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Abstract. There is a growing interest in applying evolutionary algo-
rithms to dynamic environments. Different types of changes in the envi-
ronment benefit from different types of mechanisms to handle the change.
In this study, the mechanisms used in literature are categorized into four
groups. A new EA approach (MIA) which benefits from the EDA-like ap-
proach it employs for re-initializing populations after a change as well as
using different change handling mechanisms together is proposed. Exper-
iments are conducted using the 0/1 single knapsack problem to compare
MIA with other algorithms and to explore its performance. Promising
results are obtained which promote further study. Current research is
being done to extend MIA to other problem domains.

1 Introduction

Evolutionary algorithms (EA) are heuristic search algorithms applied in both
stationary and non-stationary (dynamic) problems. For the rest of the paper,
EAs designed for dynamic problems will be called dynamic evolutionary algo-
rithms (DynEA). Very successful implementations of EAs in stationary environ-
ments exist in literature but there are additional challenges in dynamic environ-
ments, such as having to adapt to the new environmental conditions and tracking
the optima. In order to accomplish these, new algorithms have been introduced.
Detailed surveys and discussions of EAs and dynamic environments can be found
in [4, 13, 18]. DynEAs are categorized under three headings in [4] as Type-1 :
DynEAs reacting on change, Type-2 : DynEAs maintaining diversity throughout
the run and Type-3 : DynEAs based on memory. Each type of DynEA employs
a single approach or a set of approaches (models), while adapting to the new
environments. These models can be classified as operator-based, memory-based,
population-based and initialization-based. A similar but more detailed classifica-
tion can be found in [18]. Operator-based models use adaptation or modification
of some EA operators, especially those that are responsible for diversity such as
mutation and selection. The main aim is to diversify the current genetic material
by using genetic operators, when change occurs. Hyper-mutation [5], Variable
Local Search [17], Random Immigrants [7] and Thermo-Dynamical Genetic Al-
gorithms [11] are examples of such DynEAs. The first three of these approaches
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work with the mutation operator, while the last one uses a different selection
scheme based on a free energy function. Memory-based models use extra memory
in order to preserve extra genetic material that may be useful in later stages of
the run. Extra memory usage can be implemented either implicitly or explicitly.
Algorithms that use redundant representations are among the well known im-
plicit memory implementations. The most common of these representations are
ones that use diploid chromosomes with a dominance scheme [10, 14, 16]. Explicit
memory is implemented by allocating extra space for preserving currently avail-
able genetic material to be used in later runs. A good example of this approach
is discussed in [2]. It can be seen that, memory based techniques perform best
when the environment oscillates between several states. Population-based models
use more than one population, each of which may be assigned different responsi-
bilities. The aim is to use the available number of individuals in a more effective
way. For example, the memory-enhanced algorithm introduced in [2] uses two
populations. One of these populations is responsible for remembering good old
solutions and the other is responsible for preserving diversity. A more recently
proposed approach [3] uses multiple sub-populations distributed throughout the
search space to watch over previously found optima (local or global), thus in-
creasing the diversity in the overall population. Initialization-based models use
problem specific knowledge in order to initialize the first population of the cur-
rent environment so that individuals are in the locality of the new optima. The
Case-Based Initialization of Genetic Algorithms introduced in [15] uses a sim-
ilar approach. In that study, a model of the environment is maintained and is
updated after environment changes. The good solutions found for previous en-
vironments are inserted into the GA population when similar environments are
encountered. All of these models have their strengths and weaknesses. Studies
show that different types of dynamic problems need different types of models. It
can be seen that it is better to have a combined model for better performance
under different types of change. In [18], the author develops a formal framework
for classifying different types of dynamic environments and tries to perform a
mapping between problem classes, DynEAs and performance criteria.

For the purposes of this paper, a DynEA will be defined as an evolution-
ary algorithm designed for working in dynamic environments, consisting of a
set of the models mentioned above. This definition implies that, it might be
advantageous to partition an evolutionary algorithm into sub-parts, each of
which is designed for different purposes. Most algorithms found in literature
have been developed to only include one or two of the models. For instance,
the hyper-mutation approach [5] uses only the operator-based model while the
memory-enhanced algorithm [2] uses the population-based model together with
the memory-based model. When thinking of designing an efficient evolutionary
algorithm in terms of these models, it can be seen that the evolutionary algorithm
should include an operator-based model in order to supply the needed diversity, a
memory-based model to benefit from the previously discovered genetic material,
a population-based model to use the limited number of individuals efficiently

.
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and an initialization-based model that uses problem specific knowledge to guide
the individuals towards the new optima.

In this paper, a new DynEA approach called Memory Indexing Algorithm
(MIA) is proposed. MIA has been designed with the above considerations in
mind. This study is a preliminary look into the design and performance of such
an algorithm and the results obtained give a preliminary overview as to the
applicability and the performance of the approach. Currently, for ease of anal-
ysis, a very simple test problem, namely the 0/1 single knapsack problem, has
been selected as the benchmark. Experiments are performed to understand the
operations of the basic mechanisms of MIA as well as to compare its perfor-
mance with similar state of the art DynEA approaches in literature. Research
continues to extend MIA to other problem domains. This paper is organized
as follows: Section 2 introduces MIA and explores its mechanisms and outline.
Section 3 gives details of the experimental setup, presents and discusses the
test results. Section 4 concludes the paper and proposes possibilities for future
work.

2 The Memory Indexing Algorithm

The Memory Indexing Algorithm (MIA) uses problem specific information for
working with the appropriate incorporated mechanisms. This information is
based on a measure that identifies environments and is used by MIA to in-
dex encountered environments. For the 0/1 single knapsack problem, the index-
ing mechanism used to differentiate environments is termed as the environment
quality (EQ) and is explored in greater detail in [8]. As can be seen in the next
subsections, MIA uses concepts originating from explicit memory based DynEAs,
the hyper-mutation mechanism and also estimation of distribution approaches
(EDAs) [9]. MIA can be put in Type-1 of algorithms because it acts on change
and initializes the next generation according to a distribution array (DA) if a
similar environment has been encountered before. If there is no previous informa-
tion regarding the new environment, the algorithm uses a standard technique. In
this study, as an example, the hyper-mutation method is applied. MIA can also
be said to be of Type-3, since it uses a DA that can be seen as a form of an exter-
nal memory. Due to this, MIA is compared with the hyper-mutation approach of
Type-1, and Memory Enhanced Algorithm (MEA) of Type-3. Experiments and
results are given in section 3.

The distribution array (DA) is a list of ratios representing the frequency of
each allele at each gene position in the population. Each value in the DA is
used by MIA as the probability of initializing the corresponding gene location
to the corresponding allele when a similar environment to the one in which
the DA was calculated is re-encountered. This idea is similar to the population
initialization technique used in the PBIL [1] approach. There is a DA for each
different environment group which has been encountered during the run of MIA.
To the authors’ best knowledge, such a memory and population re-initialization
scheme has not been applied to dynamic environments before. The DA values
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are calculated as given in Eq. 1, using the individuals in the generation when
the change occurs (assuming no changes within a generation).

DAi(j) =
Nij

PopSize
, i = 1, 2, ..., LC and j = 1, 2, ..., LA (1)

where DAi(j) is the ratio of allele-j at ith gene location, and Nij is the number
of genes having allele-j at ith gene location in the population, LC is the chro-
mosome length and LA is the number of different alleles. Grouping of environ-
ments requires problem specific criteria to differentiate between different types
of environments. For example in [15] the example task is a two-agent game of
cat-and-mouse. They use four aspects of the environment (namely distribution
of speed values and turn values of the target agent, the radius within which the
target may detect the tracker and the size of the target) to categorize the envi-
ronments. Using fitness distributions may also be a simple but effective measure
for this purpose. However, since this paper mainly focuses on the benefits of ap-
plying a DA-based re-initialization for similar environments, for simplicity, when
applying MIA to the single constraint 0/1 knapsack problem, environments are
grouped according to the EQ. Better and more practical groupings are the fo-
cus of another study. The grouping used in this study is also controlled by an
additional parameter called the tuner parameter (TP). TP can be thought of
as the number of cuts in the environment space and determines the number of
environment groups. In this study, for the chosen example problem, the propor-
tion of feasible points in the search space to the whole search space is used to
differentiate between different environments and is assigned as the EQ for each
environment. Theoretically, this EQ value and the group id which is based on
this, is calculated as in Eq. 2.

EQi =
mi

T
⇒ Gi = �TP ∗ EQi� (2)

where EQi is the environment quality of the ith environment, mi is the number
of feasible individuals in the ith environment, T is the total number of all possi-
ble individuals in the search space, Gi is the group id of the ith environment and
TP is the tuner parameter. Normally the search space of the problems encoun-
tered are large and thus a complete enumeration of all points is not possible.
An approximation measure is needed. So instead of using all the points in the
search space to calculate the EQ value, k points are sampled randomly and the
estimated EQ value denoted as EQ′ is determined using the chosen samples. As
part of MIA, a standard evolutionary algorithm runs until a change is detected.
When change occurs, the DA of the population is calculated and is recorded for
the corresponding group of the previous environment. The EQ′value for the new
environment and its group id is determined. If the DA for the new environment
was previously calculated, a percentage of the population is re-initialized using
the corresponding DA, otherwise a standard hyper-mutation method is applied.
For this current implementation of MIA, for the chosen test problem, a stan-
dard EA is run during the stationary periods and a standard hyper-mutation
technique is applied if there is no current information to apply the indexing and
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re-initialization mechanism of MIA. However, other EA approaches and other
change handling techniques can be experimented with.

3 Experiments and Results

The results obtained in this section give a preliminary overview as to the ap-
plicability and the performance of the MIA approach. It is shown in [12] that
good change detection techniques are effective in the performance of EAs in
dynamic environments. In this study, to rule out any effects that may be the re-
sult of faulty change detection mechanisms, changes are explicitly made known
to all tested algorithms. Since MIA uses the hyper-mutation method (HMT)
when the new environment group has not been encountered before, it is com-
pared with HMT [5] and since MIA also employs an external memory, it is also
compared with the Memory Enhanced Algorithm (MEA) [2]. For all tested al-
gorithms: there are 50 individuals in each population; the chromosome length
is 100; uniform crossover rate is 0.8; parent selection is via binary tournaments;
generational replacement is used with elitism where the best individual of the
previous population replaces the worst individual of the new population (ex-
cept for right after a change); binary mutation rate is 0.6/ChromosomeLength;
there are 50 environments for each run and results are averaged over 50 runs. For
HMT, hyper-mutation rate is 0.1 and this higher mutation rate is applied for 2
EA generations after a change occurs. For MEA, memory size is 10 individuals
and the storing period is 10 EA generations. For MIA, TP is chosen as 10 and for
practical purposes, the estimated EQ′values are used to classify environments
rather than using the actual EQ values; k (number of sampled points) is chosen
as 100 individuals. These randomly sampled 100 points is called the test popu-
lation. The individuals of the test population are determined randomly at the
start of the EA run. The same test population is applied once to each environ-
ment that is encountered right after a change to determine the corresponding
EQ′value and its group id. Tests were performed in [8] to show that a sim-
ple random sampling technique is sufficient to provide the heuristic information
needed for MIA. Offline performance [4] measure is used to evaluate the perfor-
mance of selected algorithms. All results are reported as averaged over 50 runs
against the same problem instance. T-tests with a significance level of 0.05 were
performed on the offline performances. The results of the tests (omitted here
for lack of space) showed that all observed differences, except for the compari-
son of MIA1 and MIA2 in Test 1 of Experiment 2 and the comparison between
MIA2 and MIA3 in Test 2 of Experiment 3, are statistically significant. For each
encountered environment, MIA applies the environment to the test population
once to determine the group id. For performance comparisons, this means 5000
more fitness evaluations corresponding to 50 generations. Each run consists of
50 randomly generated environments and the change period is determined sep-
arately for each test, so the maximum number of generations for each test is
(50 ∗ changePeriod). The same single constraint 0/1 knapsack instance which is
randomly generated prior to the experimental runs, is used in all experiments.
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There are 100 items with profits between 1000 and 5000, and weights between
1 and 100. For simplicity of the analysis, changes are allowed to occur only in
the capacity constraint of the knapsack. All capacity constraints are produced
randomly if not otherwise stated. A penalty-based method is used for infeasible
individuals and the penalty function proposed for multiple knapsack problems
in [6] is adapted for a single knapsack problem as given in Eq. 3.

penalty =
pmax + 1

wmin
∗ CV , wmin > 0 (3)

where pmax is the maximum profit, wmin is the minimum resource consump-
tion (weight), and CV is the constraint violation of the individual. For testing
different properties of MIA, in some of the experiments in the next sections, a
training stage and a test stage is defined. In the training stage, controlled envi-
ronments are introduced to MIA. This stage is defined in such a way that MIA
gets a chance to calculate a DA for each of the possible environment groups.
The training stage consists of a series of stationary periods. The length of the
stationary periods determines the number of generations the EA will run for
each environment. The length of these stationary periods in the training stage
will be referred to as the training period and will be given in EA-generations
units. At the end of the training stage, a DA for all possible environment groups
is initialized. The number of these environments depends on the selected TP
parameter as explained above. In the testing stage, environments are generated
and introduced to the EA randomly. A testing period is also determined similarly
to the one explained above for the training stage.

3.1 Experiment 1

Experiment 1, composed of 3 tests, is for studying the algorithms under different
settings of the training period and test period. In the first 2 tests, first 11 envi-
ronments (TP=10) are selected such that DAs for all groups are initialized once
during the training stage. The performances of the algorithms are calculated
only for the test stage which begins right after the training stage is completed.
The last test in this experiment does not have a training stage. Environments
included in the testing stages are generated randomly in all test instances. In the
offline performance figures of Test 1 and Test 2, generations are shown to start
from zero, however this value corresponds to the beginning of the testing stage.
The aim of Tests 1 and 2 in this experiment is to observe the effect of the length
of the training period on the performance of MIA. In Test 1, training period
and test period are chosen as 100 EA generations and 20 EA generations respec-
tively. The training period is considered to be long, while the test period is not.
Under this setting, MIA is expected to perform its best compared to the other
settings in the following tests. This is because of the fact that, a long training
period means that the EA has more time to converge to a local/global optimum
and thus may be able to calculate more accurate distribution arrays. This will
allow the EA to start off from a better point in the search space in the similar
environments encountered during the test phase. HMT and MEA are expected
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Fig. 1. Offline Performances:
Exp.1 Test 1
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Fig. 2. Offline Performances:
Exp.1 Test 2
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Fig. 3. Offline Performances: Exp.1 Test 3

not to recover as well as MIA, due to the fact that MIA is expected to start from
better points in the search space than the others due to the initialization using
a DA. In Test 2, both the training period and the test period is chosen as 20
EA generations. The purpose of Test 3 is to evaluate the performance of MIA
against the performances of HMT and MEA when there is no training stage.
There are a total of 100 environments produced at random where the period of
change is every 50 EA generations. Offline performances of algorithms for Test
1, Test 2 and Test 3 are given in Fig. 1, Fig. 2, and Fig. 3 respectively. Fig. 1,
Fig. 2, and Fig. 3 show that performance of the MIA is the best whereas the
performance of the HMT is the worst. Comparing Fig. 1 and Fig. 2, it can be
said that, although the training period is decreased from 100 to 20, this does not
much effect the relative performance of MIA. Moreover from Fig. 3, it can be
said that although there is no training stage, MIA outperforms the others after
some time. The reason for the delay of MIA to be the best performer is that
MIA is more likely to run hyper-mutation at the beginning of the evolution. As
a result, MIA is expected to perform as well as hyper-mutation in the beginning
but better in the later generations after several environments have been encoun-
tered and DAs for these environments have been recorded. All figures show that
MIA gets better as time passes.
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Fig. 5. Offline Performances:
Exp.2 Test 2

3.2 Experiment 2

Experiment 2 includes 2 tests with exactly the same parameter settings and the
problem instance, including the environments with Test 1 of Experiment 1. The
aim of Test 1 is to observe the effect of the initialization ratio on the performance
of MIA and the aim of Test 2 is to prove that initialization of the population with
a DA is a more powerful technique than a pure random initialization of the pop-
ulation when change occurs. As stated previously, if the new environment is in a
group whose DA is initialized previously, the first population in this environment
is re-initialized partly using the DA. Initialization ratio is the parameter which
determines the ratio of the new individuals to insert into the current population.
Parameter settings and the problem instances of the following tests, including
the environments, are same as Test 1 of Experiment 1. Test 1 is conducted to
test MIA with different initialization ratios. In Fig. 4, MIA1, MIA2, and MIA3
are the MIAs with initialization ratios of 1, 0.5 and 0.2 respectively. The in-
dividuals to be replaced by new individuals are determined randomly. In Test
2, performance of MIA is compared with a pure random initialization (RAI).
In Fig. 5, RAI1, RAI2, and RAI3 are the random initialization with ratios 1.0,
0.5, and 0.2 respectively. Fig. 4 depicts the MIAs with different initialization
ratios. It is seen that performance of MIA3 is the worst, while MIA1 is the best.
Moreover, performance of MIA2 is much nearer to MIA1 than MIA3. Therefore,
initialization ratio should be greater than 0.5. Fig. 5 shows the performances of
RAIs and MIA3. Although MIA3 is the worst of the MIAs compared in Test 1,
it outperforms all of the RAIs, which means that MIA’s performance is largely
due to the use of a DA to initialize the population.

3.3 Experiment 3

This experiment is conducted to observe the effect of the tuner parameter TP on
the performance of MIA. In the figures of this experiment, MIA1, MIA2, MIA3
and MIA4 are the MIAs with TP equal to 5, 10, 20 and 60 respectively. Parameter
settings and the problem instance of these tests, including the environments are
same with the Test 3 in Experiment 1. Results of Test 1 are shown in Fig. 6,
which depicts the performances of MIAs with different TPs when there are 100
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environment changes. In Test 2, number of environment changes is decreased
from 100 to 20. Results are shown in Fig. 7. In both Fig. 6 and Fig. 7, it is
apparent that when TP is decreased from 10 to a lower number, performance of
MIA decreases drastically. On the other hand, if TP is increased from 10 to a
greater value, MIA’s performance may decrease or increase. This indefiniteness is
due to the fact that, if TP increases, there is a smaller number of environments in
each group and thus the groups get more homogeneous. Therefore, DAs of each
group will lead to more accurate initializations leading to a better performance.
However, since the number of groups is increased by TP, the new environment
detected after a change is less likely to fall into a group whose DA was previously
initialized. This means that the EA may end up having to use hyper-mutation
most of the time. In conclusion, these two contradictory factors determine the
performance of MIA when TP increases.

As it is mentioned before, MIA becomes more successful as generations pass
due to the initialization-based approach it uses. Each time MIA encounters an
environment similar to a previous one, the population is re-initialized using the
recorded DA. During the current stationary environment MIA gets a chance to
work on the same (or similar) environment for more generations, possibly to
find a better solution. At the end of the stationary period, the newly calculated
DA is recorded for this environment group. Thus each time MIA works on a
representative of a group, it has a chance of finding and recording a better DA
for the group.

4 Conclusions and Future Work

Studies in literature introduce many different approaches to dynamic problems.
This paper defines dynamic evolutionary algorithms as being a set of approaches
working with each other. A DynEA should benefit from operator-based ap-
proaches to obtain needed diversity, from memory-based approaches to remem-
ber useful genetic material, from population-based approaches to use limited
number of individuals effectively, and from initialization-based approaches, if
possible, to start from the locality of the optimum of the current environment.
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The Memory Indexing Algorithm (MIA) is introduced and compared with hyper-
mutation and Memory Enhanced Algorithms through a set of experiments. All
experiments show that MIA outperforms others for the tested cases on the se-
lected test problem and is more robust to environment changes. MIA can be
further improved by modification in the calculation of the distribution array.
Additionally, in this study a very simple problem was selected as the bench-
mark, however extending the applicability of MIA to other problem domains
is needed. Since, MIA uses problem specific information in order to create an
index for each possible environment, it is an interesting study to explore the
ways of defining and differentiating environments of other dynamic problems.
This study is currently being conducted. Furthermore, MIA only uses three of
the identified approaches for dealing with change. In its current implementation,
it does not use population-based techniques explicitly, though each indexed en-
vironment and its DA may be interpreted similar to the sub-populations in
the SOS [3] approach. This aspect of the approach will be explored as a fu-
ture study.
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