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Abstract. The effect of different representations has been thoroughly
analyzed for evolutionary algorithms in stationary environments. How-
ever, the role of representations in dynamic environments has been largely
neglected so far. In this paper, we empirically compare and analyze three
different representations on the basis of a dynamic multi-dimensional
knapsack problem. Our results indicate that indirect representations are
particularly suitable for the dynamic multi-dimensional knapsack prob-
lem, because they implicitly provide a heuristic adaptation mechanism
that improves the current solutions after a change.

Keywords: Evolutionary algorithm, representation, dynamic environ-
ment.

1 Introduction

Many real-world problems are dynamic in nature. The interest in applying evo-
lutionary algorithms (EAs) in dynamic environments has been increasing over
the past years, which is reflected in the increasing number of papers on the topic.
For an in-depth overview on the topic, see e.g. [2, 10, 12, 17].

Most of the literature attempts to modify the algorithm to allow a better
tracking of the optimum over time, e.g. by increasing diversity after a change,
maintaining diversity throughout the run, or incorporating a memory. In this
paper, we focus on the representation’s influence on an EA’s performance in
dynamic environments. Instead of searching the solution space directly, usually
EAs search in a transformed space defined by the genetic encoding. This mapping
between solution space and genetic search space is generally called “representa-
tion”, or “genotype-phenotype mapping”. The representation together with the
genetic operators and the fitness function define the fitness landscape, and it is
generally agreed upon that a proper choice of representation and operators is
crucial for the success of an EA, see e.g. [15, 16].

Depending on the representation, the fitness landscape can change from being
unimodal to being highly multimodal and complex, and thus the representation
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strongly influences the EA’s ability to approach the optimum. In a dynamic en-
vironment, in addition to the (static) characteristics of the fitness landscape, the
representation influences the characteristics of the fitness landscape dynamics,
as has been recently demonstrated in [3]. Consequently, depending on the repre-
sentation, the tracking of the optimum over time may be more or less difficult.

This paper examines the performance of three different genetic representa-
tions for the dynamic multi-dimensional knapsack problem (dMKP) [3]. The
MKP is a well studied problem, and different representations have been pro-
posed and compared e.g. in [6, 9, 14, 15]. For our study, the binary representa-
tion with a penalty for constraint handling is selected as an example of a direct
representation. As indirect representations, we consider a permutation represen-
tation and a weight-coding. In the latter, the items’ profits are modified and a
simple deterministic heuristic is used to construct the solution. Intuitively, this
last representation seems particularly promising for dynamic environments, as
it naturally incorporates heuristic knowledge that would immediately improve a
solution’s phenotype after a change of the problem instance.

The paper is structured as follows: Section 2 introduces the dynamic MKP
problem and briefly explains the different representations used in this study. The
experimental results are reported and analyzed in Section 3. The paper concludes
in Section 4 with a summary and some ideas for future work.

2 The Dynamic Multi-dimensional Knapsack Problem

Knapsack problems [11] are commonly used combinatorial benchmark problems
to test the performance of EAs. The multi-dimensional knapsack problem (MKP)
belongs to the class of NP-complete problems. The MKP has a wide range of
real world applications such as cargo loading, selecting projects to fund, budget
management, cutting stock, etc. It can be formalized as follows.

maximize
n∑

j=1

pj · xj (1)

subject to
n∑

j=1

rij · xj ≤ ci, i = 1, 2, ..., m (2)

where n is the number of items, m is the number of resources, xj ∈ {0, 1} shows
whether item j is included in the subset or not, pj shows the profit of item j, rij

shows the resource consumption of item j for resource i and ci is the capacity
constraint of resource i.

For the MKP, several different genetic representations and genetic operators
have been proposed. A detailed analysis and comparison for static environments
can be found in [6] and more recently in [15]. In the following, we describe the
representations selected for our study in dynamic environments.
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2.1 Direct Representations for the MKP

A representation is called direct if it can be interpreted directly as a solution to
the problem. For the MKP, this corresponds to an assignment of values to the
variables xi in the above definition, e.g. in the form of a bit string where each
bit corresponds to an item, indicating whether an item should be included in
the knapsack or not.

Binary Representation with Penalty. One drawback of direct representa-
tions is often the difficulty to maintain feasibility, as the search space contains
many infeasible solutions. In our study, we use a simple penalty-based method
to drive the search towards feasible regions of the search space. We apply the
penalty mechanism recommended in [8], which guarantees that feasible solutions
are always preferred over infeasible ones.

fitness(x) = f(x)− penalty(x) (3)

penalty(x) =
pmax + 1

rmin
∗max{CV (x, i) | i = 1 . . .m} (4)

pmax = max{pi | i = 1 . . .m} (5)
rmin = min{rij | i = 1 . . .m, j = 1 . . . n} (6)

CV (x, i) = max(0,

n∑

j=1

rij · xj − ci) (7)

where pmax is the largest profit value calculated as in Eq. 5, rmin is the mini-
mum resource consumption calculated as in Eq. 6 and CV (x, i) is the maximum
constraint violation for the ith constraint ci calculated as in Eq. 7. It should be
noted that rmin �= 0 must be ensured. As genetic operators bit flip mutation and
uniform crossover are used.

2.2 Indirect Representations for the MKP

Indirect representations require to run a decoder to generate the solution based
on the genotype. There are many possible indirect representations. Usually, a
representation is preferred that decodes all elements of the search space into
feasible solutions. Thus, it is not necessary to design complicated repair mecha-
nisms or to use a penalty to ensure feasibility. In this paper, we look at the two
indirect representations discussed below.

Permutation Representation. A popular indirect representation is the per-
mutation representation [6, 7], where the search space consists of all possible
permutations of the items. To obtain the phenotype (actual solution), a decoder
starts with an empty set, then considers the items one at a time in the order
specified by the permutation. If an item can be added without violating any
constraint, it is included in the solution, otherwise not.

The decoder used by the permutation representation guarantees that only
feasible solutions are generated. Furthermore, these solutions lie on the bound-
ary of the feasible region in the sense that no additional items could be included
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without violating at least one constraint, which is a necessary condition for op-
timality. Thus, the decoder generates solutions that are of significantly higher
quality than randomly generated solutions. In a dynamic environment, solu-
tions are immediately “repaired” after a change such that they are again at the
boundary of feasibility in the new environment.

In [9], a good setup for the permutation representation is recommended, in-
cluding uniform order based crossover (UOBX) and insert mutation as variation
operators. In insert mutation, a new position for an element is selected randomly.
The mutated element is inserted into its new position and the other elements
are re-positioned accordingly. In UOBX, some positions are transfered directly
to the offspring from the first parent with probability p1 = 0.45. Then, starting
from the first position, undetermined positions are filled with missing items in
the order of the second parent.

Real Valued Representation with Weight Coding. A more complex ex-
ample for indirect representations is the weight-coding (WC) approach [14]. In
the weight-coding technique, a candidate solution for the MKP consists of a
vector of real-valued genes (biases) associated with each item. To obtain the
corresponding phenotype, first the original problem P is transformed (biased)
into a modified problem P ′ by multiplying the original profits of each item with
the corresponding bias. Then, a fast heuristic is used to find a solution to P ′, and
finally, the resulting solution (items to be placed in the knapsack) is evaluated
based on the original problem. Raidl [14] discusses two possible decoding heuris-
tics. The one using the surrogate relaxation method is preferred due to its lower
computational requirements. The surrogate relaxation method [13] simplifies the
original problem by transforming all constraints into a single one as follows:

n∑

j=1

(
m∑

i=1

ai · rij

)
xj ≤

m∑

i=1

ci (8)

where ai is the surrogate multiplier for the ith constraint, and rij is the resource
coefficient.

Surrogate multipliers are determined by solving the relaxed MKP (i.e., vari-
ables xi can take any value ∈ [0, 1]) by linear programming, and using the values
of the dual variables as surrogate multipliers. Then, to obtain a heuristic solu-
tion to the MKP, the profit/pseudo-resource consumption ratios denoted as uj

are calculated as given in Eq. 9.

uj =
pj∑m

i=1 airij
(9)

The items are then sorted in decreasing order based on their uj values, and this
order is used to construct solutions just as for the permutation representation, i.e.
items are considered one at a time, and if none of the constraints are violated,
added to the solution. To keep computation costs low, in [14] the surrogate
multiplier values ai are determined only once for the original problem at the
beginning. As a result, the decoding step starts with the computation of the uj
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values based on the biased profits. Note that in a dynamic environment, the WC
representation requires to re-compute the pseudo-resource consumption values
ai after every change of the environment.

In [14], several biasing techniques are discussed and compared. We initialize
the biases according to wj = 2R, where R is a uniformly generated variable in the
range [−1, 1] This leads to a distribution with many small and few larger values.
For mutation, we deviate from the re-initialization of biases used in [14] and
instead use Gaussian mutation with σ = 1. To generate the modified profits, the
original profits are simply multiplied with the biases, i.e. p′j = pj ∗ wj . Uniform
crossover is used as second genetic operator.

Since the permutation representation and the WC representation share similar
construction mechanisms, they both benefit from the resulting heuristic bias.
However, by calculating the pseudo-resource consumption values, the influence
of heuristic knowledge for WC is even larger.

In dynamic environments, the WC representation appears to be particularly
advantageous, for two reasons:

1. Because of the integration of heuristic knowledge, good solutions are gener-
ated right from the beginning, i.e., the algorithm improves more quickly. In
dynamic environments, time is scarce (otherwise one could just regard the
problem as a sequence of stationary problems), and the heuristic bias gives
this representation a head start.

2. Changes of the environment are immediately taken into account by the un-
derlying heuristic, which means that the existing solutions are heuristically
adjusted after a change of the problem instance.

2.3 The Dynamic MKP

In our study, we use a dynamic version of the MKP as proposed in [3] and
described below. Basis is the first instance given in the file mknapcb4.txt which
can be downloaded from [1]. It has 100 items, 10 knapsacks and a tightness ratio
of 0.25. For every change, the profits, resource consumptions and the constraints
are multiplied by a normally distributed random variable as follows:

pj ← pj ∗ (1 + N(0, σp))
rij ← rij ∗ (1 + N(0, σr))
ci ← ci ∗ (1 + N(0, σc))

(10)

Unless specified otherwise, the standard deviation of the normally distributed
random variable used for the changes has been set to σp = σr = σc = 0.05 which
requires on average 11 out of the 100 possible items to be added or removed
from one optimal solution to the next. Each profit pj , resource consumption rij

and constraint ci is restricted to an interval as determined in Eq. 11.

lbp ∗ pj ≤ pj ≤ ubp ∗ pj

lbr ∗ rij ≤ rij ≤ ubp ∗ rij

lbc ∗ ci ≤ ci ≤ ubp ∗ ci

(11)
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where lbp = lbr = lbc = 0.8 and ubp = ubr = ubc = 1.2. If any of the changes
causes any of the lower or upper bounds to be exceeded, the value is bounced back
from the bounds and set to a corresponding value within the allowed boundaries.

3 Empirical Results

For this study, we used a more or less standard steady-state EA with a popula-
tion size of 100, binary tournament selection, crossover probability of 1.0, and
mutation probability of 0.01 per gene. The genetic operators crossover and mu-
tation depend on the representation and have been implemented as described
above. The new child replaces the current worst individual in the population if
its fitness is better than the worst. The EA uses phenotypic duplicate avoidance,
i.e. a child is re-generated if a phenotypically identical individual already exists
in the population. This feature seems important in particular for indirect repre-
sentations with high redundancy, i.e. where many genotypes are decoded to the
same phenotype.

Unless stated otherwise, after a change, the whole population is re-evaluated
before the algorithm is presumed. The genotypes are kept unless the change cre-
ates phenotypically identical individuals, in which case duplicates are randomized.
As a performance measure, we use the error to the optimum. We use glpk [5] for
calculating the surrogate multipliers for the WC and CPLEX for calculating the
true optimum for each environment. All results are averages over 50 runs with
different random seeds but on the same series of environment changes.

Note that the following analysis assumes that the evaluation is by far the
most time-consuming operation (as is usual for many practical optimization
problems), allowing us to ignore the computational overhead caused by the de-
coders.

3.1 Relative Performance in Stationary Environments

Figure 1 compares the three representations on a stationary environment, which
will serve as a baseline for the comparison in dynamic environments. As can
be seen, the permutation representation is fastest to converge, WC is some-
what slower but then takes over, and the binary representation with penalty is
very slow, and remains worst throughout the run. The first (random) solution
generated by the WC, permutation, and binary approaches has an error of ap-
proximately 6366, 7381, and 16374922, respectively. This shows that the WC
representation has a higher heuristic bias than the permutation representation,
while the binary approach starts with infeasible (more infeasibles with lower
tightness ratios) and highly penalized solutions.

3.2 Dynamic Environment

The relative performance of the different representations in a dynamic environ-
ment is shown in Figure 2. In the plot, the fitness of the first individual after a
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Fig. 1. Error over time for different representations in a stationary environment

change is indicated with (x) for the permutation approach and (o) for the WC
approach. For further details see also Table 1.

Several interesting observations can be made. First, as expected, there is a
significant increase in error right after a change. Nevertheless, the error after a
change is much smaller than the error at the beginning of the run. Compared to
the first environment, the average error of the starting solution in environments
2-10 is reduced by approximately 75% for WC, 71% for permutation and 96%
for the binary representation with penalty. This means that all representations
benefit dramatically from transferring solutions from one environment to the
next. WC starts better than the permutation representation, and both indirect

Table 1. Average error or initial solution, the solution right before change, and the
solution right after a change, ± standard error

WC permutation binary

initial solution 6307±133 7471±140 15764226±418421
before change 197±10 260±15 834±33
after change 1482±67 2201±94 577226±47984

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  50000

E
rr

or

Evaluations

WC
permutation
penalty
WC after change
permutation after change

Fig. 2. Error over time for different representations in a dynamic environment
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representations are much better than the binary one. The binary representation
with penalty can not prevent the solutions to become infeasible, but recovers
quickly. It clearly benefits most from re-using information, and it can improve
its performance over several environmental periods (not only from the first to
the second environment).

Second, starting from better solutions, the algorithms are able to find better
solutions throughout the stationary periods. The benefit seems highest for the
binary representation, while the permutation approach can improve performance
only a little bit. At the end of the 10th environmental period (evaluation 50,000),
the solution quality reached by the indirect representations is close to the error
found after 50,000 evaluations in a stationary environment. This means that the
algorithms don’t get stuck at a previously good but now inferior solution.

Third, as in the stationary case, the WC representation outperforms the per-
mutation representation after a while and performs best overall.

3.3 Restart

Instead of continuing the EA run after a change, one might also re-start the
EA with a new, randomized population, which is a common strategy to avoid
premature convergence of the population. In this case, improving the solution
quality fast would be even more important. As Figure 3 shows, re-initializing
the population after a change is worse than simply continuing for all three rep-
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Fig. 3. Error over time for different representations in a dynamic environment. Com-
parison of keeping the population (solid line) or re-start (dashed line) after a change
for the (a) WC (b) permutation and (c) binary representation.
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resentations. For the permutation representation, the difference is the smallest,
for binary representation it is largest. The results suggest that premature con-
vergence is not so much an issue in the settings considered, either because the
duplicate avoidance used is sufficient to prevent premature convergence, or be-
cause the population does not converge within the 5000 evaluations per period
anyway.

3.4 Hypermutation

Hypermutation [4] has been suggested as a compromise between complete restart
and simply continuing evolution. With hypermutation, the mutation probabil-
ity is increased for a few iterations after a change to re-introduce diversity. For
our experiments, we tried to increase mutation in such a way that it would
have similar effects for all representations. For the binary representation, we
increased the probability of mutation to pm = 0.05 per gene. For WC, we in-
creased the standard deviation for the Gaussian mutation to σ = 5. For the
permutation representation, we applied insert mutation 5 times to each newly
generated individual. In our tests, hypermutation had little effect except if the
WC representation is used (not shown). Only for WC, hypermutation helped
to speed up fitness convergence significantly in the first period, which indicates
that either the mutation step size or the area for initialization have been chosen
too small in the first environment.

3.5 Higher Change Frequency

Obviously, the higher the change frequency, the more important it is to produce
good solutions quickly, and thus the higher should be the advantage of indirect
representations. Figure 4 shows the same performance plots as in the previous
subsection, but with a change every 2000 evaluations.

With the higher change frequency, the WC representation improves over the
permutation representation only in the third environmental period, although
according to the number of evaluations, the switch is actually earlier than in
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Fig. 4. Error over time for different representations in a dynamic environment with a
change every 2000 evaluations
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Fig. 5. Error over time for different representations in a highly severe dynamic
environment

the previous case with lower change frequency. The binary representation keeps
improving over all 10 environmental periods.

3.6 Effect of Change Severity

The aim of this experiment is to see the effect of change severity. To implement
a more severe change, in Eq. 10, we set the standard deviation of the normally
distributed random variable used for the changes to σp = σr = σc = 0.1 and each
profit pj, resource consumption rij and constraint ci is restricted to an interval
as determined in Eq. 11 with lbp = lbr = lbc = 0.5 and ubp = ubr = ubc = 1.5.

The results for this more severe environment, shown in Figure 5 look very
similar to the standard case we have looked at in the above subsections. The
error immediately after a change is significantly higher, but all algorithms adapt
rather quickly and the solutions found later on are comparable to those in the
standard case. As the analysis of the offline error below will show, in particular
the binary encoding suffers from the increased severity. The indirect encodings
are barely affected.

4 Discussion and Conclusion

The results have demonstrated that the representation can have a tremendous
effect on an EA’s performance in dynamic environments. While the permutation
representation was fastest to converge in terms of solution quality, the WC rep-
resentation was best in coping with the dynamics of the problem. The binary
representation with penalty performed extremely poor, as it improves slowly and
is not even able to maintain feasibility after a change.

In a stationary environment, what usually counts is the best solution found
at the end. After 20000 evaluations, the obtained errors of the approaches are
73 for WC, 170 for permutation, and 570 for binary representation with penalty.
However, in a dynamic environment usually the optimization quality over time
is important. Table 2 summarizes all the results by looking at the offline error,
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i.e. the average error over evaluations 5000-20000. This interval has been chosen
because it was covered in all experiments, and removes the influence from the
initial “warm-up” phase.

In the stationary case, WC representation performs best, with permutation a
close second (+39%), and binary representation with more than four times the
offline error of the two indirect representations. In a dynamic environment, when
the algorithm is restarted after every change, the permutation representation
benefits from its fast fitness convergence properties and performs best, while
the binary representation improves so slowly and generates so many infeasible
solutions that it is basically unusable. If the algorithms are allowed to keep
the individuals after a change, they all work much better than restart. With
increasing change frequency or severity, the performance of all approaches suffers
somewhat, but the gap between the best-performing WC representation and
the direct binary representation increases from 532% in the dynamic baseline
scenario to 867% in the high frequency scenario and 3233% in the high severity
scenario.

Table 2. Offline error of different representations in different environments Evaluations
5000-20000

WC permutation binary

stationary 179.1 248.1 947.8
restart 1581.6 1115.2 625746.0

dynamic base 342.2 470.4 1823.0
high frequency 397.1 561.5 3445.7
high severity 456.4 621.6 14756.9

Overall, our results indicate that indirect representations, and in particular
those with a strong heuristic component like weight-coding, may have clear ad-
vantages in dynamic environments, in addition to the advantages they provide in
stationary environments. As future work, we will verify this hypothesis also for
the travelling salesman problem and look at representations with explicit repair
mechanisms.
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