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s.itu.edu.trAbstra
t. Many �avors of di�erent EA approa
hes have been suggestedto address the various requirements that arise when the environment isdynami
. One su
h line of resear
h fo
uses on using memory based te
h-niques however, their use is very limited and they are only seen to beadvantageous when the environment periodi
ally returns to previouslyvisited states. In addition to this, most of these approa
hes require a
hange dete
tion me
hanism to in
rease the diversity when 
hange o

ursand their performan
e largely depends on an a

urate dete
tion me
ha-nism. In this study, an impli
it memory-based approa
h for �oating pointrepresentations that uses a te
hnique similar to estimation of distribu-tion algorithms for evolutionary algorithms, to automati
ally adapt thepopulation to the 
hange, is introdu
ed. This approa
h aims at address-ing some of the de�
ien
ies reported for memory-based approa
hes whileat the same time it requires no 
hange dete
tion me
hanism to triggerthe adaptation pro
ess. The Moving Peaks Ben
hmark is used in the ex-periments to show the desired properties of the proposed approa
h. Thepreliminary results obtained are promising and promote further study.1 Introdu
tionEvolutionary algorithms (EA) have been applied to a diverse set of problems.Most of the published work on EAs mainly fo
us on stationary environments.However, re
ently an in
reasing interest in applying EAs to dynami
 environ-ments 
an be seen paralleled by the in
rease in number of papers published onthe topi
. Many �avors of di�erent EA approa
hes have been suggested to ad-dress the various requirements that arise when the environment is dynami
. Adetailed survey of the EAs suggested for use in dynami
 environments 
an befound in [1℄, [4℄ and more re
ently in [5℄.When designing e�
ient EAs for dynami
 environments, several aspe
ts ofthe 
hange need to be 
onsidered. These have been 
ategorized in [4℄ as theseverity of the 
hange, the frequen
y of the 
hange, the predi
tability of the
hange and 
y
le length / 
y
le a

ura
y of the 
hange.Ea
h di�erent aspe
t of the 
hange has distin
t properties whi
h may form abasis in the design of a spe
ialized EA approa
h, but the need to preserve diver-sity in the population is a key requirement for all. Loss of diversity is one of the



main reasons why traditional EA approa
hes do not perform so well in dynami
environments. The EA approa
hes in literature that address diversity issues fromdi�erent viewpoints 
an roughly be grouped as those using standard diversitypreservation te
hniques su
h as sharing or 
rowding, those in
orporating someform of a geneti
 memory and those that use multiple populations or other formsof parallel EAs. There are not many studies that thoroughly 
ompare ea
h andall of these approa
hes. One su
h re
ently published study [5℄ fo
uses on 
om-paring several memory based te
hniques with a multi-population approa
h. Theresults of the empiri
al 
omparisons show that memory-based te
hniques havemany de�
ien
ies when 
oping with the di�erent aspe
ts and requirements of adynami
 environment.Most of the work proposed for dynami
 environments, rely on dete
ting the
hange instan
e to trigger the extra steps to 
ope with this 
hange and theirperforman
e largely depends on an a

urate dete
tion me
hanism. A triggerme
hanism that produ
es too many �false-positives� will 
ause the algorithm toperform the extra steps even when there is no a
tual 
hange in the environment.Sin
e these steps mostly involve some form of a diversity in
reasing me
hanism,applying them when the environment has not 
hanged, disrupts the ongoingsear
h pro
ess and degrades performan
e. One su
h observation 
an be seen in[13℄ where the authors report that when the 
hange frequen
y is low, the o

ur-ren
e of the �false-positives� in
rease, possibly leading to a poorer performan
e.The memory-based te
hniques used for 
omparisons in [5℄ require some form ofa dete
tion me
hanism to trigger the 
hange, however the dete
tion me
hanismhas not been explored in that paper. To avoid the performan
e issues 
aused asa result of faulty triggers, it would be better to have an approa
h that adaptsautomati
ally when 
hange o

urs without requiring an extra e�ort to dete
tthe 
hange.In this study, a memory-based approa
h that uses a te
hnique similar to es-timation of distribution algorithms (EDA) [11℄ for EAs, to automati
ally adaptthe population to the 
hange, is introdu
ed. This approa
h aims at address-ing some of the de�
ien
ies reported for memory-based approa
hes while at thesame time it requires no 
hange dete
tion me
hanism to trigger the adapta-tion pro
ess. A �oating-point, diploid representation of individuals is used toprovide the ne
essary diversity. Diploidy is traditionally regarded as being animpli
it memory me
hanism, however in this study it is mainly used as a sour
eof genotypi
 diversity. A genotype to phenotype mapping me
hanism that au-tomati
ally adapts, based on the 
urrent weighted averages of the gene valuesof the population is implemented. This genotype to phenotype mapping me
ha-nism 
an be 
ategorized as being adaptive [8℄ based on the fa
t that adaptationis done through feedba
k obtained dire
tly from the ongoing sear
h pro
ess. Thisapproa
h will be referred to as DECAF (Diploid Evolutionary Computing withAdaptation for Floats) for the rest of the paper. Experimental runs using theMoving Peaks Ben
hmark, �rst introdu
ed in [2℄ and 
an be downloaded from[22℄, are performed. The preliminary results obtained show that in its 
urrentform, DECAF is 
omparable in performan
e to the best memory based algorithm



reported in [2℄ and used for 
omparisons in [5℄, but is superior to that approa
hin the fa
t that it requires no 
hange dete
tion. These promising results promotefurther study to enhan
e the automati
 adaptation me
hanism to rea
h a betterperforman
e 
omparable to that of the multiple population approa
h introdu
edin [3℄ and used for 
omparisons in [5℄.This paper will be organized as follows: In se
tion 2, a survey of memory basedapproa
hes for dynami
 environments will be given and their known de�
ien
ieswill be dis
ussed. In se
tion 3, the proposed approa
h DECAF will be introdu
ed.Experimental results to explore the properties and performan
e of DECAF indetail will be presented in Se
tion 4. Se
tion 5 will 
on
lude the paper andprovide possible dire
tions for future work.2 Memory Based Evolutionary Algorithms for Dynami
EnvironmentsMemory based approa
hes have been widely used in applying EAs to dynami
environments. Memory has been in
orporated in an EA in two ways: as impli
itmemory through redundant representations or as expli
it memory through usingexternal memory to store / retrieve individuals. Introdu
tion of a form of memoryinto the EA is espe
ially useful when the 
hange in the environment exhibits aperiodi
 nature and returns to old states where previously found good solutionsbe
ome favorable again.For introdu
ing impli
it memory, redundant representations implemented asmultiploid 
hromosomes with some form of a domination me
hanism has beenused in literature. The most known approa
hes that fall into this 
ategory aredis
ussed in [7,9,10,12,14,15,16℄. In [12℄, the authors 
ompare two state-of-the-art diploid approa
hes with a simple hypermutation s
heme [6℄ in whi
h themutation rate is in
reased for a prede�ned number of generations when 
hangeo

urs. The diploid approa
hes 
hosen for 
omparisons are the Ng-Wong ap-proa
h [14℄ and the additive diploidy approa
h [15℄. In the Ng-Wong approa
hea
h individual has a diploid 
hromosome stru
ture where ea
h gene 
an havefour di�erent alleles: dominant and re
essive 0 and also dominant and re
es-sive 1. The phenotype of an individual is determined based on the dominan
e
hara
teristi
s of the two 
orresponding genes for ea
h lo
ation. In the addi-tive diploidy approa
h, individuals again have a diploid 
hromosome stru
turewhere ea
h gene 
an have several allele values ea
h of whi
h is assigned a nu-meri
 value. The phenotype is determined using an additive approa
h. For ea
hlo
us on the phenotype, the 
orresponding values of the alleles are added and ifthe sum ex
eeds a threshold, the phenotype has allele 1 and has allele 0 if thethreshold is not ex
eeded. The additive diploidy is easily extended to have morethan two 
hromosomes. In [12℄, as a result of the preliminary experiments, theauthors 
on
lude that a dominan
e 
hange is required for better performan
eand they modify both approa
hes to in
orporate the required me
hanism. Inthe Ng-Wong approa
h, when 
hange o

urs, the dominan
e 
hara
teristi
s ofall alleles are inverted, e.g. a dominant 1 be
omes a re
essive 1. In additive



diploidy, when 
hange o

urs, the allele values at ea
h lo
us is either demoted orpromoted depending on the value of the 
orresponding allele on the phenotype.The results obtained using the two modi�ed diploid approa
hes 
on�rm the fa
tthat impli
it memory (through diploid 
hromosomes) is useful when the envi-ronment os
illates between two optima. However when 
hange o

urs randomly,both diploid approa
hes fail and a simple hypermutation s
heme is found to bemore useful.For expli
it memory, some di�erent approa
hes have been suggested in lit-erature. Most of these rely upon storing some of the 
urrent information forinserting into the population in later generations after the environment 
hanges.A detailed survey of these approa
hes 
an be found in [1℄, [4℄ and more re
entlyin [5℄. In [2℄, design issues of expli
it memory approa
hes are dis
ussed and anew approa
h that in
orporates the advantages of using a memory together witha me
hanism that has a similar e�e
t to a random restart when 
hange o

ursis proposed. In that study, the population is divided into two sub-populations: asear
h population and a memory population. The sear
h population is respon-sible for keeping the diversity in the population, �nding new good solutions andstoring them in memory and is randomly re-initialized when a 
hange o

urs. Thememory population is responsible for remembering the previously found goodsolutions. They experiment with di�erent strategies for de
iding whi
h individ-uals to store in memory and whi
h individuals to repla
e later when individualsare retrieved from the memory population. The experimental results obtained
on�rm that memory is useful for periodi
 dynami
s in the environment andshow that some method for keeping diversity within the population is requiredalong with memory for better performan
e. The authors also present some openquestions for future work.3 The Proposed Approa
h - DECAFAs has been dis
ussed previously, memory based approa
hes have a limited usewhere they are advantageous over other approa
hes. When the environmentvisits previous states, a memory be
omes useful in adapting to the 
hange andremembering old solutions, however when the environment 
hanges randomly,the memory property may guide the population towards wrong areas in thesear
h spa
e and not allow for dis
overing new good peaks. This implies that itis also very important to have some form of a diversity preserving te
hnique alongwith memory to improve performan
e. Most proposed methods for a
hieving this,require that 
hange is known by the EA to re-introdu
e diversity. Usually mostpapers in literature either assume that 
hange is expli
itly made known to theEA or they use some form of a me
hanism to dete
t the 
hange. In some 
ases,it is realisti
 to assume that 
hange is expli
itly made known to the system.For example in a s
heduling environment, if a new job arrives or a job leavesor a new ma
hine is added or a ma
hine is removed, it is usually known by thesystem and no dete
tion is required however in most problems, this assumptionwill not be realisti
. The 
hange has to be dete
ted by the system. As has



been previously mentioned, problems with dete
ting the 
hange also a�e
t theperforman
e of the EA. A
ting on �false-positives� usually degrades performan
erather than improving it. Furthermore, in 
ases where the 
hange o

urs in the
onstraints rather than the problem itself, it is even harder to 
orre
tly dete
tthis 
hange, espe
ially when the 
onstraints be
ome less tighter and the 
urrentsolutions are still feasible but no longer are the optimum. So it is 
lear that anapproa
h that does not need to know when 
hange o

urs would not su�er fromthe disadvantages of a weak dete
tion me
hanism.The proposed approa
h, DECAF has a diploid 
hromosome stru
ture withreal valued genes. Ea
h individual has two 
hromosomes forming the genotypeof the individual. The 
hara
teristi
s that are expressed, i.e. the phenotype, areobtained through a dominan
e me
hanism. To the best of the author's knowl-edge, for �oating point representations, no diploidy with a dominan
e me
hanismhas been previously suggested in literature. Of 
ourse it is possible to use theexisting approa
hes for binary en
odings through representing the real valuedgenes using a binary or a gray 
oding. However this method will not be verye�
ient, �rstly be
ause of redundant 
odes due to the required number of bitsto represent the numbers in the allele value range and se
ondly due to a limited�xed pre
ision to represent the real valued genes with bits.In DECAF, a global array that keeps the dominan
e probabilities for thealleles on the �rst 
hromosomes of the individuals is used for the genotype tophenotype mapping. To determine these probabilities, �rst of all weighted aver-ages of the allele values at ea
h lo
us is 
al
ulated for ea
h generation using Eq. 1where Ai shows the weighted average of the allele values at the ith lo
us, pij isthe phenotypi
 value at the ith lo
us of the j th individual in the population and
fj is the �tness of the j th individual.

Ai =

∑
j(pij ∗ fj)∑

j fj

, j = 1, 2, ..., PopSize (1)An allowed error per
entage err is de�ned for the algorithm. To 
al
ulatethe dominan
e probability of the alleles on the �rst 
hromosomes, a weightedproportion is 
al
ulated. The phenotypi
 values of those alleles that are withinthe neighborhood of the weighted average for that lo
us as de�ned by the errorratio are multiplied by the �tnesses and are summed. This sum is divided bythe total �tness of the population to determine the dominan
e probability of thealleles on the �rst 
hromosomes for that lo
us. This pro
edure is given in thepseudo
ode in Fig. 1.When determining the phenotype from the genotype of an individual, forea
h lo
us, if the allele value of the �rst 
hromosome for that lo
us is withinthe allowed error limits, then it is expressed in the phenotype with a probabilitygiven in the dominan
e ve
tor 
orresponding to that lo
us, otherwise the allelevalue on the se
ond 
hromosome is expressed. If both 
hromosomal values arewithin the allowed error limits or if both are not, then either the allele on the�rst 
hromosome or the allele on the se
ond 
hromosome is sele
ted randomlywith equal probability.



begin 

  TotalSum = Calculate_Total_Fitness();
  PartialSum = 0;
  for i=0 to ChromosomeLength
  begin
    for j=0 to IndividualCount
    begin
      if (A[i]-A[i]* err) < p[j,i] < (A[i]+A[i]* err)
        PartialSum = PartialSum + (p[j,i]*f[j]);
    end
    Dominance[i] = PartialSum / TotalSum;
  end
endFig. 1. Algorithm for 
al
ulating dominan
e probabilitiesGaussian mutation is used for the mutation step on the genotype. The alleleson the �rst 
hromosomes of all individuals are mutated at a rate of pm1 andthe alleles on the se
ond 
hromosomes have a mutation rate of pm2. Both muta-tion rates are taken as the standard deviations of the normal distribution withmean 0. pm1 is 
hosen to be smaller than pm2. This 
auses smaller 
hanges inthe alleles on the �rst 
hromosomes and bigger 
hanges in the alleles on the se
-ond 
hromosomes. During the reprodu
tion phase, 
ross-over o

urs between the
orresponding 
hromosomes of the pairs separately, i.e. the information 
arriedon the �rst 
hromosomes and on the se
ond 
hromosomes are not mixed. Themutation s
heme 
ombined with the domination me
hanism, 
auses the algo-rithm to sear
h for solutions 
lose to the lo
ation given by the weighted averagesof the 
urrent population during the times when the environment is stationary.When the environment 
hanges, due to the di�eren
e in the new �tness values ofthe individuals, the weighted averages of the population 
hange too, 
ausing thealleles on the se
ond 
hromosomes to be expressed. Sin
e these alleles are typi-
ally mutated at higher rates, this enables the population to jump in the sear
hspa
e. This adaptation is automati
 and does not require any 
hange dete
tionme
hanism.This domination me
hanism is an extension of a previous approa
h proposedby the author in an earlier work [17,18℄ for binary representations and laterextended to non-order based multi-alleli
 representations [19℄. In the binary 
ase,a global domination array is 
al
ulated for ea
h generation. The value for ea
hlo
us is 
al
ulated as the sum of the �tnesses of those individuals that have avalue of 1 on their phenotypes for that lo
us divided by the total �tness of thepopulation. These values show the domination fa
tors of allele 1 over allele 0 forthe 
orresponding lo
ations on the 
hromosomes. When the genotypi
 values onboth 
hromosomes for a lo
us are equal, that value is expressed in the phenotype.When they are di�erent, the phenotype be
omes 1 with a probability givenby the 
orresponding domination array value. In this 
ase too, the adaptationme
hanism is automati
 and the domination array guides the sear
h towards thelo
ations that seem favorable for the 
urrent environment. Both 
hromosomesare mutated at very high rates allowing for a high level of diversity on thegenotypi
 level. This approa
h has been tested against state-of-the-art diploid



representations with domination me
hanisms in [20℄ and have been shown tooutperform them espe
ially when the 
hange in the environment is random.The domination me
hanism in both the binary and integer 
ases as well asthe �oating point 
ase is based on using the information represented by the
urrent population. In that sense, the me
hanism is similar to estimation ofdistribution algorithms [11℄ when guiding the sear
h on the phenotypi
 level.However, sin
e preserving diversity in dynami
 environments is very important,the diploid 
hromosome stru
ture is used to provide this. Histori
ally diploid rep-resentation have been used to remember previous good solutions. In DECAF,the memory property is not emphasized. In this sense, DECAF is similar tothe expli
it memory approa
h presented in [2℄ where there are two populations,one for sear
hing di�erent areas of the sear
h spa
e and the other for keepinga re
ord of found good solutions. The se
ond 
hromosome in the diploid stru
-ture provides the exploration feature while the �rst 
hromosome tries to exploit
urrent good solutions. The major di�eren
e between both approa
hes is thatin DECAF, adaptation is automati
 while for the expli
it memory approa
h,adaptation depends on the dete
tion of the 
hange.4 ExperimentsThe same experiments as in [5℄ are 
arried out to show the performan
e ofDECAF. The Moving Peaks Ben
hmark (MPB) �rst introdu
ed in[2℄ and usedin the experiments in [5℄ is used. The MPB 
an be downloaded from [22℄. For thetests, the 
one fun
tion with the default base fun
tion is used. Peaks are 
hangedevery 5000 evaluations in height, width and lo
ation. For all the experiments,unless otherwise stated, the MPB default parameter settings given in Table 1are used.Table 1. Default parameter settings for the MPB used in the experimentsParameter Value
hange frequen
y 5000 evaluationsshift ve
tor length (s) 1.0lambda 0.5number of peaks 10number of dimensions 5dimension value range [0, 100℄height severity 7.0width severity 0.01height (max,min,std) 70,30,50width (max,min,std) 7.0,0.8,1.0random number seed 1



The results will be reported based on 50 runs of all the programs. Plots of theo�ine error and the per
entage of peaks 
overed on the genotypi
 level throughgenerations, all averaged over 50 runs, will be given. Graphs will be given as errorbars where the average and standard deviation of the 50 runs will be plotted.O�ine error is de�ned in [5℄ as the average 
urrent error over all time steps.Current error is the di�eren
e between the �tness of the 
urrent best individual(sin
e last 
hange) and the a
tual optimum. O�ine error is 
al
ulated as inEq. 2.
e∗(T ) =

1

T

T∑

t=1

et where et = opt(t) − fbest(t) (2)The population 
onsists of 100 individuals whi
h are initialized randomly.Ea
h individual has a diploid representation with real valued genes. Genera-tional repla
ement with an elitism of one individual per generation is used. Forea
h generation, the best individual from the previous generation repla
es theworst individual in the 
urrent generation if it has a higher �tness in the 
ur-rent environment. Fitness values of the individuals are 
al
ulated based on theirphenotypes but the variation operators a
t dire
tly on the 
hromosomes, i.e. thegenotype. Gaussian mutation is used with standard deviations given as pm1 = 0.2for the �rst 
hromosomes and as pm2 = 10 for the se
ond 
hromosomes. The val-ues of pm1 and pm2are determined empiri
ally to give good performan
e. Caremust be given that pm2 should be sele
ted as signi�
antly higher than pm1. Ea
hdimension represented by ea
h gene takes on values between 0 and 100. In thenormal distribution, 95% of the values are within 1.96 standard deviations of themean. So a 
hoi
e of 10 for the se
ond mutation rate should provide an a

ept-able amount of diversity. Two point 
ross-over between the �rst 
hromosomesand also between se
ond 
hromosomes of reprodu
ing pairs is used ea
h with arate of pc = 0.6 where the two 
ross-over lo
ations are sele
ted randomly withequal probability for all lo
i. For mating pool sele
tion, tournament sele
tionwith tournament sizes of two is used. All programs are run for a total of 1000generations ea
h. Sin
e there are 100 individuals in the population, this meansthat 
hange o

urs every 50 generations. For ea
h test 
ase, the EA starts witha di�erent random number seed for the 50 runs whereas the same seed is usedfor the MPB to obtain the same environment for all 50 runs of the algorithm.For the EA implementation, the GNU S
ienti�
 Library [21℄ implementationsof the random number generators and the normal distribution is used with theMersenne-Twister random number generator 
hosen to sample from the uniformdistribution. For the MPB, to make results 
omparable with those reported inprevious studies, the random number generators in
luded in the ben
hmark areused.In [5℄, the experiments 
onsist of three parts. In the �rst part, the e�e
t ofthe 
hange severity is explored. In the se
ond part, the e�e
t of re
urren
e ofoptima is tested. And in the �nal part, the e�e
t of in
reasing the number ofpeaks is explored. To be able to make 
omparisons, the same set of experiments,explained in the following subse
tions, are performed in this study too. In all



experiments, unless otherwise stated, all parameters of the MPB are as given inTable 1.To test the e�e
t of the 
hange severity the length of the shift ve
tor is variedbetween 0.0 and 3. The o�ine error at the end of 1000 generations, averagedover 50 runs 
an be seen in the plot in Fig. 2. The per
entage of peaks 
overedat all generations by the genotype spa
e of the populations, averaged over 50runs, for a shift ve
tor of length s = 1.0, is given in Fig. 3. The o�ine error plotin Fig. 2 is 
omparable to the one given in [5℄ for the expli
it memory approa
hand shows similar performan
e with di�erent 
hange severity levels. So it 
anbe said that performan
e is not highly dependent on the severity of the 
hange.In Fig. 3, the plots for the per
entage of peaks 
overed on the genotypi
 levelis given. It 
an be seen from this �gure and Fig. 2 that while the per
entage ofpeaks 
overed on the genotypi
 level is not very high, the adaptation me
hanismis su�
ient for keeping a moderately low o�ine error, 
onsistent over di�erent
hange severity levels.To test the e�e
t of re
urren
e the value of lambda is varied between 0 and 1.In the previous test 
ase, lambda was 
hosen as 0.5, 
ausing the peaks to move ina random dire
tion at ea
h 
hange instan
e. In
reasing the value of lambda willmake the dire
tion of the move more dependent on the 
urrent dire
tion, makingre
urring optima less likely. The o�ine error plot 
an be seen in Fig. 4. Theperforman
e of DECAF is again very similar to the expli
it memory approa
hplot given in [5℄. It should be noted that the o�ine performan
e is not mu
ha�e
ted from the sele
tion of lambda. This supports the fa
t that the memoryfeature of diploidy works together with the adaptation and diversity preservingme
hanisms to be able to 
ope with di�erent dynami
s as represented by di�erentvalues of lambda.To see the e�e
t of 
hanging the number of peaks the number of peaks arevaried between 10 and 200. The o�ine error plot 
an be seen in Fig. 5 and theper
entage of peaks 
overed on the genotypi
 level for 10, 50 and 175 peaks
an be seen in Fig. 6. It 
an be seen that even though the per
entage of peaks
overed by the genotype de
reases as the number of peaks are in
reased, theo�ine performan
e is not too a�e
ted.
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overedby genotype at 10, 50 and 175 peaks5 Con
lusion and Future WorkAn adaptive evolutionary algorithm for dynami
 environments, using diploid
hromosomes with a �oating point en
oding and an adaptive genotype to phe-notype mapping me
hanism is introdu
ed in this study. Through experiments, itis found to perform similarly to an expli
it memory approa
h whi
h was shownto perform better than other memory based approa
hes in [5℄. As has been re-ported in [5℄, memory based approa
hes have a very limited use in dynami
environments but the addition of a diversity maintaining me
hanism seems toimprove performan
e. However as the experiments in that study also indi
ated,
urrently multiple population approa
hes perform mu
h better than the bestmemory based approa
h tested. In this study, DECAF is shown to rea
h theperforman
e of the expli
it memory approa
h reported in that study however ittoo is not able perform as well as the multi-population approa
h. Even thoughthey exhibit similar performan
e 
hara
teristi
s, DECAF is better than the ex-pli
it memory approa
h of [5℄ in some ways, espe
ially be
ause adaptation inDECAF is automati
 and thus performan
e will not be degraded by possible�false positives� generated by the 
hange dete
tion me
hanism.Even though this study reports the preliminary results of DECAF, these re-sults are quite promising and promote further study. In this study, parametersettings, espe
ially the mutation rates of both 
hromosomes, have been doneempiri
ally to provide good performan
e. However it should be further exploredto test the dependen
y of the performan
e on the 
hoi
e of parameters. A betteradaptation me
hanism will possibly be able to provide a more robust solution.



The results of this study show that an approa
h similar to estimation of distri-bution approa
hes (EDA) provides promising adaptation properties when usedalong with a diversity maintenan
e me
hanism. So it seems a worthwhile futurework to explore EDAs in greater depth to improve the performan
e of DECAF.It also may be useful in obtaining better performing EA implementations ifEDAs 
an be in
orporated into multi-population approa
hes to improve their
onvergen
e properties during stationary periods.Referen
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