the optimum better.

Table 5: Results for Test 4
Average Standard Error

Low frequency 58.52 0.35
Medium frequency 63.95 0.32

High frequency 65.30 0.19
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Figure 6: Offline performance in a dynamic environ-
ment with low frequency changes
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Figure 7: Offline performance in a dynamic environ-
ment with medium frequency changes
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Figure 8: Offline performance in a dynamic environ-
ment with high frequency changes

5. CONCLUSION AND FUTURE WORK
In this study, a BDE implementation recently proposed in

literature has been tested in a dynamic environment setting
with different change characteristics. It has been shown that
in the stationary case, a SGA and the BDE perform simi-
larly. However, even in the base case change, BDE performs
poorly when compared to the SGA. In the further tests,
BDE performs even worse. The results indicate that loss of
diversity is a major issue when applying BDE to dynamic
optimization problems. Once the population looses diver-
sity it is very hard to adapt to the new environment. It can
especially be seen in the results of the tests with different
frequencies.

It can be concluded from the results that BDE in its pure
form is not suitable to be used for solving dynamic optimiza-
tion problems. However, since it performs well in station-
ary environments, it promotes further study. Incorporating
diversity maintaining techniques into BDE, would help im-
prove performance. Also, multi-population approaches sim-
ilar to DynDE [3] should be experimented with. In [3], a
good performance is reported for a DE in a dynamic envi-
ronment with real valued parameters. Similar enhancements
can make BDE perform better too.

In conclusion, the results of this preliminary study show
that further study is needed to make BDEs suitable to work
well in dynamic environments.
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