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Abstract

This paper compares three evolutionary computation techniques, namely Steady-State Genetic Al-

gorithms, Evolutionary Strategies and Differential Evolution for the Unit Commitment Problem. The

comparison is based on a set of experiments conducted on benchmark datasets as well as on real-world

data obtained from the Turkish Interconnected Power System. The results of two state-of-the-art evolu-

tionary approaches, namely a Generational Genetic Algorithm and a Memetic Algorithm for the same

benchmark datasets are also included in the paper for comparison. The tests show that Differential Evo-

lution is the best performer among all approaches on the test data used in the paper. The performances

of the other two evolutionary algorithms are also comparable to Differential Evolution and the results of

the algorithms taken from literature showing that all EA approaches tested here are applicable to the Unit

Commitment Problem. The results of this experimental study are very promising and promote further

study.

Key Words: Unit commitment problem, evolutionary algorithms, steady-state genetic algorithms, gen-

erational genetic algorithms, differential evolution, evolutionary strategies.

1. Introduction

The Unit Commitment Problem (UCP) is a constrained optimization problem in which optimal turn-on and
turn-off schedules need to be determined over a given time horizon for a group of power generation units
under some operational constraints. The objective is to minimize the power generation costs while meeting
the hourly forecasted power demands. The UCP is an important area of research which has attracted
increasing interest from the scientific community due to the fact that even small savings in the operation
costs for each hour can lead to major overall economic savings.

The UCP consists of two sub-problems which are usually solved separately. First the schedule for the
turn-on and turn-off times of the power generation units is determined. Then, based on this schedule, the
objectives and the constraints, the amounts of power to be generated by the online generators for each hour
are calculated. Several approaches exist in literature to tackle the UCP, such as dynamic-programming [1,
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2], Lagrangian relaxation and heuristics with hybrids [3–6], branch and bound [7], benders decomposition

[8], simulated annealing [9], tabu-search [10], evolutionary algorithms [11–17] and many hybrids. A detailed

survey can be found in [18–20].

Evolutionary Algorithms (EAs) [21] are population-based optimization techniques based on the clas-
sical Mendelian laws of inheritance and Darwin’s theory of evolution. EA is an umbrella term that covers
several approaches, namely Genetic Algorithms (GA) [22], Evolutionary Strategies (ES) [23], Genetic Pro-

gramming (GP) [24] and Differential Evolution (DE) [25] which are based on the same principles but differ
in the application of these principles. EAs have been successfully used in many problem domains. GAs, ES
and DE are mainly for search and optimization while GP is used more for automatic program generation,
prediction and machine learning tasks. The solution to the UCP is given as a set of binary decision variable
assignments showing which generator units are online and which are offline for any given time slot. This
solution is obtained through minimizing a cost objective while adhering to several constraints. Therefore
this problem can be seen as a search for feasible solutions which optimize an objective. Due to this, the
performance of only GAs, ES and DE is explored in this paper and GP is left out.

In [26] initial tests using only the DE approach were performed by the authors and promising
results were obtained. This study furthers the previous work by exploring the behavior of three major
EA implementations for the UCP. These three EA variants are tested on benchmark UCP data as well as
on real-world data of the Turkish Interconnected Power System. The results are also compared to successful
results reported in literature for the same benchmark datasets.

This paper is organized as follows: In section 2, the UCP is explained. Section 3 introduces the EA
approaches used in this study. In section 4, experiments and results are given. Section 5 concludes the paper.

2. The Unit Commitment Problem

The objective of the UCP is to minimize the total cost of power generation over a given time horizon subject
to operational constraints while satisfying hourly power demands. Two main factors affect the cost: fuel
costs and start-up costs. There are two types of constraints: constraints based on the operational restrictions
of the generators and the constraints based on power generation requirements. The parameters used in the
UCP formulation are given in Table 1.

Table 1. Parameters used in the UCP formulation.

Pi(t) Power generated by unit iat time t
Fi(p) Cost of producing pMW power by unit I

P max
i Maximum power which can be generated by unit I

P min
i Minimum power which can be generated by unit I

PD(t) Power demanded at time t
PR(t) Power determined as reserve at time t

CS i(t) Start-up cost of ith unit at time t
xi(t) Duration that unit ihas not changed its status
vi(t) Status of ith unit at time t(online/offline)

Fuel cost depends on the amount of power output provided by each online unit for each time slot.
The fuel cost needs to be minimized subject to two constraints: the power demands for each hour should
be met and the power generated by each unit should be within its minimum and maximum capacities. This
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part of the objective can be formulated as

minFtotal(t) =
N∑

i=1

Fi(Pi(t))

subject to the constraints

N∑
i=1

Fi(Pi(t)) = PD(t)

P min
i ≤ (t) ≤ P max

i

Start-up costs depend on the number of hours a unit has been offline. The formulation for the start-up cost
is

CSi

{
CShot if xi(t) ≤ tcoldstart

CScold otherwise

where tcoldstart is a parameter which defines a threshold for a hot or a cold start-up specific to each generation
unit type. An additional constraint (minimum up/down time) defines a minimum amount of time for each
generator during which the generator is not allowed to change its status. The formulation for these constraints
is

if vi(t) = 1 xi(t − 1) ≥ tdown

else xi(t − 1) ≥ tup

According to these fuel cost and start-up cost functions and constraints, the formulation for the UCP for N

units and T hours can be summarized as

min Ftotal =
T∑

t=1

N∑
i=1

[Fi(Pi(t)).vi(t) + CSi(t)]

subject to constraints
N∑

i=1

Pi(t).vi(t) = PD(t)

vi(t).P min
i ≤ Pi(t) ≤ vi(t)P max

i

N∑
i=1

P max
i (t).vi(t) ≥ PD(t) + PR(t)

if vi(t) = 1 xi(t − 1) ≥ tdown

else xi(t − 1) ≥ tup

The fuel cost of generating pMW of power for the ith unit is calculated using the formula

Fi(p) = a0i + a1i.p + a2i.p
2

The fuel generation cost depends on three system parameters: a0i , a1i and a2i . These parameters are
given for each generator i . After a schedule has been found, the power to be generated by each online
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generator needs to be determined. This part of the UCP is called the economic dispatch problem (EDP) [27]

and is commonly solved using lambda-iteration [10, 15]. We also use this method in our experiments. The
lambda-iteration algorithm is given in Figure 1.

select initial λ and Δ;

repeat

calculate Pi for each generator using dFi/dPi = λ;

calculate Ptotal;

diff=PD-Ptotal;

if (diff<0) then

λ=λ−Δ;

else

λ=λ+Δ

endif;

Δ=Δ/2;

until (|diff|<ε);

Figure 1. Lambda-Iteration Algorithm.

The initial value of λ and Δ are determined as given below, where λmax and λmin are calculated
using Pmax and Pmin :

λ =
λmax + λmin

2

λ =
λmax − λmin

2

3. Evolutionary Algorithms

EAs [21] have been applied to many different problem domains with successful results. All variants of EAs
are based on the same natural principles; however they mainly differ in the solution representations and
operators used and sometimes in the order in which these operators are applied. The algorithmic flow of a
basic EA is given in Figure 2.

select initial population;

repeat

evaluate population;

select mating pairs;

apply reproduction operators;

until stopping_criteria satisfied;

Figure 2. Basic Evolutionary Algorithm.
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EAs are population-based search and optimization techniques. They start from an initial set of
candidate solutions in the search space termed as the initial population. Each parameter of the problem is
called a gene and the solution string made up of the parameters is a chromosome. A solution candidate to
the problem is termed as an individual and commonly consists of only one chromosome.

The initial population is usually determined randomly. After the initialization step, the main loop of
the EA begins. In each loop, first the current set of individuals is evaluated based on the objectives and the
constraints. The function used to evaluate these individuals is termed as the fitness function. Individuals
with high fitness values are those that produce solutions of higher quality. In the second step of the EA
loop, some of the individuals are selected to undergo reproduction. According to the technique used to select
these individuals, higher quality solutions have a higher chance of being selected, thus transmitting their
good genetic material into the next generations.

In the reproduction stage, two genetic operators are applied: crossover and mutation. Crossover acts
on two individuals termed as parents, creating a new individual, the offspring, by combining parts of the
chromosomes from each parent. The resulting offspring individual then undergoes mutation which causes
changes in the solution represented by the individual. Crossover aids in exploiting already found good
solutions, while mutation allows the EA to explore different parts of the search space.

After the required number of offspring has been generated through selection and reproduction, some of
these individuals are selected to form the population in the next generation (iteration). Different techniques
are employed by different EA variants at this stage. Commonly, the population size, i.e. the number of
individuals in the population, in each generation is kept constant in most EAs.

The EA loop continues until some stopping criteria are met. While several criteria exist in literature,
the most common form is allowing the EA to explore a limited amount of solution candidates in the
search space. Since each solution candidate is evaluated using the fitness function, this criterion is usually
implemented as allowing the EA to run until a predetermined number of fitness evaluations has been
performed. Further details on EAs can be found in [21].

3.1. Genetic algorithms

GAs are among the earlier variants of EAs, developed by Holland [22] in 1975. GAs commonly work on a
binary representation of solutions and thus are very suitable for the UCP. There are some existing applications
of various GAs to the UCP in literature, e.g. as in [11–17].

In GAs, there are two most commonly used population replacement schemes: the generational re-
placement scheme and the steady-state replacement scheme. GAs using generational-replacement are called
generational GAs (GGAs) and those that use the steady-state model are called steady-state GAs (SSGAs).
In GGAs, in each iteration the whole population is replaced. However in SSGAs, only one offspring is gen-
erated in each iteration of the EA loop and the new individual replaces an existing one in the population.
By doing this, the population size is kept constant.

In the GA applications of UCP in literature, commonly a GGA model is used. Therefore, to explore
whether SSGA is also suitable, the steady-state model is adopted in this paper. Therefore details of SSGA
will be further given here. The SSGA follows the basic EA flow but at each iteration only one offspring is
generated and inserted into the population. The basic SSGA algorithm is given in Figure 3.
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randomly select initial population;

repeat

select one mating pair;

generate one offspring through reproduction;

evaluate offspring;

if offspring better than current worst individual then

offspring replaces worst individual;

endif

until max_fitness_evaluations reached;

Figure 3. Basic Steady State Genetic Algorithm.

For mating pair selection, binary tournament selection is used. The two selected individuals go through
reproduction, which consists of crossover and mutation. A two-point crossover method is used, in which
the offspring gets a segment of its solution, defined by two cutoff points, from one parent while the rest is
taken from the other. Crossover occurs with a predefined crossover probability (pc). If crossover does not
occur between the parents, the new offspring becomes an exact copy of one of the parents which is randomly
determined. Point mutation is used on the offspring generated as a result of crossover. In this type of
mutation, the value of a parameter on the solution string is inverted with a predefined mutation probability
(pm). After the fitness value of the offspring is calculated, it is compared to the fitness of the worst individual
in the current population. If the offspring has a better fitness, it replaces the worst individual, otherwise
it is discarded. The loop continues until a fixed amount of fitness evaluations have been performed by the
SSGA. Further details can be found in [21].

3.2. Evolutionary strategies

Evolutionary Strategies (ES) was introduced by Rechenberg in 1973 [23]. ES is traditionally applied to
continuous search spaces. The UCP is a discrete problem; therefore a modified version of ES is used in this
paper. Similar to GAs, ES also works on a population of individuals however the application of the genetic
operators is somewhat different. The general outline of a basic ES is given in Figure 4.

In ES, a chromosome consists of three parts: The genes corresponding to the parameters of the problem
form the first part. In the second part, the mutation step sizes associated with each gene are located. The
third part gives the rotation angles used in calculating the mutation step sizes. Commonly, only the first
two parts are used and the third part is ignored. So a sample chromosome in ES is as follows:

< p1 p2 · · ·p , σ1 σ2 · · ·σn >

where pi show the parameters and the σi show the corresponding mutation step sizes.
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randomly select initial population;

evaluate population;

repeat

for child_population_size times do

   randoly select one mating pair;

   generate one offspring through reproduction;

endfor

select population_ size individuals;

until max_fitness_evaluations reached;

Figure 4. Basic Evolutionary Strategies Algorithm.

In ES, in each iteration, μ number of offspring is generated from λ individuals through reproduction.
μ is commonly chosen to be much larger than λ . In ES, parent selection is done randomly. For each offspring,
two parent individuals are selected uniformly randomly from the whole population. These individuals first go
through crossover then through mutation. Two different types of crossover are applied to the two different
parts of the chromosome. In the parameters part, the same types of crossover methods as in GAs are
commonly used. In this study, a two-point crossover technique is chosen as in the SSGA. For the crossover
in the second part of the chromosome, where the mutation step sizes are located, an arithmetic averaging is
commonly performed. This approach is also chosen in this study.

Self-adaptive mutation is a feature of ES. Each parameter has its own mutation step size which is also
adapted through evolution. Gaussian mutation is applied to mutate both the parameters and the mutation
step sizes. The mutation step sizes are mutated first. Then these are used as the standard deviation values in
the normal distribution for the Gaussian mutation of the parameters. Through this process, good mutation
values which generate good solutions are preserved on the chromosomes.

In ES one of two different methods may be used to determine the individuals for the next generation.
In the plus-strategy, the best λ individuals from the parents and offspring combined are selected. In the
comma-strategy, selection is done from only the offspring. The comma-strategy is better at preserving
diversity, therefore it is chosen in this paper. Again the loop continues until a fixed amount of fitness
evaluations have been performed by the ES. Detailed information on ES can be found in [28].

In order to apply ES to the UCP, some modifications are needed. Since the gene values are binary,
Gaussian mutation is not applicable. In the binary version of ES, the second part of the chromosome
denotes the mutation probability pmi of the ith gene rather than a mutation step size. This means that
a gene is mutated, i.e. inverted, with a probability given by the corresponding mutation probability value
in the second part of the chromosome. The mutation probability values themselves are still mutated using
Gaussian mutation. The rest of the ES flow and operations are the same as in the continuous case.

3.3. Differential Evolution

The Differential Evolution (DE) [25] algorithm was introduced by Storn and Price in 1995. DE is also a form
of an evolutionary algorithm which operates in continuous search spaces. DE is based on four main steps:
Initialization, mutation, recombination and selection. All individuals pass through these operations. In DE
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literature, the chromosome is commonly referred to as the vector. The same terminology is also adopted in
this paper. The algorithmic flow of the basic DE is given in Figure 5.

The chromosomes of an individual are made up of real valued genes each of which correspond to the
parameters of the problem to be optimized. All individuals in the population, called the target vectors, go
through the mutation and recombination steps. There are several mutation operators. In one of the most
commonly used forms of the mutation operator in DE (DE/rand/1 ), three different vectors are chosen from
the population randomly and a mutant vector is created using through the equation below, where F is the
mutation factor. This mutant vector is called the donor vector.

Vi,g = Xr0,g + F (Xr1,g − Xr2,g)

where Vi,g is the donor vector and Xri,g are the randomly chosen vectors.

As can be seen from the definition of the mutation operator of the DE algorithm, it is not possible
to use it for binary valued problems without a modification. There are some approaches in literature for
modifying DE for such binary valued problems. One of these methods uses an angle modulation technique
to transform the binary space into a continuous space [29]. In the initial testing stage of this study, the
experimental results obtained using this technique turned out to be insufficient. So the approach proposed
in [30] is used as the binary DE implementation in this study. The details of this method are explained
further in the following paragraphs.

randomly create initial population;

evaluate population;

repeat

for population_size times do

   select next target vector;

   randoly choose base vector;

   donor vector = mutate (base vector);

   trial vector = crossover (target vector, donor vector);

   if trial vector better than target vector then

   select trial vetor;

   else

   select target vector;

   endif

endfor

until max_fitness_evaluations reached;

Figure 5. Basic Differential Evolution Algorithm.

The initialization step randomly sets the initial values of the parameters in the population, to be
either 1 or 0. The modification on DE to make it run within binary spaces is done to the mutation operator.
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According to the approach proposed in [30], the multiplication, addition and substitution operations are

achieved using the Hamming distance [31] between the two vectors. After the substitution step, each
parameter in the vector is multiplied with the F parameter. This operation forces the values of the
parameters to change from the binary space into the continuous space. In the next step of the mutation
operator, which is addition, the values are transformed back into being either 0 or 1 through a rounding
mechanism. In the crossover step, part of the new vector is taken from the target vector while the rest is taken
from the donor vector through a mechanism similar to two-point crossover in GAs using a Cr parameter as
the probability in determining the length of the segment taken from the target vector. The vector created
through crossover is called the trial vector. The beginning of the segment to obtain from the target vector
is determined randomly. The length L of the segment is determined as given in Figure 6. For larger values
of Cr, a larger portion of the new vector is taken from the target vector.

L=0;

 do

    L=L+1:
  while (random() < Cr) AND

(L<Chromosome_Length);

Figure 6. Determining the length of the segment.

In the selection step, either the target vector or the trial vector is chosen based on their fitness values.
These steps continue until a predefined number of maximum DE iterations have been reached.

4. Experiments

The results of the EAs are compared based on three datasets. Two of these are commonly used benchmark
datasets found in literature. The last is real-world data obtained from the Turkish Interconnected Power
System. This data is extracted from documents collected from 8 generators in Turkey in 2006 and is processed
to convert into UCP formulation.

In [13], results obtained through other approaches for the two benchmark datasets are reported. These
results are also used in this paper for comparisons. These approaches are:

• GGA: a standard generational GA, as used in [13];

• MA: a Memetic Algorithm [32], as used in [13], where the standard GGA is enhanced with a modified
Lamarckian approach with local search.

4.1. Experimental Setup

The following parameter settings are used in the EAs in the experiments. All parameter values are determined
using the best settings found as a result of a series of experimental runs.

In all EAs the population size is taken as 100. This corresponds to λ = 100 in ES and μ = 700 is chosen
for the size of the child population. Population size is important. When it is chosen very low, there will not
be sufficient diversity in the population and the search may get stuck at local optima. However, very large
population sizes mean too many fitness evaluations. Since fitness evaluations are the most time consuming
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steps of the problem (due to the fact that lambda-iteration has to be run in each fitness evaluation), the
running times may increase drastically. Initial parameter tuning tests were performed for all approaches to
determine 100 as a common population size for which each approach performed well within acceptable times.

All EAs are allowed to do a maximum of 5000 fitness evaluations for the first and third datasets and
20000 evaluations for the second dataset. Initial σ i values for ES are set as 1/length where length is the
length of the chromosome. The crossover probability in SSGA and ES is taken as pc = 1, which means that
all pairs go through crossover. In the DE, Cr is taken as 0.1 and F is taken as 0.6. In lambda iteration,
the tolerance is set to 0.0001. 20 runs of each of the algorithms with different random seeds are performed
and the best, average and worst feasible results obtained for the total costs are reported here.

An individual in the EA corresponds to a potential solution to the UCP. For a system with N

units and a time horizon of T hours, the chromosome length is N×T, where each gene shows whether the
corresponding generator is on or off for that time slot. The fitness of an individual depends on the cost of
the solution S as well as the penalty values it acquires:

fitness(S) = cost(S) + penalty(S)

Cost for power generation is calculated using the lambda-iteration method based on the status of each
power generator unit. For each hour, depending on whether the start-up is a cold start or a hot start, the
appropriate cost is added to the total cost:

cost(S) = fuelCost(S) + startupCost(S).

Both the fuel cost and the start-up cost values are calculated as explained in Section 2. The penalty
value is composed of two parts:

penalty(S) = M ∗ demandPenalty(S) + K ∗ updownPenalty(S)

where M and K are constant coefficients. Calculation of the demand penalty and up/down penalty terms is

taken from [13]. A penalty term is used if the hourly power demands plus a specific amount of reserve is not
met or if tup and tdown constraints are violated. The multiplier M for the penalty term representing the
amount of unmet power demand is set to 200. The multiplier K for the second penalty term representing
the violated up/down constraint is taken as 10. Details on the fitness evaluation and the penalty calculation

method can be found in [13].

4.2. Results

The first test problem [33] has 4 power generating units and a time horizon of 8 hours. The data for this test

system is given in Table 7 and Table 8. For the second test, a larger dataset [13] consisting of 10 generating
units and a time horizon of 24 hours is used. The data and the results for this test are given in Table 9 and
Table 10. For the third test, the real-world data from the Turkish Interconnected Power System is used.
There are 8 generating units and a time horizon of 8 hours. The data for this test system is given in Table
11 and Table 12.

The results of the three EAs and the results reported in literature are given in Table 2, Table 3 and
Table 4 for the three tests respectively. In the columns of the tables the following notation is used:

• Best: best result found over 20 runs;

• Avg: average of the results found over 20 runs;
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• Worst: worst result found over 20 runs.

In the rows of the tables, the different approaches are abbreviated as such:

• SSGA: Steady-State Genetic Algorithm ;

• ES: Evolutionary Strategies;

• DE: Differential Evolution;

• GGA: Generational Genetic Algorithm (results taken from [13]);

• MA: Memetic Algorithm (results taken from [13]).

For the test results of the Turkish Interconnected Power System, solutions from the other EAs are
not available since the real-world data used is obtained locally. Therefore only the results of the three EAs
used in this paper are reported in Table 4.

Table 2. Results for Test System 1.

Best Avg Worst
SSGA 74675 74675 74675
DE 74675 74784 75008
MA 74675 74909 75012
ES 74675 74966 75008
GGA 74675 n/a n/a

Table 3. Results for Test System 2.

Best Avg Worst
DE 565827 565965 566650
MA 565827 566453 566861
ES 565827 569199 571312
GGA 565866 567329 571336
SSGA 566564 569097 571532

Table 4. Results for the Turkish Interconnected Power System (System 3).

Best Avg Worst
DE 530346 530346 530346
ES 530392 530392 530392
SSGA 530392 530392 530392

As can be seen, for the first test, which is smaller in problem size and thus easier than the other two,
all EAs give the same best result. This result is reported as being the global optimum for this problem in
[13]. However when we look at average and worst case results, we see that SSGA is better than the others
because it locates the global optimum in all the test runs while the MA, ES and DE produce solutions
distributed in a wider range.

For the second test, DE, MA and ES all locate the same best solution. When we look at the average
and worst performances, DE seems to be better than all the others. MA is the second best performer but
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not quite as good as DE. ES, GGA and SSGA are worse than the first two with GGA and SSGA locating a
solution of lower quality than even ES, which is closer to them in average and worse case performances. The
performance of MA is the closest to the best performer DE, however it should be kept in mind that while
the EAs used in this paper are in their most basic forms and no special operators are implemented, the MA
[13] uses specialized operators and an extra local search step through hill-climbing during the iterations,
which is very time consuming. Therefore DE performs fewer actions to find better results than those of a
state-of-the-art algorithm from literature.

For the third test, which again is smaller and thus seems to be easier than the second, DE is the best
performer, locating the same good solution in every run while ES and SSGA find a slightly worse solution
in all their runs. However the differences in solution quality are not too high.

As expected, the SSGA performs similarly to GGA since they use the same operators and the same
application order, with the only difference being in the population replacement techniques used. The DE
results in this paper are much improved than in the previous study [26] by the authors. In that study, only
best results found over 20 runs were reported. Therefore in Table 5 we only list the best results in the
previous and current studies for the DE on the same datasets and in Table 6 we give the different parameter
settings which produced the results given in Table 5. The parameters of DE which are not listed in Table 6
have the same settings in both studies so they have not been shown in the table.

Table 5. Results of two studies using DE.

Previous [26] Current
Test 1 74675 74675
Test 2 566166 565827
Test 3 532142 530346

Table 6. Parameter settings in the two studies using DE.

Previous [26] Current
Cr 0.3 0.1
F 0.8 0.6
M 200 200
K 50 10

The improvement in the results is quite high for the second and third tests. This improvement is a
result of extensive experimentation with the F, Cr, M and K parameters to find the best settings. This
issue points to one shortcoming of the DE implementation used in this study: that performance is highly
dependent on appropriate parameter settings.

5. Conclusion

The use of EAs for the unit commitment problem (UCP) is explored in this study. Three sets of tests are
performed using a SSGA, an ES and a DE as the appropriate EAs. The first two tests are on benchmark
datasets obtained from the literature. The results of these two tests are compared to those of current state-
of-the-art evolutionary algorithms, namely a MA and a GGA found in literature. Then, the three EAs are
further applied to the real-word data obtained from the Turkish Interconnected Power System.

As can be seen from the results obtained for the benchmark tests, the DE implementation is the best
performer and the results of the other two EAs used in this study are comparable to those of the existing
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approaches. As also stated above, it should be noted that while the EAs used in this study are in their most
basic forms, the MA use local search through hill climbing during execution, which is computationally very
costly. Thus the EAs perform fewer actions to find good results. The similar performance of SSGA and
GGA is to be expected since they share the same operators and application order with no extra operations
as in the MA.

These experimental results show that EAs, especially DE, are very suitable for the UCP. In this
study, the best settings for all the EAs are determined as a result of extensive experimental runs, however
it is especially seen in the case of DE, that performance may be dependent on the selection of some of
the parameters. This should be thoroughly explored, making modifications to make the algorithms less
susceptible to parameter settings. Overall, the tested EAs perform well on the UCP and the results promote
further study.

Acknowledgements

The authors would like to acknowledge the work of Ali Keleş. The binary differential evolution implementa-
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Appendix. System Data used in the Experiments.

Table 7. Test System 1 [33].

Unit 1 Unit 2 Unit 3 Unit 4
Pmax (MW) 300 250 80 60
Pmin (MW) 75 60 25 20
a0 684.74 585.62 213.0 252.0
a1 16.83 16.95 20.74 23.60
a2 0.0021 0.0042 0.0018 0.0034
tup (h) 5 5 4 1
tdown (h) 4 3 2 1
Shot ($) 500 170 150 0
Scold ($) 1100 400 350 0.02
tcoldstart (h) 5 5 4 0
Initial State(h) 8 8 -5 -6

Table 8. Demand and Reserve Loads for Test System 1 [33].

Hour 1 2 3 4
Demand (Unit?) 450 530 600 540
Reserve (Unit?) 45 53 60 54

Hour 5 6 7 8
Demand (Unit?) 400 280 290 500
Reserve (Unit?) 40 28 29 50
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Table 9. Test System 2 [13].

Unit 1 Unit 2 Unit 3 Unit 4
Pmax (MW) 455 455 130 130
Pmin (MW) 150 150 20 20

a0 1000 970 700 680
a1 16.19 17.26 16.60 16.50
a2 0.00048 0.00031 0.00200 0.00211

tup (h) 8 8 5 5
tdown (h) 8 8 5 5
Shot ($) 4500 5000 550 560
Scold ($) 9000 10000 1100 1120

tcoldstart (h) 5 5 4 4
Initial State (h) 8 8 -5 -5

Unit 5 Unit 6 Unit 7 Unit 8
Pmax (MW) 162 80 85 55
Pmin (MW) 25 20 25 10

a0 450 370 480 660
a1 19.70 22.26 27.74 25.92
a2 0.00398 0.00712 0.00079 0.00413

tup (h) 6 3 3 1
tdown (h) 6 3 3 1
Shot ($) 900 170 260 30
Scold ($) 1800 340 520 60

tcoldstart (h) 4 340 520 60
Initial State (h) -6 -3 -3 -1

Unit 9 Unit 10
Pmax (MW) 55 55
Pmin (MW) 10 10

a0 665 670
a1 27.27 27.79
a2 0.00222 0.00173

tup (h) 1 1
tdown (h) 1 1
Shot ($) 30 30
Scold ($) 60 60

tcoldstart (h) 0 0
Initial State (h) -1 -1

Table 10. Demand and Reserve Loads for Test System 2 [13].

Hour 1 2 3 4 5 6 7 8
Demand (Unit?) 750 750 850 950 1000 1100 1150 1200
Reserve (Unit?) 75 75 85 95 100 110 115 120

Hour 9 10 11 12 13 14 15 16
Demand (Unit?) 1300 1400 1450 1500 1400 1300 1200 1050
Reserve (Unit?) 130 140 145 150 140 130 120 105

Hour 17 18 19 20 21 22 23 24
Demand (Unit?) 1000 1100 1200 1400 1300 1100 900 800
Reserve (Unit?) 100 110 120 140 130 110 90 80
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Table 11. Turkish Interconnected Power System.

Unit 1 Unit 2 Unit 3 Unit 4
Pmax (MW) 1120 1350 1432 600
Pmin (MW) 190 245 318 150

a0 6595.5 7290.6 6780.5 1564.4
a1 7.0063 7.2592 5.682 3.1288
a2 0.0168 0.0127 0.0106 0.0139

tup (h) 8 1 1 10
tdown (h) 2 0,5 0,5 3
Shot ($) 800 800 600 400
Scold ($) 1600 1600 1200 800

tcoldstart (h) 8 1 1 10
Initial State (h) -4 -4 -4 -4

Unit 5 Unit 6 Unit 7 Unit 8
Pmax (MW) 990 420 630 630
Pmin (MW) 210 110 140 140

a0 5134.1 1159.5 1697 1822.8
a1 6.232 3.3128 3.2324 3.472
a2 0.0168 0.021 0.013 0.0147

tup (h) 10 10 10 10
tdown (h) 3 3 3 3
Shot ($) 500 400 400 400
Scold ($) 1000 800 800 800

tcoldstart (h) 10 10 10 10
Initial State (h) -4 -4 -4 -4

Table 12. Demand and Reserve Loads for the Turkish Interconnected Power System.

Hour 1 2 3 4
Demand (Unit?) 2000 3000 6500 1500
Reserve (Unit?) 200 300 650 150

Hour 5 6 7 8
Demand (Unit?) 4200 5100 2700 1750
Reserve (Unit?) 420 510 270 175
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