
An Adaptive Diploid Evolutionary Algorithm forFloating-Point Representations in DynamiEnvironmentsA. �ima Etaner-UyarIstanbul Tehnial University, Department of Computer EngineeringTR-34469 Maslak Istanbul, Turkeyetaner�s.itu.edu.trAbstrat. Many �avors of di�erent EA approahes have been suggestedto address the various requirements that arise when the environment isdynami. One suh line of researh fouses on using memory based teh-niques however, their use is very limited and they are only seen to beadvantageous when the environment periodially returns to previouslyvisited states. In addition to this, most of these approahes require ahange detetion mehanism to inrease the diversity when hange oursand their performane largely depends on an aurate detetion meha-nism. In this study, an impliit memory-based approah for �oating pointrepresentations that uses a tehnique similar to estimation of distribu-tion algorithms for evolutionary algorithms, to automatially adapt thepopulation to the hange, is introdued. This approah aims at address-ing some of the de�ienies reported for memory-based approahes whileat the same time it requires no hange detetion mehanism to triggerthe adaptation proess. The Moving Peaks Benhmark is used in the ex-periments to show the desired properties of the proposed approah. Thepreliminary results obtained are promising and promote further study.1 IntrodutionEvolutionary algorithms (EA) have been applied to a diverse set of problems.Most of the published work on EAs mainly fous on stationary environments.However, reently an inreasing interest in applying EAs to dynami environ-ments an be seen paralleled by the inrease in number of papers published onthe topi. Many �avors of di�erent EA approahes have been suggested to ad-dress the various requirements that arise when the environment is dynami. Adetailed survey of the EAs suggested for use in dynami environments an befound in [1℄, [4℄ and more reently in [5℄.When designing e�ient EAs for dynami environments, several aspets ofthe hange need to be onsidered. These have been ategorized in [4℄ as theseverity of the hange, the frequeny of the hange, the preditability of thehange and yle length / yle auray of the hange.Eah di�erent aspet of the hange has distint properties whih may form abasis in the design of a speialized EA approah, but the need to preserve diver-sity in the population is a key requirement for all. Loss of diversity is one of the



main reasons why traditional EA approahes do not perform so well in dynamienvironments. The EA approahes in literature that address diversity issues fromdi�erent viewpoints an roughly be grouped as those using standard diversitypreservation tehniques suh as sharing or rowding, those inorporating someform of a geneti memory and those that use multiple populations or other formsof parallel EAs. There are not many studies that thoroughly ompare eah andall of these approahes. One suh reently published study [5℄ fouses on om-paring several memory based tehniques with a multi-population approah. Theresults of the empirial omparisons show that memory-based tehniques havemany de�ienies when oping with the di�erent aspets and requirements of adynami environment.Most of the work proposed for dynami environments, rely on deteting thehange instane to trigger the extra steps to ope with this hange and theirperformane largely depends on an aurate detetion mehanism. A triggermehanism that produes too many �false-positives� will ause the algorithm toperform the extra steps even when there is no atual hange in the environment.Sine these steps mostly involve some form of a diversity inreasing mehanism,applying them when the environment has not hanged, disrupts the ongoingsearh proess and degrades performane. One suh observation an be seen in[13℄ where the authors report that when the hange frequeny is low, the our-rene of the �false-positives� inrease, possibly leading to a poorer performane.The memory-based tehniques used for omparisons in [5℄ require some form ofa detetion mehanism to trigger the hange, however the detetion mehanismhas not been explored in that paper. To avoid the performane issues aused asa result of faulty triggers, it would be better to have an approah that adaptsautomatially when hange ours without requiring an extra e�ort to detetthe hange.In this study, a memory-based approah that uses a tehnique similar to es-timation of distribution algorithms (EDA) [11℄ for EAs, to automatially adaptthe population to the hange, is introdued. This approah aims at address-ing some of the de�ienies reported for memory-based approahes while at thesame time it requires no hange detetion mehanism to trigger the adapta-tion proess. A �oating-point, diploid representation of individuals is used toprovide the neessary diversity. Diploidy is traditionally regarded as being animpliit memory mehanism, however in this study it is mainly used as a soureof genotypi diversity. A genotype to phenotype mapping mehanism that au-tomatially adapts, based on the urrent weighted averages of the gene valuesof the population is implemented. This genotype to phenotype mapping meha-nism an be ategorized as being adaptive [8℄ based on the fat that adaptationis done through feedbak obtained diretly from the ongoing searh proess. Thisapproah will be referred to as DECAF (Diploid Evolutionary Computing withAdaptation for Floats) for the rest of the paper. Experimental runs using theMoving Peaks Benhmark, �rst introdued in [2℄ and an be downloaded from[22℄, are performed. The preliminary results obtained show that in its urrentform, DECAF is omparable in performane to the best memory based algorithm



reported in [2℄ and used for omparisons in [5℄, but is superior to that approahin the fat that it requires no hange detetion. These promising results promotefurther study to enhane the automati adaptation mehanism to reah a betterperformane omparable to that of the multiple population approah introduedin [3℄ and used for omparisons in [5℄.This paper will be organized as follows: In setion 2, a survey of memory basedapproahes for dynami environments will be given and their known de�ienieswill be disussed. In setion 3, the proposed approah DECAF will be introdued.Experimental results to explore the properties and performane of DECAF indetail will be presented in Setion 4. Setion 5 will onlude the paper andprovide possible diretions for future work.2 Memory Based Evolutionary Algorithms for DynamiEnvironmentsMemory based approahes have been widely used in applying EAs to dynamienvironments. Memory has been inorporated in an EA in two ways: as impliitmemory through redundant representations or as expliit memory through usingexternal memory to store / retrieve individuals. Introdution of a form of memoryinto the EA is espeially useful when the hange in the environment exhibits aperiodi nature and returns to old states where previously found good solutionsbeome favorable again.For introduing impliit memory, redundant representations implemented asmultiploid hromosomes with some form of a domination mehanism has beenused in literature. The most known approahes that fall into this ategory aredisussed in [7,9,10,12,14,15,16℄. In [12℄, the authors ompare two state-of-the-art diploid approahes with a simple hypermutation sheme [6℄ in whih themutation rate is inreased for a prede�ned number of generations when hangeours. The diploid approahes hosen for omparisons are the Ng-Wong ap-proah [14℄ and the additive diploidy approah [15℄. In the Ng-Wong approaheah individual has a diploid hromosome struture where eah gene an havefour di�erent alleles: dominant and reessive 0 and also dominant and rees-sive 1. The phenotype of an individual is determined based on the dominaneharateristis of the two orresponding genes for eah loation. In the addi-tive diploidy approah, individuals again have a diploid hromosome struturewhere eah gene an have several allele values eah of whih is assigned a nu-meri value. The phenotype is determined using an additive approah. For eahlous on the phenotype, the orresponding values of the alleles are added and ifthe sum exeeds a threshold, the phenotype has allele 1 and has allele 0 if thethreshold is not exeeded. The additive diploidy is easily extended to have morethan two hromosomes. In [12℄, as a result of the preliminary experiments, theauthors onlude that a dominane hange is required for better performaneand they modify both approahes to inorporate the required mehanism. Inthe Ng-Wong approah, when hange ours, the dominane harateristis ofall alleles are inverted, e.g. a dominant 1 beomes a reessive 1. In additive



diploidy, when hange ours, the allele values at eah lous is either demoted orpromoted depending on the value of the orresponding allele on the phenotype.The results obtained using the two modi�ed diploid approahes on�rm the fatthat impliit memory (through diploid hromosomes) is useful when the envi-ronment osillates between two optima. However when hange ours randomly,both diploid approahes fail and a simple hypermutation sheme is found to bemore useful.For expliit memory, some di�erent approahes have been suggested in lit-erature. Most of these rely upon storing some of the urrent information forinserting into the population in later generations after the environment hanges.A detailed survey of these approahes an be found in [1℄, [4℄ and more reentlyin [5℄. In [2℄, design issues of expliit memory approahes are disussed and anew approah that inorporates the advantages of using a memory together witha mehanism that has a similar e�et to a random restart when hange oursis proposed. In that study, the population is divided into two sub-populations: asearh population and a memory population. The searh population is respon-sible for keeping the diversity in the population, �nding new good solutions andstoring them in memory and is randomly re-initialized when a hange ours. Thememory population is responsible for remembering the previously found goodsolutions. They experiment with di�erent strategies for deiding whih individ-uals to store in memory and whih individuals to replae later when individualsare retrieved from the memory population. The experimental results obtainedon�rm that memory is useful for periodi dynamis in the environment andshow that some method for keeping diversity within the population is requiredalong with memory for better performane. The authors also present some openquestions for future work.3 The Proposed Approah - DECAFAs has been disussed previously, memory based approahes have a limited usewhere they are advantageous over other approahes. When the environmentvisits previous states, a memory beomes useful in adapting to the hange andremembering old solutions, however when the environment hanges randomly,the memory property may guide the population towards wrong areas in thesearh spae and not allow for disovering new good peaks. This implies that itis also very important to have some form of a diversity preserving tehnique alongwith memory to improve performane. Most proposed methods for ahieving this,require that hange is known by the EA to re-introdue diversity. Usually mostpapers in literature either assume that hange is expliitly made known to theEA or they use some form of a mehanism to detet the hange. In some ases,it is realisti to assume that hange is expliitly made known to the system.For example in a sheduling environment, if a new job arrives or a job leavesor a new mahine is added or a mahine is removed, it is usually known by thesystem and no detetion is required however in most problems, this assumptionwill not be realisti. The hange has to be deteted by the system. As has



been previously mentioned, problems with deteting the hange also a�et theperformane of the EA. Ating on �false-positives� usually degrades performanerather than improving it. Furthermore, in ases where the hange ours in theonstraints rather than the problem itself, it is even harder to orretly detetthis hange, espeially when the onstraints beome less tighter and the urrentsolutions are still feasible but no longer are the optimum. So it is lear that anapproah that does not need to know when hange ours would not su�er fromthe disadvantages of a weak detetion mehanism.The proposed approah, DECAF has a diploid hromosome struture withreal valued genes. Eah individual has two hromosomes forming the genotypeof the individual. The harateristis that are expressed, i.e. the phenotype, areobtained through a dominane mehanism. To the best of the author's knowl-edge, for �oating point representations, no diploidy with a dominane mehanismhas been previously suggested in literature. Of ourse it is possible to use theexisting approahes for binary enodings through representing the real valuedgenes using a binary or a gray oding. However this method will not be verye�ient, �rstly beause of redundant odes due to the required number of bitsto represent the numbers in the allele value range and seondly due to a limited�xed preision to represent the real valued genes with bits.In DECAF, a global array that keeps the dominane probabilities for thealleles on the �rst hromosomes of the individuals is used for the genotype tophenotype mapping. To determine these probabilities, �rst of all weighted aver-ages of the allele values at eah lous is alulated for eah generation using Eq. 1where Ai shows the weighted average of the allele values at the ith lous, pij isthe phenotypi value at the ith lous of the j th individual in the population and
fj is the �tness of the j th individual.

Ai =

∑
j(pij ∗ fj)∑

j fj

, j = 1, 2, ..., PopSize (1)An allowed error perentage err is de�ned for the algorithm. To alulatethe dominane probability of the alleles on the �rst hromosomes, a weightedproportion is alulated. The phenotypi values of those alleles that are withinthe neighborhood of the weighted average for that lous as de�ned by the errorratio are multiplied by the �tnesses and are summed. This sum is divided bythe total �tness of the population to determine the dominane probability of thealleles on the �rst hromosomes for that lous. This proedure is given in thepseudoode in Fig. 1.When determining the phenotype from the genotype of an individual, foreah lous, if the allele value of the �rst hromosome for that lous is withinthe allowed error limits, then it is expressed in the phenotype with a probabilitygiven in the dominane vetor orresponding to that lous, otherwise the allelevalue on the seond hromosome is expressed. If both hromosomal values arewithin the allowed error limits or if both are not, then either the allele on the�rst hromosome or the allele on the seond hromosome is seleted randomlywith equal probability.



begin 

  TotalSum = Calculate_Total_Fitness();
  PartialSum = 0;
  for i=0 to ChromosomeLength
  begin
    for j=0 to IndividualCount
    begin
      if (A[i]-A[i]* err) < p[j,i] < (A[i]+A[i]* err)
        PartialSum = PartialSum + (p[j,i]*f[j]);
    end
    Dominance[i] = PartialSum / TotalSum;
  end
endFig. 1. Algorithm for alulating dominane probabilitiesGaussian mutation is used for the mutation step on the genotype. The alleleson the �rst hromosomes of all individuals are mutated at a rate of pm1 andthe alleles on the seond hromosomes have a mutation rate of pm2. Both muta-tion rates are taken as the standard deviations of the normal distribution withmean 0. pm1 is hosen to be smaller than pm2. This auses smaller hanges inthe alleles on the �rst hromosomes and bigger hanges in the alleles on the se-ond hromosomes. During the reprodution phase, ross-over ours between theorresponding hromosomes of the pairs separately, i.e. the information arriedon the �rst hromosomes and on the seond hromosomes are not mixed. Themutation sheme ombined with the domination mehanism, auses the algo-rithm to searh for solutions lose to the loation given by the weighted averagesof the urrent population during the times when the environment is stationary.When the environment hanges, due to the di�erene in the new �tness values ofthe individuals, the weighted averages of the population hange too, ausing thealleles on the seond hromosomes to be expressed. Sine these alleles are typi-ally mutated at higher rates, this enables the population to jump in the searhspae. This adaptation is automati and does not require any hange detetionmehanism.This domination mehanism is an extension of a previous approah proposedby the author in an earlier work [17,18℄ for binary representations and laterextended to non-order based multi-alleli representations [19℄. In the binary ase,a global domination array is alulated for eah generation. The value for eahlous is alulated as the sum of the �tnesses of those individuals that have avalue of 1 on their phenotypes for that lous divided by the total �tness of thepopulation. These values show the domination fators of allele 1 over allele 0 forthe orresponding loations on the hromosomes. When the genotypi values onboth hromosomes for a lous are equal, that value is expressed in the phenotype.When they are di�erent, the phenotype beomes 1 with a probability givenby the orresponding domination array value. In this ase too, the adaptationmehanism is automati and the domination array guides the searh towards theloations that seem favorable for the urrent environment. Both hromosomesare mutated at very high rates allowing for a high level of diversity on thegenotypi level. This approah has been tested against state-of-the-art diploid



representations with domination mehanisms in [20℄ and have been shown tooutperform them espeially when the hange in the environment is random.The domination mehanism in both the binary and integer ases as well asthe �oating point ase is based on using the information represented by theurrent population. In that sense, the mehanism is similar to estimation ofdistribution algorithms [11℄ when guiding the searh on the phenotypi level.However, sine preserving diversity in dynami environments is very important,the diploid hromosome struture is used to provide this. Historially diploid rep-resentation have been used to remember previous good solutions. In DECAF,the memory property is not emphasized. In this sense, DECAF is similar tothe expliit memory approah presented in [2℄ where there are two populations,one for searhing di�erent areas of the searh spae and the other for keepinga reord of found good solutions. The seond hromosome in the diploid stru-ture provides the exploration feature while the �rst hromosome tries to exploiturrent good solutions. The major di�erene between both approahes is thatin DECAF, adaptation is automati while for the expliit memory approah,adaptation depends on the detetion of the hange.4 ExperimentsThe same experiments as in [5℄ are arried out to show the performane ofDECAF. The Moving Peaks Benhmark (MPB) �rst introdued in[2℄ and usedin the experiments in [5℄ is used. The MPB an be downloaded from [22℄. For thetests, the one funtion with the default base funtion is used. Peaks are hangedevery 5000 evaluations in height, width and loation. For all the experiments,unless otherwise stated, the MPB default parameter settings given in Table 1are used.Table 1. Default parameter settings for the MPB used in the experimentsParameter Valuehange frequeny 5000 evaluationsshift vetor length (s) 1.0lambda 0.5number of peaks 10number of dimensions 5dimension value range [0, 100℄height severity 7.0width severity 0.01height (max,min,std) 70,30,50width (max,min,std) 7.0,0.8,1.0random number seed 1



The results will be reported based on 50 runs of all the programs. Plots of theo�ine error and the perentage of peaks overed on the genotypi level throughgenerations, all averaged over 50 runs, will be given. Graphs will be given as errorbars where the average and standard deviation of the 50 runs will be plotted.O�ine error is de�ned in [5℄ as the average urrent error over all time steps.Current error is the di�erene between the �tness of the urrent best individual(sine last hange) and the atual optimum. O�ine error is alulated as inEq. 2.
e∗(T ) =

1

T

T∑

t=1

et where et = opt(t) − fbest(t) (2)The population onsists of 100 individuals whih are initialized randomly.Eah individual has a diploid representation with real valued genes. Genera-tional replaement with an elitism of one individual per generation is used. Foreah generation, the best individual from the previous generation replaes theworst individual in the urrent generation if it has a higher �tness in the ur-rent environment. Fitness values of the individuals are alulated based on theirphenotypes but the variation operators at diretly on the hromosomes, i.e. thegenotype. Gaussian mutation is used with standard deviations given as pm1 = 0.2for the �rst hromosomes and as pm2 = 10 for the seond hromosomes. The val-ues of pm1 and pm2are determined empirially to give good performane. Caremust be given that pm2 should be seleted as signi�antly higher than pm1. Eahdimension represented by eah gene takes on values between 0 and 100. In thenormal distribution, 95% of the values are within 1.96 standard deviations of themean. So a hoie of 10 for the seond mutation rate should provide an aept-able amount of diversity. Two point ross-over between the �rst hromosomesand also between seond hromosomes of reproduing pairs is used eah with arate of pc = 0.6 where the two ross-over loations are seleted randomly withequal probability for all loi. For mating pool seletion, tournament seletionwith tournament sizes of two is used. All programs are run for a total of 1000generations eah. Sine there are 100 individuals in the population, this meansthat hange ours every 50 generations. For eah test ase, the EA starts witha di�erent random number seed for the 50 runs whereas the same seed is usedfor the MPB to obtain the same environment for all 50 runs of the algorithm.For the EA implementation, the GNU Sienti� Library [21℄ implementationsof the random number generators and the normal distribution is used with theMersenne-Twister random number generator hosen to sample from the uniformdistribution. For the MPB, to make results omparable with those reported inprevious studies, the random number generators inluded in the benhmark areused.In [5℄, the experiments onsist of three parts. In the �rst part, the e�et ofthe hange severity is explored. In the seond part, the e�et of reurrene ofoptima is tested. And in the �nal part, the e�et of inreasing the number ofpeaks is explored. To be able to make omparisons, the same set of experiments,explained in the following subsetions, are performed in this study too. In all



experiments, unless otherwise stated, all parameters of the MPB are as given inTable 1.To test the e�et of the hange severity the length of the shift vetor is variedbetween 0.0 and 3. The o�ine error at the end of 1000 generations, averagedover 50 runs an be seen in the plot in Fig. 2. The perentage of peaks overedat all generations by the genotype spae of the populations, averaged over 50runs, for a shift vetor of length s = 1.0, is given in Fig. 3. The o�ine error plotin Fig. 2 is omparable to the one given in [5℄ for the expliit memory approahand shows similar performane with di�erent hange severity levels. So it anbe said that performane is not highly dependent on the severity of the hange.In Fig. 3, the plots for the perentage of peaks overed on the genotypi levelis given. It an be seen from this �gure and Fig. 2 that while the perentage ofpeaks overed on the genotypi level is not very high, the adaptation mehanismis su�ient for keeping a moderately low o�ine error, onsistent over di�erenthange severity levels.To test the e�et of reurrene the value of lambda is varied between 0 and 1.In the previous test ase, lambda was hosen as 0.5, ausing the peaks to move ina random diretion at eah hange instane. Inreasing the value of lambda willmake the diretion of the move more dependent on the urrent diretion, makingreurring optima less likely. The o�ine error plot an be seen in Fig. 4. Theperformane of DECAF is again very similar to the expliit memory approahplot given in [5℄. It should be noted that the o�ine performane is not muha�eted from the seletion of lambda. This supports the fat that the memoryfeature of diploidy works together with the adaptation and diversity preservingmehanisms to be able to ope with di�erent dynamis as represented by di�erentvalues of lambda.To see the e�et of hanging the number of peaks the number of peaks arevaried between 10 and 200. The o�ine error plot an be seen in Fig. 5 and theperentage of peaks overed on the genotypi level for 10, 50 and 175 peaksan be seen in Fig. 6. It an be seen that even though the perentage of peaksovered by the genotype dereases as the number of peaks are inreased, theo�ine performane is not too a�eted.
 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  0.5  1  1.5  2  2.5  3

of
fli

ne
-e

rr
or

shift vector length (s)Fig. 2. The e�et of inreasingthe shift vetor length (s)  0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

P
er

ce
nt

 o
f P

ea
ks

 C
ov

er
ed

GenerationsFig. 3. Perentage of peaks overedby genotype at s=1.0 and 10 peaks



 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

of
fli

ne
-e

rr
or

lambdaFig. 4. The e�et of inreasing lambda
 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

of
fli

ne
-e

rr
or

no. of peaksFig. 5. The e�et of inreasingthe number of peaks  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

P
er

ce
nt

 o
f P

ea
ks

 C
ov

er
ed

Generations

peaks=10

peaks=50

peaks=175Fig. 6. Perentage of peaks overedby genotype at 10, 50 and 175 peaks5 Conlusion and Future WorkAn adaptive evolutionary algorithm for dynami environments, using diploidhromosomes with a �oating point enoding and an adaptive genotype to phe-notype mapping mehanism is introdued in this study. Through experiments, itis found to perform similarly to an expliit memory approah whih was shownto perform better than other memory based approahes in [5℄. As has been re-ported in [5℄, memory based approahes have a very limited use in dynamienvironments but the addition of a diversity maintaining mehanism seems toimprove performane. However as the experiments in that study also indiated,urrently multiple population approahes perform muh better than the bestmemory based approah tested. In this study, DECAF is shown to reah theperformane of the expliit memory approah reported in that study however ittoo is not able perform as well as the multi-population approah. Even thoughthey exhibit similar performane harateristis, DECAF is better than the ex-pliit memory approah of [5℄ in some ways, espeially beause adaptation inDECAF is automati and thus performane will not be degraded by possible�false positives� generated by the hange detetion mehanism.Even though this study reports the preliminary results of DECAF, these re-sults are quite promising and promote further study. In this study, parametersettings, espeially the mutation rates of both hromosomes, have been doneempirially to provide good performane. However it should be further exploredto test the dependeny of the performane on the hoie of parameters. A betteradaptation mehanism will possibly be able to provide a more robust solution.
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