An Adaptive Domination Map Approach for Multi-Allelic Diploid
Genetic Algorithms

A. Sima UYAR
Istanbul Technical University
Computer Engineering Department
Istanbul - Turkey
e-mail: etaner@cs.itu.edu.tr

Abstract

When working in dynamic environments,
adapting to a change in the environment be-
comes important. One way to deal with such
change using genetic algorithms is adding
diploidy with a dominance mechanism. Most
domination mechanisms found in literature
are developed for use with a binary encod-
ing of genes. However in some applications,
it provides better performance, ease of im-
plementation and flexibility to represent the
genes with more than two alleles. The main
aim of this study is to introduce an adap-
tive domination mechanism for multi-allelic,
diploid genetic algorithms that is able to han-
dle different types of change in non-order-
based problems. A simulation of a simpli-
fied dynamic load balancing of jobs with re-
source requirements on processing units with
capacities is used for testing. Change is intro-
duced by allowing any number of capacities
of processing units to change or by allowing
the addition or deletion of processing units
and jobs to the system. Promising results
that promote further study are obtained.

Keywords: diploid genetic algorithms, dy-
namic environments, multi-allelic representa-
tions, genotype to phenotype mapping, adap-
tive domination mechanism.

1 INTRODUCTION

When working in dynamic environments, adapting
to a change in the environment becomes important.
One way to deal with such change using genetic al-
gorithms is adding diploidy with a dominance mech-
anism. Discussions on diploid genetic algorithms and

A. Emre HARMANCI
Istanbul Technical University
Computer Engineering Department
Istanbul - Turkey
e-mail: harmanci@cs.itu.edu.tr

various applications can be found in (Branke, 2002),
(Collingwood, 1996), (Goldberg, 1989), (Greffenstette,
1996), (Hadad, 1997), (Kim, 1996), (Lewis, 1998),
(Ng, 1995), (Ryan, 1994), (Smith, 1992).

If a diploid representation of individuals is used, a
mechanism for mapping the genotype onto the phe-
notype is needed. Usually this mechanism is domi-
nation. Most domination mechanisms found in liter-
ature are developed for use with a binary encoding
of genes. However in some applications, it provides
better performance, ease of implementation and flexi-
bility to represent the genes with more than two alle-
les. There has not been much study focused on apply-
ing domination in diploid chromosome structures with
multi-allelic gene representations.

In literature most papers that deal with non-binary
gene representations, mainly focus on genotype to phe-
notype mapping approaches for order-based problems.
One such study (Yoshida, 1994) for solving a TSP
problem uses a meiosis like approach for obtaining a
haploid chromosome from two chromosomes through
recombination operators. Another approach (Yilmaz,
2002) for solving the TSP problem with an order-
based, integer representation applies the recombina-
tion operators directly on the diploid genotype. Both
of these approaches do not incorporate a domination
mechanism and are mostly suitable to be used for
order-based problems. Another approach which may
be used with multi-allelic representations in non-order-
based problems for dynamic environments is given by
Ryan in (Ryan, 1996) and is based on the natural
mechanism of incomplete dominance. Ryan calls this
approach the degree of N-ness where N is the number
of the last possible phenotype. The alleles can take
on any form. The number of alleles required to give
N different phenotypes is calculated and each allele
is assigned a numeric value chosen in such a way as
to allow suitable cutoff points to obtain the different
phenotypes. A major difficulty may arise in assigning

suitable values to alleles when the number of alleles
increase.

2 THE PROPOSED DOMINATION
APPROACH

In (Uyar, 2002a) by the authors of this paper, a bi-
nary representation is used for genes and an approach
loosely based on the idea of the penetrance of a gene
(Weaver, 1997) is developed for mapping the geno-
type of an individual onto a phenotype. Instead of
having alleles which are strictly either dominant or
recessive, levels of penetrance, which will henceforth
be called the domination factors for alleles, are de-
fined. In determining the domination factor of an al-
lele, a weighted proportion based on relative fitnesses
of individuals having that allele is calculated. The
introduction of proportions being weighted according
to relative fitness values in a population, artificially
incorporates the effects of environmental factors into
the calculation of the dominance value of an allele. To
represent the domination factors of all the loci, an ar-
ray, having the same length as the chromosomes and
composed of real numbers in the interval [0.0,1.0] is
used. Each value on the array shows the domination
factor of the allele 1 over the allele 0 for the corre-
sponding location on the chromosomes. The domina-
tion array changes along with the individuals through
generations and is recalculated at the end of each gen-
eration using Equation 1.

22 Phij * [

Domli] = T)0

where ph;; is the phenotypic value of the jth individual
at the ith chromosomal location, f; is the fitness value
of the jth individual, [is the chromosome length and
s is the number of individuals.

Extending this approach to multiallelic representa-
tions, where genes may take on more than two alle-
les, requires the use of a domination matrix instead
of an array. The number of columns in the matrix is
determined by the length of the chromosome and the
number of rows is determined by the number of pos-
sible alleles, i.e. each column corresponds to a locus
on the chromosomes and each row corresponds to an
allele. Each entry in the matrix shows the domina-
tion value of the corresponding allele in relation to the
other alleles for that location on the chromosomes. To
recalculate the domination matrix at the end of each
generation the pseudocode given in Figure 1 is used.

Algorithm 1 Pseudocode for Domination Matrix Cal-
culation

begin
for i=MinAllele to MaxAllele do
begin
for j=1 to LastGenePos do
begin
Val=0;
for n=1 to LastIndividual do
begin
if (individual[n].phenotype[j]l=1i)
Val=Val+individual [n] .fitness;
end;
DomMatrix[i,jl=Val/TotalFitness;
end;
end;
end;

Assume that the population consists of four individu-
als with the current chromosome, phenotype and fit-
ness values as given in Figure 1.

The wvariables in the pseudocode in Algorithm 1
are taken as MinAllele=A, MazAllele=D, Last-
GenePos=5, LastIndividual=4 and TotalFitness=51.
The example domination matrix given in Figure 2 is
obtained.

For example, for the population given in Figure 1, the
domination value of the allele B for locus 1 is calcu-
lated as in Equation 2.

12+84+1 21
12+30+8+1 51

DomMatriz[B,1] = (2)

And the domination value of the allele C for locus 1 is
calculated as in Equation 3.

. 30 30
DomMatrz:E[C, 1] = m = 5—1 (3)

Since the allele A and allele D are not seen at locus 1
on any of the phenotypes of the individuals, their cor-
responding values for the current example population
are 0. This means that in the next generation if an
individual has allele B at locus 1 on its first chromo-
some and allele C at locus 1 on its second chromosome
or vice versa, the corresponding phenotype value will
become B with probability 21/51=0.41 and C with
probability 30/51=0.59. An allele which has a cor-
responding 0.0 value in the domination matrix is not
expressed in the phenotype if the other allele for the
same locus has a non-zero domination value. If both
alleles have 0.0 domination values, then either one is
expressed in the phenotype with equal probability.

i ndi vi dual

ABCBD
BBADA

A B CBD (phenotype)

fitness

=12

(chronosone

(chronosone

1)

2)

i ndi vi dual

A CBCD (chronmosone
A CB DB (chronmposone

A CB CD (phenotype)

fitness

= 30

1)

2)

i ndi vi dual

BBBAC (chronpsome
BACCA

BB CCC (phenotype)

fitness

=8

(chronosone

1)

2)

i ndi vi dual

ABDAC (chronmosone
BBCCC (chronpsone

BB CAC (phenotype)

fitness

=1

1)

2)

Figure 1: Example Population

Loci on Chr omosomes

0 1 2 3 4

A| 42/51 0 0 1/51 0

B| 9/51 21/51| 30/51| 12/51 0
C 0 30/51| 21/51| 38/51| 9/51

D 0 0 0 0 0

v v v v v

51/51 51/51 51/51 51/51 51/51

Figure 2: Example Domination Matrix

3 THE TEST PROBLEM

A simplified simulation model of a dynamic load bal-
ancing of jobs on processing units (PU) is used as a test
case problem for the proposed domination approach.
The objective is to minimize the total load imbalance
throughout the system. The definition of the total
load imbalance will be given in section 3.2. This pa-
per focuses on the genotype to phenotype mapping ap-
proach developed for these types of problem domains
however, a more detailed exploration of the genetic dy-
namic load balancing approach can be found in (Uyar,
2002b) by the same authors of this paper.

3.1 THE SIMULATED SYSTEM

The simulated system consists of a number of PUs fully
connected via a network. One processor is dedicated
to genetic load balancing operations. Load informa-
tion from all PUs are sent to the central load balanc-
ing processor when a change occurs. This information
is used by the genetic load balancer (GLB) to find a
better distribution of jobs on the PUs. When a more
efficient load distribution is found, all PUs in the sys-
tem are notified to initiate the necessary job transfers.
Job transfers among PUs cause overheads which pe-
nalize the performance value for that distribution in
proportion to the number of job transfers needed and
the sizes of the jobs to be transferred. If the improve-
ment in the system performance through the new job
distribution (including the penalty introduced by the
cost of job transfers to achieve that distribution) is not
above a certain threshold, no job transfers are carried
out.

To simplify the simulation, some assumptions are
made about the system. These assumptions are:

e All PUs in the system are equipped with the same
type of resources with different capacities.

e All jobs may be migrated.

o If a new job arrives that will cause the current
system load to exceed the total capacity of the
system, the job is denied entry.

e A new job that is allowed entry into the system
starts execution on a PU determined randomly.

e There are no constraints. The total load on a PU
may exceed its capacity.

e At the beginning of job execution, the average
resource (CPU, I/O, Memory) requirements per
unit time for each job are determined randomly.

It is assumed that actual resource requirements
do not deviate too much from the average values.
The load value assigned to the job is a function of
average requirements per unit time for all types
of resources.

e The migration cost value assigned to a job is a
function of the costs of packing and unpacking
loads at the host and target PUs respectively and
the communication overheads as a result of job
transfers over the network from host to target
PUs.

e The system is not initially empty and is always at
least moderately loaded.

The PUs in the system are represented by their PU
numbers, capacities which are assigned randomly at
the time they join the system and a value that shows
their current loads. A job in the system is represented
by its job number, its average resource requirement per
unit time and the overhead it brings to migrate that
job. In addition to these representational information,
the central genetic load balancer unit also keeps track
of where each job is located and what each PU’s cur-
rent load is. This information is updated each time a
change occurs in the system. The actual system load
distribution is updated only if the distribution found
by the GLB will increase the system performance by
a threshold percent. To prevent thrashing before the
GLB converges at least partially, a predefined number
of generations are required to pass until the solution
candidate found by the GLB is considered for appli-
cation to the system. The general flow chart for the
system execution is given in Figure 3.

3.2 FITNESS EVALUATION

The fitness of an individual shows how balanced the
load distribution represented by the phenotype of that
individual is. To calculate the fitness, the amount of
load per unit capacity called the unit load (UL) is de-
termined as in Equation 4.

Total System Load
UL = 4
Total System Capacity 4)

For each PU, the amount of load for that PU under
ideal conditions, which will be called ideal load (IL) is
calculated. The ideal load for the ith PU which has a
capacity of Capacity; is calculated as in Equation 5.

IL; = UL % Capacity; (5)

>y

Has change
occurred?

Run 1 GLB generation Handle the change

Update load info on
central PU
Modify GLB

Has a new and better
distribution been found?

Notify all PUs to
start load exchange

Figure 3: General flow chart for system execution

The load imbalance (LI) of a PU is the absolute value
of the difference between the actual load (AL) of a PU
and its ideal load (IL). The aim of the load balancer
is to minimize the total load imbalance in the system.
To normalize the total imbalance value, it is divided
by the curent total load in the system. The normalized
load imbalance is given by Equation 6.

Yi|AL; — ILy| _

LIy = =0,1,...N P
N Total System Load i=0,1,..,NoOfPUs
(6)

In calculating the fitness of an individual the migration
overhead is used as a penalty. The actual fitness value
fo of an individual is calculated as in Equation 7.

fa = LIN (7)

In this implementation the migration costs determined
randomly for each job at start of job’s execution is
a real value in the [0,1] interval. The total penalty
value for a distribution candidate is a function of the
sum of all the migration costs for the jobs that will
be transferred. When calculating the penalty value, in
the worst case the new distribution candidate will re-
quire all the jobs to be transferred. Assuming there’re
n jobs in the system, each with maximum possible mi-
gration costs (1.0), the upper bound for the migration
costs will be n. In the best case, no job transfers will
be required, giving the lower bound for the migration
costs as 0.0. The penalized fitness value f, for an indi-
vidual is calculated as in Equation 8 where C4 is the

actual migration costs and Cjy is the upper bound on
the migration costs.

Cu

fpzfa*m

®)

3.3 THE GENETIC LOAD BALANCER
ALGORITHM

The GLB algorithm works on an event driven simu-
lation of the defined system. Events occur with in-
terarrival times according to a Poisson arrival process.
There are four types of events in the system, namely
the new job event, the finished job event, the new PU
event and the removed PU event.

The basic steps of the diploid genetic algorithm used
is given in Algorithm 2 and explained briefly in the
following sections.

Algorithm 2 The Diploid Genetic Algorithm
begin
initialize population;
initialize domination matrix;
do
selection;
crossing-over;
mutation;
domination matrix recalculation;
until end_of_generations ;

end.

In the initialization step, each of the genes on the two
chromosomes of the individual is initialized randomly
to have a value in the possible allele set. All the loca-
tions on the domination matrix is initialized to 0.0 to
allow equal probability of domination to all possible
alleles.

The reproduction phase consists of selection of the
mating pairs via tournament selection method with
tournament sizes chosen as two and a random pairing
of the individuals in the mating pool.

Two point crossing-over occurs within the genotype
of each parent. Each offspring individual receives one
chromosome determined randomly from each parent.
Offspring replace their parents and there is no over-
lapping between generations.

The mutation operator changes the value of a gene
from one allele to another in the set of allowed alleles.
This operator acts on the genotype of the individuals.

At the end of each generation, the new domination
map s recalculated using the approach given in detail

in Section 2. This new domination map is used in
the next generation to obtain the phenotypes of the
individuals from their genotypes.

There are no stopping criteria. The algorithm runs
on indefinitely until the whole simulation system is
stopped through the issue of an appropriate signal.

4 EXPERIMENTS

For a dynamic, single knapsack problem where only
the weight constraint changes in time, tests and com-
parisons were performed and results for the binary
representation case with only one knapsack were re-
ported in detail in (Uyar, 2002a) by the same authors.
It was shown in that study that the proposed ap-
proach for the binary case where the severity of the
change and length of the change steps are determined
randomly, outperformed Ryan’s additive diploidy ap-
proach (Ryan, 1994) modified in (Lewis, 1998) to suit
dynamic environments. However it was also seen that
even the proposed approach failed to give good perfor-
mance in the test cases where the change was highly
severe. It was concluded that these types of change re-
quire very high levels of diversity than diploidy alone
is able to provide. It can be seen that these conclu-
sions would hold true for the simplified dynamic load
balancing of jobs using the proposed GLB and with
only weight constraints changed. In the scope of this
paper, the more general case where also knapsacks are
added or removed will be explored.

In the solution approach to this problem, the chro-
mosome length is again the same as the number of
jobs (items) in the system and each gene represents
on which PU the corresponding job is located. PUs
are identified by integer values. Assuming there are 3
PUs, the allele values may be 1, 2, 3.

Three main types of change are implemented for the
testing phase of the proposed domination approach.

e PUs may be added / removed
e Jobs may be added / removed

e Load capacities of individual PUs may change

For the first two types of change where jobs or PUs are
added or removed, the change is explicitly made known
to the GLB through an event mechanism. However,
when a change (increase or decrease) in individual PU
capacities occurs, the GLB is not explicitly notified.
Ryan’s approach (degree of Nness) needs the change
to be detected. However the proposed approach adapts
automatically through the adaptation incorporated in

the domination mechanism, not requiring to be made
aware of this type of change.

Adding or removing PUs to the system means that

the number of alleles are changed. Ryan’s approach Table 1: System Parameters used in Simulation
(degree of Nness) is n'ot equ.ipped to deal wijch this Default Number of Jobs 32
type of change because it requires the re-determination Default Number of PUs 5
of values assigned to each allele and cutoff values for Maximum Nomber of Jobs 1024
phenotypic expressions and restart after such a change Maximum Namber of PUs 123
(Ryan, 1996). When the approach proposed in this -
. . . Maximum Job Load 540
study is used, in the case of a change in the number - -
.. . Maximum PU Capacity 4096
of alleles, an addition or a deletion of a row to the - —
.. A for Poisson Distribution 500
domination matrix is sufficient and the computational
. . Prob. for New Job Event 0.64
costs only increase or decrease linearly.
Prob. for Removed Job Event | 0.16
Adding or removing jobs from the system requires a Prob. for New PU Event 0.1
modification to the representation of the individual. Prob. for Removed PU Event 0.1
Since each gene location represents a job, a new job Generations Before Update 50
causes an increase in the chromosome length and a Acceptable Perf. Improvement | 25%

removed job causes a decrease.

When the load capacities of individual PUs change,
it only affects the objective value calculation and the
GLB adapts to the change automatically through the
adaptive domination mechanism.

The changes in the system are implemented as random
events occurring according to a Poisson arrival pro-

cess. Addition/removal of jobs and PUs cause events Table 2: The Genetic Algorithm Parameters
to occur while a change in a PU capacity is not imple- Population Size 250

mented as an event. For simplicity and for ease of an- Initial Chrom. Length 39

alyzing the results, only one type of change is allowed Crossover Probability 0.9

at one step. Multiple events occurring simultaneously Mutation Probability 0.01

will not chg.nge the beh.aviour of the algf)rithm but w%ll Initial Dom. Values 05

make the implementation more complicated and will Tnitial Allele Set 01,234}

prevent a clear analysis of results.

The system parameters used for the simulation are
given in Table 1. The genetic algorithm parameters
used in the experiments are given in Table 2. The
individuals are initialized using the default parameter
settings for the simulated system.

The types of change, the instances (generation num-
bers) they occur and the system state after the change Table 3: Change Types and Instances
are given in Table 3.

| Gnr. | Change | No.of Jobs | No.of PUs

0 Initialize 32 5

5 TEST RESULTS — T -
i . i 800 Chg. Cap. 33 5

The program is run 20 times. One representative run 1150 | New Job 2 s
for the general behaviour of the system is selected and 2000 | Rem. PU " .
a plot of the best fitnesses obtained at each generation 2450 | Chg. Cop. ” .
is given in Figure 4. The x-axis shows the number of 7900 | New BU " 5

generations and the y-axis shows the best and the av-
erage current fitnesses for each generation. The values
on the y-axis have been obtained by multiplying the
actual fitness values by 100 for ease of plotting. The

Maximums and Averages at Each Generation

T T T T T
Averages
Maximums --------

Fitness

b -
A Lt et i A LA A AAR T B

1000 1500 2000 2500 3000 3500
Generations

Figure 4: Plot of Current Best and Averages

Table 4: Average Best Fitnesses and Standard Devia-
tions over 20 Runs

Interval Avg. of Best Fit. | Std. Dev.
0 - 449 0.3 0.16
450 - 799 0.5 0.19
800 - 1149 0.6 0.32
1150 - 1999 0.6 0.15
2000 - 2449 0.2 0.11
2450 - 2899 0.2 0.11
2900 - 3500 0.5 0.24

above plotline in the figure is that of the current av-
erages and the below plotline is for the current best
fitnesses.

It is expected that after each change instance, the pop-
ulation will try to move towards a fitness close to 0.0.
The objective is to minimize the load imbalance in
the system. The lowest possible value for the objec-
tive function is 0.0, however due to individual unit
capacities and job weights, a perfect 0.0 may not be
physically possible. The algorithm tries to find the
best possible distribution of the jobs on the PUs. This
can be seen from the plot. After a change, the pop-
ulation tries to move towards the minimum. Due to
the higher rate of mutation, the population does not
fully converge and the average for each population does
not fully approach the minimum. This is because the
higher mutation rate preserves diversity in the geno-
type. However the minimums move close to 0.0 much
quicker. This is mainly due to the guiding factor of the
genotype to phenotype mapping mechanism, speeding
up the phenotypic convergence rate.

The averages of best fitness values (multiplied by 100)
over 20 runs for each change interval and the corre-
sponding standard deviations are given in Table 4.

The averages of the global best fitnesses for each
change interval (all multiplied by 100), averaged over
20 runs, gets very close to zero in a short time (around
50 generations) and the standard deviations obtained
from the 20 runs shows that the obtained results are
acceptable and independent of the initial population.

6 CONCLUSION

The test problem chosen for this study is representa-
tive of a domain of non-order based problems where
a multi-allelic representation is used and where dif-
ferent types of random change occurs in the environ-
ment. The change in the environment can be catego-
rized (Branke, 2002) using the following criteria:

e frequency of change

severity of change

predictability of change (is there a pattern?)

cycle length / cycle accuracy (are there re-visited
environmental states?)

All types of change used in this study are not peri-
odic, not predictable, occur randomly with moderate
severities and with moderately long change steps.

When working in dynamic environments, for the de-
sign of an appropriate evolutionary algorithm, the fol-
lowing aspects (Branke, 2002) should be considered:

e are the occurences of the change explicitly known
to the system or do they have to be detected?

e is the genetic representation affected by the
change?

e is the change equivalent to a change in the opti-
mization function, the problem instance or some
restrictions?

The types of change introduced to the environment
for this study were selected to incorporate different as-
pects of change effecting genetic algorithm design. All
of the chosen change types act by changing the prob-
lem instance. The objective and evaluation functions
stay the same and there are no restrictions. Some of
the changes are made explicitly known to the GLB but
others occur without a notification mechanism. The
GLB does not require any change detection. Some
types of change used require a modification of the ge-
netic representation while some don’t.

As can be seen from the results of the experiments,
when using a diploid representation with an adap-
tive domination mechanism to handle different types
of change in the environment, if a multiallelic represen-
tation for individuals is chosen, the proposed approach
works well in following the change.

In the first type of change where only knapsack ca-
pacities were altered, the dominance scheme allows for
automatic adaptation without the need to detect the
change. The main factor in this automatic adaptation
is the re-calculation of the domination matrix at the
end of each generation using the current relative fitness
proportions of the individuals.

In the second type of change where the increase or de-
crease in the number of PUs causes a change in the al-
lele count, it was required only to add or remove a row
to the domination matrix. This increases the computa-
tional costs linearly. The survey conducted on diploid
genetic algorithms for dynamic environments revealed
that there are no other domination approaches in lit-
erature that addresses this second type of change effi-
ciently with a small amount of modification.

For the third type of change where the number of jobs
were increased or decreased, a modification of the in-
dividual representation was required. This type of a
change requires the change instance to be explicitly
known or detected due to the representation modifica-
tion requirement.

The fact that the proposed approach is able to handle
different types of change with acceptable increases in
computational costs, makes it suitable for use in prob-
lem cases with similar properties to the one used in
this study. Further experiments are being carried out
on different test problem domains.

References

Branke J., (2002), Evolutionary Optimization in Dy-
namic Environments, Kluwer Academic Publishers,
ISBN: 0-7923-7631-5.

Collingwood E., Corne D., Ross P., (1996), "Useful
Diversity via Multiploidy", AISB Workshop on Evolu-
tionary Computation.

Goldberg D. E., (1989), Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-
Wesley, ISBN: 0-201-15767-5.
Greene F., (1996), "A Method for Utilizing

Diploid/Dominance in Genetic Search", First IEEE
Conference on Evolutionary Computation.

Hadad B.S., Eick C.F., (1997), "Supporting Poly-

ploidy in Genetic Algorithms Using Dominance Vec-
tors", in Proceedings of the Sixth International Con-
ference on Ewvolutionary Programming, Vol. 1213 of
LNCS Springer Verlag.

Kim Y., Kim J.K., Lee S., Cho C., Hyung L., (1996),
"Winner Take All Strategy for a Diploid Genetic Al-
gorithm", First Asia-Pacific Conference on Simulated
Evolution and Learning.

Lewis J., Hart E., Graeme R., (1998), "A Comparison
of Dominance Mechanisms and Simple Mutation on
Non-Stationary Problems" , in Proceedings of Parallel
Problem Solving from Nature 1998, No. 1498 in LNCS
Springer Verlag.

Ng K.P., Wong K.C., (1995), "A New Diploid
Scheme and Dominance Change Mechanism for Non-
Stationary Function Optimization", Sixth Interna-
tional Conference on Genetic Algorithms.

Ryan C., (1994), "The Degree of Oneness", 1994 ECAI
Workshop on Genetic Algorithms, Springer Verlag.

Ryan C., (1996), Reducing Premature Convergence in
Evolutionary Algorithms, PhD Thesis, National Uni-
versity of Ireland.

Smith R.E., Goldberg D.E., (1992), "Diploidy and
Dominance in Artificial Genetic Search", Complex Sys-
tems, Vol. 6 pp 251-285.

Uyar A. S., Harmanci A. E., (2002a), "Performance
Comparisons of Genotype to Phenotype Mapping
Schemes for Diploid Representations in Changing En-
vironments", Recent Advances in Soft Computing
2002.

Uyar A. S., Harmanci A. E., (2002b), "Application of
an Improved Diploid Genetic Algorithm for Optimiz-
ing Performance through Dynamic Load Balancing”,
Advances in Simulation, Systems Theory and Systems
Engineering, WSEAS Press Electrical and Computer
Engineering Series, pp. 423-428, ISBN: 960-8052-70-
X.

Weaver R. F., Hedrick P. W., (1997), Genetics 3rd.
FEd., Wm. C. Brown Publishers.

Yilmaz A. S., Wu A. S., (2002), "The Effect of
Diploidy on Integer Representations", 2002 Genetic
and Evolutionary Computation Conference: Late
Breaking Papers, pp. 496-503.

Yoshida K., Adachi N., (1994), "A Diploid Genetic Al-
gorithm for Preserving Population Diversity", Parallel
Problem Solving from Nature (PPSN III), pp. 36-45.

